
1

Pseudo-random number generators

- motivation and definitions
- types of attacks
- analysis of ANSI X9.17, DSA PRNG
- guidelines for using vulnerable PRNGs
- design of Yarrow-160

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

-- John von Neumann

2© Levente Buttyán

Definitions

a random number is a number that cannot be predicted by an
observer before it is generated
– if the number is generated within the range [0, N-1], then its value

cannot be predicted with any better probability than 1/N
– the above is true even if the observer is given all previously

generated numbers

a cryptographic pseudo-random number generator (PRNG) is a
mechanism that processes somewhat unpredictable inputs and
generates pseudo-random outputs
– if designed, implemented, and used properly, then even an

adversary with enormous computational power should not be able
to distinguish the PRNG output from a real random sequence

internal stateinternal state
unpredictable
input samples
(from physical
processes)

pseudo-random bits
indistinguishable from
real random bits…

D
ef

in
it
io
n

2

3© Levente Buttyán

Motivation

sources of true randomness may be available …
• keystroke timing
• mouse movement
• disc access time
• network usage statistics
• …

… but the amount of random bits obtained per time unit or
available at a given point in time may not be sufficient

random number generators used for simulation purposes are
not good for cryptographic purposes
– example: si+1 = (a⋅si + b) mod n

• has nice statistical properties
• but it is predictable

weakly designed PRNGs can easily destroy security even if very
strong cryptographic primitives (ciphers, MACs, etc.) are used
– example: early version of Netscape PRNG (to be used for SSL)

M
ot

iv
at

io
n

4© Levente Buttyán

Early version of Netscape’s PRNG

RNG_CreateContext()
(seconds, microseconds) = time of day;
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a, b);

mklcpr(x)
return((0xDEECE66D*x + 0x2BBB62DC) >> 1)

RNG_GenerateRandomBytes()
x = MD5(seed);
seed = seed+1;
return x;

create_key()
RNG_CreateContext();
RNG_CreateRandomBytes(); RNG_CreateRandomBytes();
challenge = RNG_CreateRandomBytes();
secret_key = RNG_CreateRandomBytes();

M
ot

iv
at

io
n

3

5© Levente Buttyán

Attacking the Netscape PRNG

if an attacker has an account on the UNIX machine running the
browser
– ps command lists running processes attacker learns pid, ppid
– the attacker can guess the time of day with seconds precision
– only unknown is the value of microseconds ~220 possibilities
– each possibility can be tested easily against the challenge sent in clear

within SSL

if the attacker has no account on the machine running the browser
– a has 20 bits of randomness, b has 27 bits of randomness seed has 47

bits of randomness (compared to 128 bit advertised security)
– ppid is often 1, or a bit smaller than pid
– sendmail generates message IDs from its pid

• send mail to an unknown user on the attacked machine
• mail will bounce back with a message ID generated by sendmail
• attacker learns the last process ID generated on the attacked machine
• this may reduce possibilities for pid

M
ot

iv
at

io
n

6© Levente Buttyán

Classification of attacks

various ways to compromise the PRNG’s state
– cryptanalytic attacks

• between receiving input samples the PRNG works as a stream cipher
• a cryptographic weakness in this stream cipher might be exploited to recover its

internal state

– side-channel attacks
• additional information about the actual implementation of the PRNG may be

exploited
• example: measuring the time needed to produce a new output may leak

information about the current state of the PRNG (timing attacks)
x = MD5(seed);
seed = seed+1; // increment needs m+1 byte additions if the last m bytes are all 0xFF
return x; // long output time last couple of bytes of seed are 0x00

– input-based attacks
• known-input attacks: an attacker is able to observe (some of) the PRNG inputs
• chosen-input attacks: an attacker is able to control (some of) the PRNG inputs

– typically applicable against smart cards

– mishandling of seed files

Cl
as

si
fi
ca

ti
on

 o
f

at
ta

ck
s

4

7© Levente Buttyán

Classification of attacks

in practice, it is prudent to assume that occasional
compromises of the state may happen
various ways to exploit compromised states
– permanent compromise attacks

• given: state at time t0
• find: all future (or past) states

– iterative guessing attacks
• given: state at time t0, outputs in [t0, t1]
• find: state at time t1

– backtracking attacks
• given: state at time t0
• find: outputs before t0

– meet-in-the-middle attacks
• given: state at time t0 and t2 > t0
• find: state at time t1, where t0 < t1 < t2

Cl
as

si
fi
ca

ti
on

 o
f

at
ta

ck
s

8© Levente Buttyán

ANSI X9.17

state: K, seedi
output generation:

Ti = EK(current timestamp)
outputi = EK(Ti ⊕ seedi)
seedi+1 = EK(Ti ⊕ outputi)

EK
EK

EK
EK

EK
EK⊕current

timestamp

seedi

seedi+1

⊕

outputi
Ti

A
N
SI

 X
9.

