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Pseudo-random number generators

- motivation and definitions
- types of attacks
- analysis of ANSI X9.17, DSA PRNG
- guidelines for using vulnerable PRNGs
- design of Yarrow-160

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

-- John von Neumann
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Definitions

a random number is a number that cannot be predicted by an 
observer before it is generated
– if the number is generated within the range [0, N-1], then its value 

cannot be predicted with any better probability than 1/N
– the above is true even if the observer is given all previously 

generated numbers

a cryptographic pseudo-random number generator (PRNG) is a 
mechanism that processes somewhat unpredictable inputs and 
generates pseudo-random outputs
– if designed, implemented, and used properly, then  even an 

adversary with enormous computational power should not be able 
to distinguish the PRNG output from a real random sequence

internal stateinternal state
unpredictable
input samples
(from physical
processes)

pseudo-random bits
indistinguishable from
real random bits…
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Motivation

sources of true randomness may be available …
• keystroke timing
• mouse movement
• disc access time
• network usage statistics
• …

… but the amount of random bits obtained per time unit or 
available at a given point in time may not be sufficient

random number generators used for simulation purposes are 
not good for cryptographic purposes
– example: si+1 = (a⋅si + b) mod n

• has nice statistical properties
• but it is predictable

weakly designed PRNGs can easily destroy security even if very 
strong cryptographic primitives (ciphers, MACs, etc.) are used
– example: early version of Netscape PRNG (to be used for SSL)
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Early version of Netscape’s PRNG 

RNG_CreateContext()
(seconds, microseconds) = time of day;
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid << 12) );
seed = MD5(a, b);

mklcpr(x)
return((0xDEECE66D*x + 0x2BBB62DC) >> 1)

RNG_GenerateRandomBytes()
x = MD5(seed);
seed = seed+1;
return x; 

create_key()
RNG_CreateContext();
RNG_CreateRandomBytes(); RNG_CreateRandomBytes();
challenge = RNG_CreateRandomBytes();
secret_key =  RNG_CreateRandomBytes();
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Attacking the Netscape PRNG

if an attacker has an account on the UNIX machine running the 
browser
– ps command lists running processes attacker learns pid, ppid
– the attacker can guess the time of day with seconds precision
– only unknown is the value of microseconds ~220 possibilities
– each possibility can be tested easily against the challenge sent in clear 

within SSL

if the attacker has no account on the machine running the browser
– a has 20 bits of randomness, b has 27 bits of randomness seed has 47 

bits of randomness (compared to 128 bit advertised security)
– ppid is often 1, or a bit smaller than pid
– sendmail generates message IDs from its pid

• send mail to an unknown user on the attacked machine
• mail will bounce back with a message ID generated by sendmail
• attacker learns the last process ID generated on the attacked machine
• this may reduce possibilities for pid
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Classification of attacks

various ways to compromise the PRNG’s state
– cryptanalytic attacks

• between receiving input samples the PRNG works as a stream cipher
• a cryptographic weakness in this stream cipher might be exploited to recover its 

internal state

– side-channel attacks
• additional information about the actual implementation of the PRNG may be 

exploited
• example: measuring the time needed to produce a new output may leak 

information about the current state of the PRNG (timing attacks)
x = MD5(seed);
seed = seed+1;   // increment needs m+1 byte additions if the last m bytes are all 0xFF 
return x; // long output time last couple of bytes of seed are 0x00

– input-based attacks
• known-input attacks: an attacker is able to observe (some of) the PRNG inputs
• chosen-input attacks: an attacker is able to control (some of) the PRNG inputs

– typically applicable against smart cards

– mishandling of seed files
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Classification of attacks

in practice, it is prudent to assume that occasional 
compromises of the state may happen
various ways to exploit compromised states
– permanent compromise attacks

• given: state at time t0
• find: all future (or past) states

– iterative guessing attacks
• given: state at time t0, outputs in [t0, t1]
• find: state at time t1

– backtracking attacks
• given: state at time t0
• find: outputs before t0

– meet-in-the-middle attacks
• given: state at time t0 and t2 > t0
• find: state at time t1, where t0 < t1 < t2
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ANSI X9.17

state: K, seedi
output generation:

Ti = EK(current timestamp)
outputi = EK(Ti ⊕ seedi)
seedi+1 = EK(Ti ⊕ outputi)

