
PayWord and MicroMint:Two simple micropayment schemesRonald L. Rivest� and Adi Shamir��May 7, 1996�MIT Laboratory for Computer Science545 Technology Square, Cambridge, Mass. 02139��Weizmann Institute of ScienceApplied Mathematics DepartmentRehovot, Israelfrivest,shamirg@theory.lcs.mit.edu

1 IntroductionWe present two simple micropayment schemes, \PayWord" and \MicroMint," for makingsmall purchases over the Internet. We were inspired to work on this problem by DEC's\Millicent" scheme[10]. Surveys of some electronic payment schemes can be found in Hallam-Baker [6], Schneier[16], and Wayner[18].Our main goal is to minimize the number of public-key operations required per payment,using hash operations instead whenever possible. As a rough guide, hash functions are about100 times faster than RSA signature veri�cation, and about 10,000 times faster than RSAsignature generation: on a typical workstation, one can sign two messages per second, verify200 signatures per second, and compute 20,000 hash function values per second.To support micropayments, exceptional e�ciency is required, otherwise the cost of themechanism will exceed the value of the payments. As a consequence, our micropaymentschemes are light-weight compared to full macropayment schemes. We \don't sweat thesmall stu�": a user who loses a micropayment is similar to someone who loses a nickel ina candy machine. Similarly, candy machines aren't built with expensive mechanisms fordetecting forged coins, and yet they work well in practice, and the overall level of abuse islow. Large-scale and/or persistent fraud must be detected and eliminated, but if the schemedelivers a volume of payments to the right parties that is roughly correct, we're happy.In our schemes the players are brokers, users, and vendors. Brokers authorize usersto make micropayments to vendors, and redeem the payments collected by the vendors.While user-vendor relationships are transient, broker-user and broker-vendor relationshipsare long-term. In a typical transaction a vendor sells access to a World-Wide Web page forone cent. Since a user may access only a few pages before moving on, standard credit-cardarrangements incur unacceptably high overheads.The �rst scheme, \PayWord," is a credit-based scheme, based on chains of \paywords"(hash values). Similar chains have been previously proposed for di�erent purposes: by Lam-port [9] and Haller (in S/Key) for access control [7], and by Winternitz [11] as a one-timesignature scheme. The application of this idea for micropayments has also been indepen-dently discovered by Anderson et al. [2] and by Pederson [14], as we learned after distributingthe initial draft of this paper. We discuss these related proposals further in Section 5. Theuser authenticates a complete chain to the vendor with a single public-key signature, andthen successively reveals each payword in the chain to the vendor to make micropayments.The incremental cost of a payment is thus one hash function computation per party. Pay-Word is optimized for sequences of micropayments, but is secure and
exible enough tosupport larger variable-value payments as well.The second scheme, \MicroMint," was designed to eliminate public-key operations alto-gether. It has lower security but higher speed. It introduces a new paradigm of representingcoins by k-way hash-function collisions. Just as for a real mint, a broker's \economy ofscale" allows him to produce large quantities of such coins at very low cost per coin, whilesmall-scale forgery attempts can only produce coins at a cost exceeding their value.1

2 Generalities and NotationWe use public-key cryptography (e.g. RSA with a short public exponent). The public keysof the broker B, user U , and vendor V are denoted PKB, PKU , and PKV , respectively;their secret keys are denoted SKB, SKU , and SKV . A message M with its digital signatureproduced by secret key SK is denoted fMgSK. This signature can be veri�ed using thecorresponding public key PK.We let h denote a cryptographically strong hash function, such as MD5[15] or SHA[13].The output (nominally 128 or 160 bits) may be truncated to shorter lengths as describedlater. The important property of h is its one-wayness and collision-resistance; a very largesearch should be required to �nd a single input producing a given output, or to �nd twoinputs producing the same output. The input length may, in some cases, be equal to theoutput length.3 PayWordPayWord is credit-based. The user establishes an account with a broker, who issues hera digitally-signed PayWord Certi�cate containing the broker's name, the user's name andIP-address, the user's public key, the expiration date, and other information. The certi�catehas to be renewed by the broker (e.g. monthly), who will do so if the user's account is ingood standing. This certi�cate authorizes the user to make Payword chains, and assuresvendors that the user's paywords are redeemable by the broker. We assume in this paperthat each payword is worth exactly one cent (this could be varied).In our typical application, when U clicks on a link to a vendor V 's non-free web page,his browser determines whether this is the �rst request to V that day. For a �rst request,U computes and signs a \commitment" to a new user-speci�c and vendor-speci�c chain ofpaywords w1, w2, : : : , wn. The user creates the payword chain in reverse order by pickingthe last payword wn at random, and then computingwi = h(wi+1)for i = n� 1, n� 2, : : : , 0. Here w0 is the root of the payword chain, and is not a payworditself. The commitment contains the root w0, but not any payword wi for i > 0. Then Uprovides this commitment and her certi�cate to V , who veri�es their signatures.The i-th payment (for i = 1; 2; : : :) from U to V consists of the pair (wi; i), which thevendor can verify using wi�1. Each such payment requires no calculations by U , and only asingle hash operation by V .At the end of each day, V reports to B the last (highest-indexed) payment (wl; l) receivedfrom each user that day, together with each corresponding commitment. B charges U 'saccount l cents and pays l cents into V 's account. (The broker might also charge subscriptionand/or transaction fees, which we ignore here.)A fundamental design goal of PayWord is to minimize communication (particularly on-line communication) with the broker. We imagine that there will be only a few nationwide2