17

5

9© Levente Buttyán

Attacks on X9.17

cryptanalytic attacks
– it seems that they require to break the block cipher E
– however, this has never been proven formally

input based attacks
– assume that an attacker can freeze the clock (Ti = T for all i)
– outputi+1 = EK(T ⊕ seedi+1) = EK(T ⊕ EK(T ⊕ outputi)) = E’K(outputi)
– for a good cipher E, we expect a repeating value in the above

sequence after ~2n-1 steps, where n is the block size of E
– in a sequence of true n-bit random values, a collision is expected

after ~2n/2 steps (birthday paradox)
– the attacker can distinguish the output of X9.17 from a sequence

of true random numbers given that he can observe sufficiently
many (~2n/2) outputs

• not practically important
• certificational weakness

A
N
SI

 X
9.

17

10© Levente Buttyán

Attacks on X9.17

weaknesses leading to state compromise extensions
– part of the state (K) never changes

if K is compromised, then the PRNG can never fully recover
– seedi+1 depends on seedi only via outputi

if K is known from a previous state compromise and outputi is observable, then
finding seedi+1 is not so difficult (timestamps can usually be assumed to have only
10-20 bits of entropy)

deriving the seed from two consecutive outputs (and K)
seedi+1 = EK(Ti ⊕ outputi) (1)
seedi+1 = DK(outputi+1) ⊕ Ti+1 (2)

– assume that timestamps has 10 bits of entropy
– try all values for Ti, and form a sorted list of possible values for seedi+1

using (1)
– try all values for Ti+1, and form another sorted list of possible values for

seedi+1 using (2)
– the correct seedi+1 value is the one that appears on both lists

(expected number of matching pairs is ~1+220-n)

A
N
SI

 X
9.

17

6

11© Levente Buttyán

Attacks on X9.17

iterative guessing attack
– if an attacker knows K and seedi and sees (some public function f

of) outputi, then he can determine seedi+1 easily
• let f(outputi) = v
• try all possible values t for Ti, and form a list of values

vt = f(EK(t ⊕ seedi))
• select t* such that vt* = v
• seedi+1 = EK(t* ⊕ EK(t* ⊕ seedi))

backtracking
– if an attacker knows K and seedi+1 and sees (some public function f

of) outputi, then he can determine outputi and seedi easily
(EXERCISE)

timer entropy issues
– if larger amount of random bytes are needed (e.g., RSA key pair

generation), then the PRNG is called repeatedly within a very
short time
consecutive Ti values have much less entropy than 10-20 bits

A
N
SI

 X
9.

17

12© Levente Buttyán

DSA PRNG

state: Xi
optional input: Wi (Wi = 0 if not supplied)
output generation:

outputi = hash((Wi + Xi) mod 2160)
Xi+1 = (Xi + outputi + 1) mod 2160

Wi

Xi

outputi

Xi+1

1

hashhash

+

+

D
SA

 P
RN

G

7

13© Levente Buttyán

Attacks on the DSA PRNG

cryptanalytic attacks
– if the hash function is good, then the PRNG output seems to be

hard to distinguish from a real random sequence
– no formal proof

input based attacks
– assume the attacker can control Wi
– setting Wi = (Wi-1 – outputi-1 – 1) mod 2160 will force the PRNG to

repeat its output
outputi = hash((Wi + Xi) mod 2160) =

= hash(((Wi-1 – outputi-1 – 1) + (Xi-1 + outputi-1 + 1)) mod 2160) =
= hash((Wi-1 + Xi-1) mod 2160) =
= outputi-1

– this works only if input samples are sent directly into the PRNG
• in practice, they are often hashed before sent in

D
SA

 P
RN

G

14© Levente Buttyán

Attacks on the DSA PRNG

a weakness that may make state compromise extensions easier
– Xi+1 depends on Wi only via outputi

if an attacker compromised Xi and can observe outputi, then he knows
Xi+1 no matter how much entropy has been fed into the PRNG by Wi

iterative guessing attack
– if an attacker knows Xi and observes (a public function f of)

outputi, then he can find Xi+1
• let f(outputi) = v
• assume that Wi has only 20 bits of entropy
• the attacker can try all possible values w for Wi, and compute

vw = f(hash((w + Xi) mod 2160))
• let w* be the value such that v = vw*
• Xi+1 = (Xi + hash((w* + Xi) mod 2160) + 1) mod 2160

filling the gaps
– if an attacker knows Xi and Xi+2, and observes outputi+1, then he

can compute outputi as
outputi = (Xi+2 – Xi – 2 – outputi+1) mod 2160

D
SA

 P
RN

G

8

15© Levente Buttyán

Strengthening the DSA PRNG

all inputs should be hashed together before feeding them into
the PRNG (to make input based attacks harder)
Xi+1 should depend on Wi directly and not via the output
– example: Xi+1 = Xi + hash(outputi + Wi)

D
SA

 P
RN

G

16© Levente Buttyán

Guidelines for using vulnerable PRNGs

use a hash function at the output to protect the PRNG from
direct cryptanalytic attacks
hash all inputs together with a counter or timestamp before
feeding into the PRNG to make chosen-input attacks harder
pay special attention to PRNG starting points and seed files to
make it harder to compromise the PRNG state
occasionally generate a new starting state and restart the
PRNG to limit the scope of state compromise extensions