EK
EK

EK
EK

EK
EK⊕current

timestamp

seedi

seedi+1

⊕

outputi
Ti
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Attacks on X9.17

cryptanalytic attacks
– it seems that they require to break  the block cipher E
– however, this has never been proven formally

input based attacks
– assume that an attacker can freeze the clock (Ti = T for all i)
– outputi+1 = EK(T ⊕ seedi+1) = EK(T ⊕ EK(T ⊕ outputi)) = E’K(outputi)
– for a good cipher E, we expect a repeating value in the above 

sequence after ~2n-1 steps, where n is the block size of E
– in a sequence of true n-bit random values, a collision is expected 

after ~2n/2 steps (birthday paradox)
– the attacker can distinguish the output of X9.17 from a sequence

of true random numbers given that he can observe sufficiently 
many (~2n/2) outputs

• not practically important
• certificational weakness
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Attacks on X9.17

weaknesses leading to state compromise extensions
– part of the state (K) never changes 

if K is compromised, then the PRNG can never fully recover
– seedi+1 depends on seedi only via outputi

if K is known from a previous state compromise and outputi is observable, then 
finding seedi+1 is not so difficult (timestamps can usually be assumed to have only 
10-20 bits of entropy)

deriving the seed from two consecutive outputs (and K)
seedi+1 = EK(Ti ⊕ outputi) (1)
seedi+1 = DK(outputi+1) ⊕ Ti+1 (2)

– assume that timestamps has 10 bits of entropy
– try all values for Ti, and form a sorted list of possible values for seedi+1

using (1)
– try all values for Ti+1, and form another sorted list of possible values for 

seedi+1 using (2)
– the correct seedi+1 value is the one that appears on both lists

(expected number of matching pairs is ~1+220-n)
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Attacks on X9.17

iterative guessing attack
– if an attacker knows K and seedi and sees (some public function f 

of) outputi, then he can determine seedi+1 easily
• let f(outputi) = v 
• try all possible values t for Ti, and form a list of values                         

vt = f(EK(t ⊕ seedi)) 
• select t* such that vt* = v
• seedi+1 = EK(t* ⊕ EK(t* ⊕ seedi))

backtracking
– if an attacker knows K and seedi+1 and sees (some public function f 

of) outputi, then he can determine outputi and seedi easily 
(EXERCISE)

timer entropy issues
– if larger amount of random bytes are needed (e.g., RSA key pair 

generation), then the PRNG is called repeatedly within a very 
short time
consecutive Ti values have much less entropy than 10-20 bits
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DSA PRNG

state: Xi
optional input: Wi (Wi = 0 if not supplied)
output generation:

outputi = hash((Wi + Xi) mod 2160)
Xi+1 = (Xi + outputi + 1) mod 2160

Wi

Xi

outputi

Xi+1
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hashhash
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Attacks on the DSA PRNG

cryptanalytic attacks 
– if the hash function is good, then the PRNG output seems to be 

hard to distinguish from a real random sequence
– no formal proof

input based attacks
– assume the attacker can control Wi
– setting Wi = (Wi-1 – outputi-1 – 1) mod 2160 will force the PRNG to 

repeat its output 
outputi = hash((Wi + Xi) mod 2160) =

= hash(((Wi-1 – outputi-1 – 1) + (Xi-1 + outputi-1 + 1)) mod 2160) =
= hash((Wi-1 + Xi-1) mod 2160) =
= outputi-1

– this works only if input samples are sent directly into the PRNG
• in practice, they are often hashed before sent in
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Attacks on the DSA PRNG

a weakness that may make state compromise extensions easier
– Xi+1 depends on Wi only via outputi

if an attacker compromised Xi and can observe outputi, then he knows 
Xi+1 no matter how much entropy has been fed into the PRNG by Wi

iterative guessing attack
– if an attacker knows Xi and observes (a public function f of) 

outputi, then he can find Xi+1
• let f(outputi) = v
• assume that Wi has only 20 bits of entropy
• the attacker can try all possible values w for Wi, and compute             

vw = f(hash((w + Xi) mod 2160))
• let w* be the value such that v = vw*
• Xi+1 = (Xi + hash((w* + Xi) mod 2160) + 1) mod 2160

filling the gaps
– if an attacker knows Xi and Xi+2, and observes outputi+1, then he 

can compute outputi as
outputi = (Xi+2 – Xi – 2 – outputi+1) mod 2160
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Strengthening the DSA PRNG

all inputs should be hashed together before feeding them into 
the PRNG (to make input based attacks harder)
Xi+1 should depend on Wi directly and not via the output
– example: Xi+1 = Xi + hash(outputi + Wi)
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Guidelines for using vulnerable PRNGs

use a hash function at the output to protect the PRNG from 
direct cryptanalytic attacks
hash all inputs together with a counter or timestamp before 
feeding into the PRNG to make chosen-input attacks harder
pay special attention to PRNG starting points and seed files to 
make it harder to compromise the PRNG state 
occasionally generate a new starting state and restart the 
PRNG to limit the scope of state compromise extensions
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The Yarrow-160 PRNG

design philosophy
– accumulate entropy from as many different sources as possible
– reseed the key (state) only when enough entropy has been 

collected (this puts the PRNG in an unguessable state at each 
reseed)