brokers; to prevent them from becoming a bottleneck, it is important that their computa-tional burden be both reasonable and \o�-line." PayWord is an \o�-line" scheme: V doesnot need to interact with B when U �rst contacts V , nor does V need to interact with Bas each payment is made. Note that B does not even receive every payword spent, but onlythe last payword spent by each user each day at each vendor.PayWord is thus extremely e�cient when a user makes repeated requests from the samevendor, but is quite e�ective in any case. The public-key operations required by V are onlysignature veri�cations, which are relatively e�cient. We note that Shamir's probabilisticsignature screening techniques[17] can be used here to reduce the computational load on thevendor even further. Another application where PayWord is well-suited is the purchase ofpay-per-view movies; the user can pay a few cents for each minute of viewing time.This completes our overview; we now give some technical details.3.1 User-Broker relationship and certi�catesUser U begins a relationship with broker B by requesting an account and a PayWord Cer-ti�cate. She gives B over a secure authenticated channel: her credit-card number, her publickey PKU , and her \delivery address" AU . Her aggregated PayWord charges will be chargedto her credit-card account. Her delivery address is her Internet/email or her U.S. mail ad-dress; her certi�cate will only authorize payments by U for purchases to be delivered toAU .The user's certi�cate has an expiration date E. Certi�cates might expire monthly, forexample. Users who don't pay their bills won't be issued new certi�cates.The broker may also give other (possibly user-speci�c) information IU in the certi�cate,such as: a certi�cate serial number, credit limits to be applied per vendor, information onhow to contact the broker, broker/vendor terms and conditions, etc.The user's certi�cate CU thus has the form:CU = fB;U;AU; PKU ; E; IUgSKB :The PayWord certi�cate is a statement by B to any vendor that B will redeem authenticpaywords produced by U turned in before the given expiration date (plus a day's grace).PayWord is not intended to provide user anonymity. Although certi�cates could containuser account numbers instead of user names, the inclusion of AU e�ectively destroys U 'sanonymity. However, some privacy is provided, since there is no record kept as to whichdocuments were purchased.If U loses her secret key she should report it at once to B. Her liability should be limitedin such cases, as it is for credit-card loss. However, if she does so repeatedly the broker mayrefuse her further service. The broker may also keep a \hot list" of certi�cates whose usershave reported lost keys, or which are otherwise problematic.As an alternative to hot-lists, one can use hash-chains in a di�erent manner as proposedby Micali [12] to provide daily authentication of the user's certi�cate. The user's certi�catewould additionally contain the root w00 of a hash chain of length 31. On day j � 1 of themonth, the broker will send the user (e.g. via email) the value w0j if and only if the user's3

account is still in good standing. Vendors will then demand of each user the appropriate w0value before accepting payment.3.2 User-Vendor relationships and paymentsUser-vendor relationships are transient. A user may visit a web site, purchase ten pages,and then move on elsewhere.CommitmentsWhen U is about to contact a new vendor V , she computes a fresh payword chain w1,: : : , wn with root w0. Here n is chosen at the user's convenience; it could be ten or tenthousand. She then computes her commitment for that chain:M = fV;CU ; w0;D; IMgSKU :Here V identi�es the vendor, CU is U 's certi�cate, w0 is the root of the payword chain, Dis the current date, and IM is any additional information that may be desired (such as thelength n of the payword chain). M is signed by U and given to V . (Since this signatureis necessarily \on-line," as it contains the vendor's name, the user might consider using an\on-line/o�-line" signature scheme[5].)This commitment authorizes B to pay V for any of the paywords w1, : : : , wn that Vredeems with B before date D (plus a day's grace). Note that paywords are vendor-speci�cand user-speci�c; they are of no value to another vendor.Note that U must sign a commitment for each vendor she pays. If she rapidly switchesbetween vendors, the cost of doing so may become noticeable. However, this is PayWord'sonly signi�cant computational requirement, and the security it provides makes PayWordusable even for larger \macropayments" (e.g. software selling at $19.99).The vendor veri�es U 's signature on M and the broker's signature on CU (containedwithin M), and checks expiration dates.The vendor V should cache veri�ed commitments until they expire at the end of the day.Otherwise, if he redeemed (and forgot) paywords received before the expiration date of thecommitment, U could cheat V by replaying earlier commitments and paywords. (Actually,to defeat this attack, V need store only a short hash of each commitment he has reportedto B already today.)The user should preferably also cache her commitment until she believes that she is�nished ordering information from V , or until the commitment expires. She can alwaysgenerate a fresh commitment if she re-visits a vendor whose commitment she has deleted.PaymentsThe user and vendor need to agree on the amount to be paid. In our exemplary applica-tion, the price of a web page is typically one cent, but could be some other amount. A webpage should presumably be free if the user has already purchased it that day, and is justrequesting it again because it was
ushed from his cache of pages.A payment P from U to V consists of a payword and its index:P = (wi; i) :4