9

17© Levente Buttyán

The Yarrow-160 PRNG

design philosophy
– accumulate entropy from as many different sources as possible
– reseed the key (state) only when enough entropy has been

collected (this puts the PRNG in an unguessable state at each
reseed)

– between reseeds, use strong crypto algorithms to generate
outputs from the key (like a stream cipher)

four major components
– entropy accumulator

• collects samples from entropy sources into two entropy pools (slow and
fast pool)

– reseed mechanism
• periodically reseeds the key with new entropy from the pools

– reseed control
• determines when a reseed should be performed

– generation mechanism
• generates PRNG output from the key (state)

Ya
rr

ow
-1

60

18© Levente Buttyán

Entropy accumulator

inputs from each source are fed alternately into two entropy pools
– fast pool

• provides frequent reseeds
• ensures that state compromises has as short a duration as possible

– slow pool
• rare reseeds
• entropy is estimated very conservatively
• rationale: even if entropy estimation of the fast pool is inaccurate, the PRNG

still eventually gets a secure reseed from the slow pool

entropy estimation
– entropy of each sample is measured in three ways:

• a: programmer supplies an estimate for the entropy source
• b: a statistical estimator is used to estimate the entropy of the sample
• c: length of the sample multiplied by ½

– entropy estimate of the sample is min(a, b, c)
– entropy contribution of a source is the sum of entropy estimates of all

samples collected so far from that source
– entropy contribution of each source is maintained separately

Ya
rr

ow
-1

60

10

19© Levente Buttyán

Reseed control

periodic reseed
– the fast pool is used to reseed when any of the sources reaches an

estimated entropy contribution of 100 bits
– the slow pool is used to reseed when at least two sources reaches

an estimated entropy contribution of 160 bits

explicit reseed
– an application may explicitly ask for a reseed operation (from both

pools)
– should be used only when a high-valued random secret is to be

generated

Ya
rr

ow
-1

60

20© Levente Buttyán

Reseed mechanism

reseed from the fast pool (h is SHA1, E is 3DES):
v0 := h(fast pool)
vi := h(vi-1 | v0 | i) for i = 1, 2, …, Pt
K := h’(h(vPt | K), k)
C := EK(0)
where h’ is a “size adaptor”

h’(m, k) = first k bit of s0 | s1 | s2 | …
s0 = m
si = h(s0 | … | si-1) i = 1, 2, …

reset all entropy estimates to 0
wipe the memory of all intermediate values

reseed from the slow pool:
– feed h(slow pool) into fast pool
– reseed from fast pool as described above

Ya
rr

ow
-1

60

11

21© Levente Buttyán

Reseed mechanism

observations
– new value of K directly depends on previous value of K and current

pool content (pool v0 vPt)
• if an attacker has some knowledge of the previous value of K, but does

not know most of the pool content, then he cannot guess the new K
• if an attacker does not know the previous value of K, but observed

many inputs of the pool, then he still cannot guess the new K
– execution time depends on security parameter Pt

• this makes the time needed for iterative guessing attacks longer

Ya
rr

ow
-1

60

22© Levente Buttyán

Generation mechanism

algorithm (E is 3DES):
C := (C+1) mod 2n // n is the block size of E
R := EK(C)
output: R

generator gate
– after Pg output has been generated, a new key is generated

K := next k bits of PRNG output
– Pg is a security parameter currently set to 10
– rationale: if a key is compromised, then only 10 previous output can

be computed by the attacker (prevention of backtracking attacks)

Ya
rr

ow
-1

60

12

23© Levente Buttyán

Protecting the entropy pool

the pool can be swapped into swap files and stored on disk
– several operating systems allow to lock pages into memory

• mlock() (UNIX), VirtualLock() (Windows), HoldMemory() (Macintosh)
– memory mapped files can be used as private swap files

• the files should have the strictest possible access permissions
• file buffering should be disabled to avoid that the buffer is swapped

allocated memory blocks can be scanned through by other
processes
– entropy pool is often allocated at the beginning when the security

subsystem is started pool is often at the head of allocated
memory blocks

– the pool can be embedded in a larger allocated memory block
– its location can be changed periodically (by allocating new space

and moving the pool) in the background
– this background process can also be used to prevent the pool from

being swapped (touched pages are kept in memory with higher
probability)

24© Levente Buttyán

Summary

PRNGs for cryptographic purposes needs special attention
– simple congruential generators are predictable
– naïve PRNG design will not do (cf. early Netscape PRNG)

widely used cryptographic PRNGs may have weaknesses too
– ANSI X9.17
– DSA PRNG
– RSAREF 2.0
– …

some guidelines for using vulnerable PRNGs
design of Yarow-160
– careful design that seems to resist various attacks

protecting the entropy pools

13

25© Levente Buttyán

Recommended readings

Kelsey, Schneier, Wagner, Hall. Cryptographic attacks on
PRNGs. Workshop on Fast Software Encryption, 1998.
Kelsey, Schneier, Ferguson. Yarrow-160: Notes on the design
and analysis of the Yarrow cryptographic PRNG.
Gutmann. Software generation of random numbers for
cryptographic purposes. USENIX Security Symposium, 1998.