– between reseeds, use strong crypto algorithms to generate 
outputs from the key (like a stream cipher)

four major components
– entropy accumulator

• collects samples from entropy sources into two entropy pools (slow and 
fast pool)

– reseed mechanism
• periodically reseeds the key  with new entropy from the pools

– reseed control
• determines when a reseed should be performed

– generation mechanism
• generates PRNG output from the key (state)
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Entropy accumulator

inputs from each source are fed alternately into two entropy pools
– fast pool

• provides frequent reseeds
• ensures that state compromises has as short a duration as possible

– slow pool
• rare reseeds
• entropy is estimated very conservatively
• rationale: even if entropy estimation of the fast pool is inaccurate, the PRNG 

still eventually gets a secure reseed from the slow pool

entropy estimation
– entropy of each sample is measured in three ways:

• a: programmer supplies an estimate for the entropy source
• b: a statistical estimator is used to estimate the entropy of the sample
• c: length of the sample multiplied by ½ 

– entropy estimate of the sample is min(a, b, c)
– entropy contribution of a source is the sum of entropy estimates of all 

samples collected so far from that source
– entropy contribution of each source is maintained separately
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Reseed control

periodic reseed
– the fast pool is used to reseed when any of the sources reaches an 

estimated entropy contribution of 100 bits
– the slow pool is used to reseed when at least two sources reaches 

an estimated entropy contribution of 160 bits

explicit reseed
– an application may explicitly ask for a reseed operation (from both 

pools)
– should be used only when a high-valued random secret is to be 

generated
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Reseed mechanism

reseed from the fast pool (h is SHA1, E is 3DES):
v0 := h(fast pool)
vi := h(vi-1 | v0 | i)    for i = 1, 2, …, Pt
K := h’(h(vPt | K), k)
C := EK(0)
where h’ is a “size adaptor” 

h’(m, k) = first k bit of s0 | s1 | s2 | …
s0 = m
si = h(s0 | … | si-1)    i = 1, 2, …

reset all entropy estimates to 0
wipe the memory of all intermediate values

reseed from the slow pool: 
– feed h(slow pool) into fast pool
– reseed from fast pool as described above
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Reseed mechanism

observations
– new value of K directly depends on previous value of K and current 

pool content (pool v0 vPt)
• if an attacker has some knowledge of the previous value of K, but does 

not know most of the pool content, then he cannot guess the new K
• if an attacker does not know the previous value of K, but observed 

many inputs of the pool, then he still cannot guess the new K
– execution time depends on security parameter Pt

• this makes the time needed for iterative guessing attacks longer
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Generation mechanism

algorithm (E is 3DES):
C := (C+1) mod 2n // n is the block size of E
R := EK(C)
output: R

generator gate
– after Pg output has been generated, a new key is generated

K := next k bits of PRNG output
– Pg is a security parameter currently set to 10
– rationale: if a key is compromised, then only 10 previous output can 

be computed by the attacker (prevention of backtracking attacks)
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Protecting the entropy pool

the pool can be swapped into swap files and stored on disk
– several operating systems allow to lock pages into memory

• mlock() (UNIX), VirtualLock() (Windows), HoldMemory() (Macintosh)
– memory mapped files can be used as private swap files

• the files should have the strictest possible access permissions
• file buffering should be disabled to avoid that the buffer is swapped

allocated memory blocks can be scanned through by other 
processes
– entropy pool is often allocated at the beginning when the security 

subsystem is started pool is often at the head of allocated 
memory blocks

– the pool can be embedded in a larger allocated memory block
– its location can be changed periodically (by allocating new space 

and moving the pool) in the background
– this background process can also be used to prevent the pool from 

being swapped (touched pages are kept in memory with higher 
probability)
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Summary

PRNGs for cryptographic purposes needs special attention
– simple congruential generators are predictable
– naïve PRNG design will not do (cf. early Netscape PRNG)

widely used cryptographic PRNGs may have weaknesses too
– ANSI X9.17
– DSA PRNG
– RSAREF 2.0
– …

some guidelines for using vulnerable PRNGs
design of Yarow-160
– careful design that seems to resist various attacks

protecting the entropy pools
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