The payment is short: only twenty or thirty bytes long. (The �rst payment to V thatday would normally accompany U 's corresponding commitment; later payments are just thepayword and its index, unless the previous chain is exhausted and a new chain must becommitted to.) The payment is not signed by U , since it is self-authenticating (using thecommitment).The user spends her paywords in order: w1 �rst, then w2, and so on. If each paywordis worth one cent, and each web page costs one cent, then she discloses wi to V when sheorders her i-th web page from V that day.This leads to the PayWord payment policy: for each commitment a vendor V is paid lcents, where (wl; l) is the corresponding payment received with the largest index. This meansthat V needs to store only one payment from each user: the one with the highest index.Once a user spends wi, she can not spend wj for j < i. The broker can con�rm the value tobe paid for wl by determining how many applications of h are required to map wl into w0.PayWord supports variable-size payments in a simple and natural manner. If U skipspaywords, and gives w7 after giving w2, she is giving V a nickel instead of a penny. WhenU skips paywords, during veri�cation V need only apply h a number of times proportionalto the value of the payment made.A payment does not specify what item it is payment for. The vendor may cheat U bysending him nothing, or the wrong item, in return. The user bears the risk of losing thepayment, just as if he had put a penny in the mail. Vendors who so cheat their customerswill be shunned. This risk can be moved to V , if V speci�es payment after the documenthas been delivered. If U doesn't pay, V can notify B and/or refuse U further service. Formicropayments, users and vendors might �nd either approach workable.3.3 Vendor-Broker relationships and redemptionA vendor V needn't have a prior relationship with B, but does need to obtain PKB in anauthenticated manner, so he can authenticate certi�cates signed by B. He also needs toestablish a way for B to pay V for paywords redeemed. (Brokers pay vendors by meansoutside the PayWord system.)At the end of each day (or other suitable period), V sends B a redemption messagegiving, for each of B's users who have paid V that day (1) the commitment CU receivedfrom U , (2) the last payment P = (wl; l) received from U .The broker then needs to (1) verify each commitment received (he only needs to verifyuser signatures, since he can recognize his own certi�cates), including checking of dates, etc.,and (2) verify each payment (wl; l) (this requires l hash function applications). We assumethat B normally honors all valid redemption requests.Since hash function computations are cheap, and signature veri�cations are only mod-erately expensive, B's computational burden should be reasonable, particularly since it ismore-or-less proportional to the payment volume he is supporting; B can charge transactionor subscription fees adequate to cover his computation costs. We also note that B neverneeds to respond in real-time; he can batch up his computations and perform them o�-lineovernight. 5

3.4 E�ciencyWe summarize PayWord's computational and storage requirements:� The broker needs to sign each user certi�cate, verify each user commitment, and per-form one hash function application per payment. (All these computations are o�-line.)The broker stores copies of user certi�cates and maintains accounts for users and ven-dors.� The user needs to verify his certi�cates, sign each of his commitments, and perform onehash function application per payword committed to. (Only signing commitments is anon-line computation.) He needs to store his secret key SKU , his active commitments,the corresponding payword chains, and his current position in each chain.� The vendor veri�es all certi�cates and commitments received, and performs one hashfunction application per payword received or skipped over. (All his computations areon-line.) The vendor needs to store all commitments and the last payment receivedper commitment each day.3.5 Variations and ExtensionsIn one variation, h(�) is replaced by hs(�) = h(s; �), where s is a \salt" (random value)speci�ed in the commitment. Salting may enable the use of faster hash functions or hashfunctions with a shorter output length (perhaps as short as 64{80 bits).The value of each payword might be �xed at one cent, or might be speci�ed in CU or M .In a variation, M might authenticate several chains, whose paywords have di�erent values(for penny paywords, nickel paywords, etc.).The user name may also need to be speci�ed in a payment if it is not clear from context.If U has more than one payword chain authorized for V , then the payment should specifywhich is relevant.Paywords could be sold on a debit basis, rather than a credit basis, but only if the userinteracts with the broker to produce each commitment: the certi�cate could require that thebroker, rather than the user, sign each commitment. The broker can automatically refundthe user for unused paywords, once the vendor has redeemed the paywords given to him.In some cases, for macropayments, it might be useful to have the \commitment" act likean electronic credit card order or check without paywords being used at all. The commitmentwould specify the vendor and the amount to be paid.The broker may specify in user certi�cates other terms and conditions to limit his risk.For example, B may limit the amount that U can spend per day at any vendor. Or, B mayrefuse payment if U 's name is on B's \hot list" at the beginning of the day. (Vendors candown-load B's hot-list each morning.) Or, B may refuse to pay if U 's total expendituresover all vendors exceeds a speci�ed limit per day. This protects B from extensive liability ifSKU is stolen and abused. (Although again, since CU only authorizes delivery to AU , riskis reduced.) In these cases vendors share the risk with B.6

Instead of using payword chains, another method we considered for improving e�ciencywas to have V probabilistically select payments for redemption. We couldn't make this ideawork out, and leave this approach as an open problem.4 MicroMintMicroMint is designed to provide reasonable security at very low cost, and is optimized forunrelated low-value payments. MicroMint uses no public-key operations at all.MicroMint \coins" are produced by a broker, who sells them to users. Users give thesecoins to vendors as payments. Vendors return coins to the broker in return for payment byother means.A coin is a bit-string whose validity can be easily checked by anyone, but which is hardto produce. This is similar to the requirements for a public-key signature, whose complexitymakes it an overkill for a transaction whose value is one cent. (PayWord uses signatures,but not on every transaction.)MicroMint has the property that generating many coins is very much cheaper, per coingenerated, than generating few coins. A large initial investment is required to generate the�rst coin, but then generating additional coins can be made progressively cheaper. This issimilar to the economics for a regular mint, which invests in a lot of expensive machineryto make coins economically. (It makes no sense for a forger to produce coins in a way thatcosts more per coin produced than its value.)The broker will typically issue new coins at the beginning of each month; the validity ofthese coins will expire at the end of the month. Unused coins are returned to the broker atthe end of each month, and new coins can be purchased at the beginning of each month.Vendors can return the coins they collect to the broker at their convenience (e.g. at the endof each day).We now describe the \basic" variant of MicroMint. Many extensions and variations arepossible on this theme; we describe some of them in section 4.2.Hash Function CollisionsMicroMint coins are represented by hash function collisions, for some speci�ed one-wayhash function h mapping m-bit strings x to n-bit strings y. We say that x is a pre-imageof y if h(x) = y. A pair of distinct m-bit strings (x1; x2) is called a (2-way) collision ifh(x1) = h(x2) = y, for some n-bit string y.If h acts \randomly," the only way to produce even one acceptable 2-way collision is tohash about p2n = 2n=2 x-values and search for repeated outputs. This is essentially the\birthday paradox." (We ignore small constants in our analyses.)Hashing c times as many x-values as are needed to produce the �rst collision results inapproximately c2 as many collisions, for 1 � c � 2n=2, so producing collisions can be doneincreasingly e�ciently, per coin generated, once the threshold for �nding collisions has beenpassed.Coins as k-way collisionsA problem with 2-way collisions is that choosing a value of n small enough to make the7

broker's work feasible results in a situation where coins can be forged a bit too easily by anadversary. To raise the threshold further against would-be forgers, we propose using k-waycollisions instead of 2-way collisions.A k-way collision is a set of k distinct x-values x1, x2, : : : , xk that have the same hashvalue y. The number of x-values that must be examined before one expects to see the �rstk-way collision is then approximately 2n(k�1)=k. If one examines c times this many x-values,for 1 � c � 2n=k, one expects to see about ck k-way collisions. Choosing k > 2 has the duale�ect of delaying the threshold where the �rst collision is seen, and also accelerating the rateof collision generation, once the threshold is passed.We thus let a k-way collision (x1; : : : ; xk) represent a coin. The validity of this coin canbe easily veri�ed by anyone by checking that the xi's are distinct and thath(x1) = h(x2) = � � � = h(xk) = yfor some n-string y.Minting coinsThe process of computing h(x) = y is analogous to tossing a ball (x) at random intoone of 2n bins; the bin that ball x ends up in is the one with index y. A coin is thus aset of k balls that have been tossed into the same bin. Getting k balls into the same binrequires tossing a substantial number of balls altogether, since balls can not be \aimed" ata particular bin. To mint coins, the broker will create 2n bins, toss approximately k2n balls,and create one coin from each bin that now contains at least k balls. With this choice ofparameters each ball has a chance of roughly 1/2 of being part of a coin.Whenever one of the 2n bins has k or more balls in it, k of those balls can be extractedto form a coin. Note that if a bin has more than k balls in it, the broker can in principleextract k-subsets in multiple ways to produce several coins. However, an adversary whoobtains two di�erent coins from the same bin could combine them to produce multiple newcoins. Therefore, we recommend that a MicroMint broker should produce at most one coinfrom each bin. Following this rule also simpli�es the Broker's task of detecting multiply-spent coins, since he needs to allocate a table of only 2n bits to indicate whether a coin witha particular n-bit hash value has already been redeemed.A small problem in this basic picture, however, is that computation is much cheaper thanstorage. The number of balls that can be tossed into bins in a month-long computation farexceeds both the number of balls that can be memorized on a reasonable number of harddisks and the number of coins that the broker might realistically need to mint. One couldattempt to balance the computation and memory requirements by utilizing a very slow hashalgorithm, such as DES iterated many times. Unfortunately, this approach also slows downthe veri�cation process.A better approach, which we adopt, is to make most balls unusable for the purpose ofminting coins. To do so, we say that a ball is \good" if the high-order bits of the hash valuey have a value z speci�ed by the broker. More precisely, let n = t + u for some speci�ednonnegative integers t and u. If the high-order t bits of y are equal to the speci�ed valuez then the value y is called \good, " and the low-order u bits of y determine the index ofthe bin into which the (good) ball x is tossed. (General x values are referred to merely as8

\balls," and those that are not good can be thought of as having been conceptually tossedinto nonexistent virtual bins that are \out of range.")A proper choice of t enables us to balance the computational and storage requirementsof the broker, without slowing down the veri�cation process. It slows down the generationprocess by a factor of 2t, while limiting the storage requirements of the broker to a smallmultiple of the number of coins to be generated. The broker thus tosses approximately k2nballs, memorizes about k2u good balls that he tosses into the 2u bins, and generates fromthem approximately (1=2) � 2u valid coins.Remark: We note that with standard hash functions, such as MD5 and DES, the numberof ouput bits produced may exceed the number n of bits speci�ed in the broker's parameters.A suitable hash function for the broker can be obtained by discarding all but the low-ordern bits of the standard hash function output. This discarding of bits other than the low-ordern bits is a di�erent process than that of specifying a particular value for the high-order tbits out of the n that was described above.A detailed scenarioHere is a detailed sketch of how a typical broker might proceed to choose parametersfor his minting operating for a given month. The calculations are approximate (values aretypically rounded to the nearest power of two), but instructive; they can be easily modi�edfor other assumptions.The broker will invest in substantial hardware that gives him a computational advantageover would-be forgers, and run this hardware continuously for a month to compute coinsvalid for the next month. This hardware is likely to include many special-purpose chips forcomputing h e�ciently.We suppose that the broker wishes to have a net pro�t of $1 million per month (approx-imately 227 cents/month). He charges a brokerage fee of 10%. That is, for every coin worthone cent that he sells, he only gives the vendor 0.9 cents when it is redeemed. Thus, thebroker needs to sell one billion coins per month (approximately 230 coins/month) to collecthis $1M fee. If an average user buys 2500 ($25.00) coins per month, he will need to have acustomer base of 500,000 customers.The broker chooses k = 4; a coin will be a good 4-way collision.To create 230 coins, the broker chooses u = 31, so that he creates an array of 231 (ap-proximately two billion) bins, each of which can hold up to 4 x-values that hash to an n-bitvalue that is the concantenation of a �xed t-bit pattern z and the u-bit index of the bin.The broker will toss an average of 4 balls into each bin. That is, the broker will generate4 � 231 = 233 (approximately eight billion) x-values that produce good y-values. When hedoes so, the probability that a bin then contains 4 or more x-values (and thus can yield acoin) is about 1/2. (Using a Poisson approximation, it can be calculated that the correctvalue is approximately 0.56.) Since each of the 231 bins produces a coin with probability1/2, the number of coins produced is 230, as desired.In order to maximize his advantage over an adversary who wishes to forge coins, thebroker invests in special-purpose hardware that allows him to compute hash values veryquickly. This will allow him to choose a relatively large value of t, so that good hash valuesare relatively rare. This increases the work factor for an adversary (and for the broker) by a9

factor of 2t. The broker chooses his hash function h as the low-order n bits of the encryptionof some �xed value v0 with key x under the Data Encryption Standard (DES):h(x) = [DESx(v0)]1:::n :The broker purchases a number of �eld-programmable gate array (FPGA) chips, eachof which is capable of hashing approximately 225 (approximately 30 million) x-values persecond. (See [3].) Each such chip costs about $200; we estimate that the broker's actualcost per chip might be closer to $400 per chip when engineering, support, and associatedhardware are also considered. The broker purchases 28 (= 256) of these chips, which costshim about $100,000. These chips can collectively hash 233 (approximately 8.6 billion) valuesper second. Since there are roughly 221 (two million) seconds in a month, they can hashabout 254 (approximately 18 million billion) values per month.Based on these estimates the broker chooses n = 52 and t = 21 and runs his mintingoperation for one month. Of the k2n = 254 hash values computed, only one in 221 will begood, so that approximately 233 good x-values are found, as necessary to produce 230 coins.Storing a good (x; h(x)) pair takes less than 16 bytes. The total storage required forall good pairs is less than 237 bytes (128 Gigabytes). Using standard magnetic hard disktechnology costing approximately $300 per Gigabyte, the total cost for storage is less than$40,000. The total cost for the broker's hardware is thus less than $150,000, which is lessthan 15% of the �rst month's pro�t.Rather than actually writing each pair into a randomly-accessible bin, the broker canwrite the 233 good pairs sequentially to the disk array, and then sort them into increasing or-der by y value, to determine which are in the same bin. With a reasonable sorting algorithm,the sorting time should be under one day.Selling coinsTowards the end of each month, the broker begins selling coins to users for the nextmonth. At the beginning of each month, B reveals the new validity criterion for coins to beused that month. Such sales can either be on a debit basis or a credit basis, since B will beable to recognize coins when they are returned to him for redemption. In a typical purchase,a user might buy $25.00 worth of coins (2500 coins), and charge the purchase to his creditcard. The broker keeps a record of which coins each user bought. Unused coins are returnedto the broker at the end of each month.Making paymentsEach time a user purchases a web page, he gives the vendor a previously unspent coin(x1; x2; : : : ; xk). (This might be handled automatically by the user's web browser when theuser clicks on a link that has a declared fee.) The vendor veri�es that it is indeed a goodk-way collision by computing h(xi) for 1 � i � k, and checking that the values are equaland good. Note that while the broker's minting process was intentionally slowed down by afactor of 2t, the vendor's task of verifying a coin remains extremely e�cient, requiring onlyk hash computations and a few comparisons (in our proposed scenario, k = 4).RedemptionsThe vendor returns the coins he has collected to the broker at the end of each day. Thebroker checks each coin to see if it has been previously returned, and if not, pays the vendor10

one cent (minus his brokerage fee) for each coin. We propose that if the broker receives aspeci�c coin more than once, he does not pay more than once. Which vendor gets paid canbe decided arbitrarily or randomly by the broker. This may penalize vendors, but eliminatesany �nancial motivation a vendor might have had to cheat by redistributing coins he hascollected to other vendors.4.1 Security PropertiesWe distinguish between small-scale attacks and large-scale attacks. We believe that usersand vendors will have little motivation to cheat in order to gain only a few cents; even if theydo, the consequences are of no great concern. This is similar to the way ordinary change ishandled: many people don't even bother to count their change following a purchase. Oursecurity mechanisms are thus primarily designed to discourage large-scale attacks, such asmassive forgery or persistent double-spending.ForgerySmall-scale forgery is too expensive to be of interest to an adversary: with the recom-mended choice of k = 4, n = 54, and u = 31, the generation of the �rst forged coin requiresabout 245 hash operations. Since a standard work-station can perform only 214 hash opera-tions per second, a typical user will need 231 seconds (about 80 years) to generate just oneforged coin on his workstation.Large-scale forgery can be detected and countered as follows:� All forged coins automatically become invalid at the end of the month.� Forged coins can not be generated until after the broker announces the new monthlycoin validity criterion at the beginning of the month.� The use of hidden predicates (described below) gives a �ner time resolution for rejectingforged coins without a�ecting the validity of legal coins already in circulation.� The broker can detect the presence of a forger by noting when he receives coins corre-spondings to bins that he did not produce coins from. This works well in our scenariosince only about half of the bins produce coins. To implement this the broker needonly work with a bit-array having one bit per bin.� The broker can at any time declare the current period to be over, recall all coins forthe current period, and issue new coins using a new validation procedure.� The broker can simultaneously generate coins for several future months in a longercomputation, as described below; this makes it harder for a forger to catch up withthe broker.Theft of coinsIf theft of coins is judged to be a problem during initial distribution to users or duringredemption by vendors, it is easy to transmit coins in encrypted form during these operations.11

User/broker and vendor/broker relationships are relatively stable, and long-term encryptionkeys can be arranged between them.To protect coins as they are being transferred over the Internet from user to vendor, onecan of course use public-key techniques to provide secure communication. However, in keep-ing with our desire to minimize or eliminate public-key operations, we propose below anothermechanism, which makes coins user-speci�c. This does not require public-key cryptography,and makes it harder to re-use stolen coins.Another concern is that two vendors may collude so that both attempt to redeem thesame coins. The recommended solution is that a broker redeem a coin at most once, asdiscussed earlier. Since this may penalize honest vendors who receive stolen coins, we canmake coins vendor-speci�c as well as user-speci�c, as described below.Double-spendingSince the MicroMint scheme is not anonymous, the broker can detect a doubly-spent coin,and can identify which vendors he received the two instances from. He also knows whichuser the coin was issued to. With the vendors' honest cooperation, he can also identifywhich users spent each instance of that coin. Based on all this information, the broker cankeep track of how many doubly-spent coins are asssociated with each user and vendor. Alarge-scale cheater (either user or vendor) can be identi�ed by the large number of duplicatecoins associated with his purchases or redemptions; the broker can then drop a large-scalecheater from the system. A small-scale cheater may be hard to identify, but, due to the lowvalue of individual coins, it is not so important if he escapes identi�cation.MicroMint does not provide any mechanism for preventing purely malicious framing (withno �nancial bene�t to the framer). We believe that the known mechanisms for protectingagainst such behavior are too cumbersome for a light-weight micropayment scheme. SinceMicroMint does not use real digital signatures, it may be hard to legally prove who is guiltyof duplicating coins. Thus, a broker will not be able to pursue a cheater in court, but canalways drop a suspected cheater from the system.4.2 VariationsUser-speci�c coinsWe describe two proposals for making coins that are user-speci�c in a way that can beeasily checked by vendors. Such coins, if stolen, are of no value to most other users. Thisgreatly reduces the motivation for theft of coins.In the �rst proposal, the broker splits the users into \groups," and gives each user coinswhose validity depends on the identity of the group. For example, the broker can give userU coins that satisfy the additional condition h0(x1; x2; : : : ; xk) = h0(U), where hash functionh0 produces short (e.g. 16-bit) output values that indicate U 's group. A vendor can easilycheck this condition, and reject a coin that is not tendered by a member of the correct group.The problem with this approach is that if the groups are too large, then a thief can easily�nd users of the appropriate group who might be willing to buy stolen coins. On the otherhand, if the groups are too small (e.g. by placing each user is in his own group), the brokermay be forced to precompute a large excess of coins, just to ensure that he has a large enough12

supply to satisfy each user's unpredictable needs.In the second proposal, we generalize the notion of a \collision" to more complicatedcombinatorial structures. Formally, a coin (x1; : : : ; xk) will be valid for a user U if theimages y1 = h(x1), y2 = h(x2), : : : , yk = h(xk) satisfy the conditionyi+1 � yi = di (mod 2u)for i = 1; 2; : : : ; k � 1, where (d1; d2; : : : ; dk�1) = h0(U)for a suitable auxiliary hash function h0. (The original proposal for representing coins ascollisions can be viewed as the special case where all the distances di's between the k binsare zero.)To mint coins of this form, the broker �lls up most of his bins by randomly tossing ballsinto them, except that now it is not necessary to have more than one ball per bin. Weemphasize that this pre-computation is not user-speci�c, and the broker does not need tohave any prior knowledge of the number of coins that will be requested by each user, sinceeach good ball can be used in a coin for any user. After this lengthy pre-computation, thebroker can quickly create a coin for any user U by� Computing (d1; : : : ; dk�1) = h0(U).� Picking a random bin index y1. (This bin should have been previously unused as a y1for another coin, so that y1 can be used as the \identity" of the coin when the brokeruses a bit-array to determine which coins have already been redeemed.)� Computing yi+1 = yi + di (mod 2u) for i = 1; 2; : : : ; k � 1,� Taking a ball x1 out of bin y1, and taking a copy of one ball out of each bin y2, : : : ,yk. (If any bin yi is empty, start over with a new y1.) Note that balls may be re-usedin this scheme.� Producing the ordered k-tuple (x1; : : : ; xk) as the output coin.A convenient feature of this scheme is that it is easy to produce a large number of coinsfor a given user even when the broker's storage device is a magnetic disk with a relativelyslow seek time. The idea is based on the observation that if the y1 values for successivecoins are consecutive, then so also will be the yi values for each i, 1 < i � k. Therefore,a request for 2500 new coins with k = 4 requires only four disk seeks, rather than 10; 000seeks: at 10 milliseconds per seek, this reduces the total seek time from 100 seconds to only40 milliseconds.Note that in principle coins produced for di�erent users could re-use the same ball xi.Conceivably, someone could forge a new coin by combining pieces of other coins he has seen.However, he is unlikely to achieve much success by this route unless he sees balls from asigni�cant fraction of all the bins. For example, suppose that there are 231 bins, of whichthe forger has seen a fraction 2�10 (i.e., he has collected 221 balls from coins spent by otherusers). Then the expected number of coins he can piece together from these balls that satisfy13

the condition of being a good coin for himself is only 231(2�10)3 = 2. (Even if he had 1000customers for these coins, he would expect to make only 2000 coins total, or two coins percustomer on the average.) Thus, we are not too concerned about this sort of \cut-and-paste"forgery.Vendor-speci�c coinsTo further reduce the likelihood that coins will be stolen, the user can give coins to vendorsin such a way that each coin can be redeemed only by a small fraction of the vendors. Thistechnique makes a stolen coin less desirable, since it is unlikely to be accepted by a vendorother than the one where it was originally spent. The additional check of validity can becarried out both by the vendor and by the broker. (Having vendor-speci�c coins is also amajor feature of the Millicent [10] scheme.)The obvious di�culty is that neither the broker nor the user can predict ahead of timewhich vendors the user will patronize, and it is unreasonable to force the user to purchasein advance coins speci�c for each possible vendor. Millicent adopts the alternative strategywhereby the user must contact the broker in real-time whenever the user needs coins fora new vendor. (He also needs to contact the broker to return excess unused coins thatare speci�c to that vendor.) We can overcome these problems with an extension of theuser-speci�c scheme described above, in which the user purchases a block of \successive"MicroMint coins.Intuitively, the idea is the following. Choose a value v (e.g. 1024) less than u. Let a u-bitbin-index y be divided into a u� v-bit upper part y0 and a v-bit lower part y00. We considerthat y0 speci�es a \superbin" index and that y00 speci�es a bin within that superbin. A usernow purchases balls in bulk and makes his own coins. He purchases balls by the superbin,obtaining 2v balls per superbin with one ball in each bin of the superbin. He buy k superbinsof balls for 2v cents. A coin from user U is valid for redemption by vendor V if:y0i+1 = y0i + d0i (mod 2u�v) for i = 1; : : : ; k� 1;and y00i+1 = y00i + d00i (mod 2v) for i = 1; : : : ; k� 1;where h0(U) = (d01; : : : ; d0k�1)and h00(V) = (d001; : : : ; d00k�1) :The broker chooses the next available superbin as the �rst superbin to give the user; theother superbins are then uniquely determined by the di�erences fd0ig de�ned by the user'sidentity and the choice of the �rst superbin. Analogously, to make a coin for a particularvendor the user chooses a ball from the next bin from his �rst superbin, and must use ballsfrom bins in the other superbins that are then uniquely determined by the di�erences fd00i gde�ned by the vendor's identity and the choice of the �rst bin. Note that balls from the�rst superbin are used only once, to permit detection of double-spending, whereas balls fromthe other superbins may appear more than once (in coins paid to di�erent vendors), or notat all. It may be di�cult for a broker to create superbins that are perfectly full even if hethrows more balls. He might sell superbins that are almost full, but then a user may have14

di�culty producing some coins for some vendors. To compensate, the broker can reduce theprice by one cent for each empty bin sold.Simultaneously generating balls for multiple monthsOur major line of defense against large-scale forgery is the fact that the broker cancompute coins in advance, whereas a forgery attempt can only be started once the newvalidity condition for the current month is announced. We now describe a technique wherebycomputing the balls for a single month's coins takes eight months, but the broker doesn'tfall behind because he can generate balls for eight future months concurrently. The forgerwill thus have the dual problems of starting late and being too slow, even if he uses the samecomputational resources as the real broker.In this method, the broker changes the monthly validity criterion, not by changing thehash function h, but by announcing each month a new value z such that ball x is good whenthe high-order t bits of h(x) are equal to z. The broker randomly and secretly chooses inadvance the values z that will be used for each of the next eight months. Tossing a ball stillmeans performing one hash function computation, but the tossed ball is potentially \good"for any of the next eight months, and it is trivial for the broker to determine if this is the case.In contrast, the forger only knows the current value of z, and can not a�ord to memorize allthe balls he tosses, since memory is relatively expensive and only a tiny fraction (e.g., 2�21in our running example) of the balls are considered \good" at any given month.We now describe a convenient way of carrying out this calculation. Assume that at thebeginning of the month j, the broker has all of the balls needed for month j, 7/8 of the ballsneeded for month j + 1, 6/8 of the balls needed for month j + 2, ..., and 1/8 of the ballsneeded in for month j + 7. During month j, the broker tosses balls by randomly pickingx values, calculating y = h(x), and checking whether the top-most t bits of y are equal toany of the z values to be used in months j + 1, : : : , j + 8. To slow the rate at which hegenerates good balls for each upcoming month, he increases n and t each by three. After themonth-long computation, we expect him to have all the coins he needs for month j +1, 7/8of the coins he needs for month j+2, and so on; this is the desired \steady-state" situation.The broker needs four times as much storage to hold the balls generated for future months,but balls for future months can be temporarily stored on inexpensive magnetic tapes becausehe doesn't need to respond quickly to user requests for those coins yet.Hidden PredicatesThe \hidden predicate" technique for defeating forgers works as follows. We choosem > n, and require each m-bit pre-image to satisfy a number of hidden predicates. Thehidden predicates should be such that generating pre-images satisfying the predicates is easy(if you know the predicate). To generate an xi, one can pick its last n bits randomly, andde�ne the j-th bit of xi, for j = m�n; : : : ; 1, to be the j-th hidden predicate applied to bitsj+1; : : : ;m of xi. The hidden predicates must be balanced and di�cult to learn from randomexamples. Suggestions of hard-to-learn predicates exist in the learning-theory literature.For example the parity/majority functions of Blum et al.[4] (which are the exclusive-or ofsome of the input bits together with the majority function on a disjoint set of input bits)are interesting, although slightly more complicated functions may be appropriate in thisapplication when word lengths are short. With m� n = 32, the broker can have one hiddenpredicate for each day of the month. He could reveal a new predicate each day, and ask15

vendors to check that the coins they receive satisfy these predicates (otherwise the coins willnot be accepted by the broker). This would not a�ect the validity of legitimate coins alreadyin circulation, but makes forgery extremely di�cult, since the would-be forger would haveto discard much of his precomputation work as each new predicate is revealed. We feel thatsuch techniques are strongly advisable in MicroMint.Other ExtensionsPeter Wayner (private communication) has suggested a variation on MicroMint in whichcoins of di�erent values are distinguished by publicly-known predicates on the x-values.5 Relationship to Other Micropayment SchemesIn this section we compare our proposals to the Millicent[10], NetBill [1], NetCard [2], andPederson [14] micropayment schemes.NetBill o�ers a number of advanced features (such as electronic purchase orders andencryption of purchased information), but it is relative expensive: digital signatures areheavily used and the NetBill server is involved in each payment.Millicent uses hash functions extensively, but the broker must be on-line whenever theuser wishes to interact with a new vendor. The user buys vendor-speci�c scrip from thebroker. For applications such as web browsing, where new user-vendor relationships arecontinually being created, Millicent can place a heavy real-time burden on the broker. Com-pared to Millicent, both PayWord and MicroMint enable the user to generate vendor-speci�c\scrip" without any interaction with the broker, and without the overhead required in re-turning unused vendor-speci�c scrip. Also, PayWord is a credit rather than debit scheme.Anderson, Manifavas, and Sutherland [2] have developed a micropayment system, \Net-Card," which is very similar to PayWord in that it uses chains of hash values with a digitallysigned root. (The way hash chains are created di�ers in a minor way.) However, in theirproposal, it is the bank rather than the user who prepares the chain and signs the root,which adds to the overall burden of the bank. This approach prevents the user from creatingnew chains, although a NetCard user could spend a single chain many times. Compared toPayWord, NetCard is debit-based, rather than credit-based. We have heard that a patenthas been applied for on the NetCard system.Torben Pedersen outlines a micropayment proposal[14] that is also based on hash chains.His motivating application was for incremental payment of telephone charges. His paperdoes not provide much detail on many points (e.g. whether the system is credit or debit-based, how to handle exceptions, whether chains are vendor-speci�c, and other auxiliarysecurity-related matters). The CAFE project has �led for a patent on what we believe is anelaboration of Pedersen's idea. (The details o� the CAFE scheme are not available to us.)Similarly following Pedersen's exposition, the iKP developers Hauser, Steiner, and Waid-ner have independently adopted a similar approach [8].16

6 Conclusions and DiscussionWe have presented two new micropayment schemes which are exceptionally economical interms of the number of public-key operations employed. Furthermore, both schemes areo�-line from the broker's point of view.References[1] The NetBill Electronic Commerce Project, 1995.http://www.ini.cmu/NETBILL/home.html.[2] Ross Anderson, Harry Manifavas, and Chris Sutherland. A practical electronic cashsystem, 1995. Available from author: Ross.Anderson@cl.cam.ac.uk.[3] Matt Blaze, Whit�eld Di�e, Ronald L. Rivest, Bruce Schneier, Tsutomu Shimomura,Eric Thompson, and Michael Wiener. Minimal key lengths for symmetric ciphers toprovide adequate commercial security: A report by an ad hoc group of cryptographersand computer scientists, January 1996. Available at http://www.bsa.org.[4] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. Cryptographicprimitives based on hard learning problems. In Douglas R. Stinson, editor, Proc.CRYPTO 93, pages 278{291. Springer, 1994. Lecture Notes in Computer Science No.773.[5] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/o�-line digital signatures. InG. Brassard, editor, Proc. CRYPTO 89, pages 263{277. Springer-Verlag, 1990. LectureNotes in Computer Science No. 435.[6] Phillip Hallam-Baker. W3C payments resources, 1995.http://www.w3.org/hypertext/WWW/Payments/overview.html.[7] Neil M. Haller. The S/KEY one-time password system. In ISOC, 1994.[8] Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-Payments based on iKP,December 17, 1995. Available from authors. sti@zurich.ibm.com.[9] Leslie Lamport. Password authentication with insecure communication. Communica-tions of the ACM, 24(11):770{771, November 1981.[10] Mark S. Manasse. Millicent (electronic microcommerce), 1995.http://www.research.digital.com/SRC/personal/Mark Manasse/uncommon/ucom.html.[11] Ralph C. Merkle. A certi�ed digital signature. In G. Brassard, editor, Proc. CRYPTO89, pages 218{238. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.[12] Silvio Micali. E�cient certi�cate revocation. Technical Report TM-542b, MIT Labora-tory for Computer Science, March 22, 1996.17

[13] National Institute of Standards and Technology (NIST). FIPS Publication 180: SecureHash Standard (SHS), May 11, 1993.[14] Torben P. Pedersen. Electronic payments of small amounts. Technical Report DAIMIPB-495, Aarhus University, Computer Science Department, �Arhus, Denmark, August1995.[15] Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments,April 1992. RFC 1321.[16] Bruce Schneier. Applied Cryptography (Second Edition). John Wiley & Sons, 1996.[17] Adi Shamir. Fast signature screening. CRYPTO '95 rump session talk; to appear inRSA Laboratories' CryptoBytes.[18] Peter Wayner. Digital Cash: Commerce on the Net. Academic Press, 1996.

18

