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Gergely Ács, Levente Buttyán, and István Vajda

Laboratory of Cryptography and Systems Security (CrySyS),
Department of Telecommunications,

Budapest University of Technology and Economics, Hungary
{acs, buttyan, vajda}@crysys.hu

Abstract. In this paper, we propose a framework for the security anal-
ysis of on-demand, distance vector routing protocols for ad hoc networks,
such as AODV, SAODV, and ARAN. The proposed approach is an adap-
tation of the simulation paradigm that is used extensively for the analy-
sis of cryptographic algorithms and protocols, and it provides a rigorous
method for proving that a given routing protocol is secure. We demon-
strate the approach by representing known and new attacks on SAODV
in our framework, and by proving that ARAN is secure in our model.

1 Introduction

Routing is a fundamental networking function, which makes it an ideal start-
ing point for attacks aiming at disabling the operation of an ad hoc network.
Therefore, securing routing is of paramount importance. Several “secure” rout-
ing protocols for ad hoc networks have been proposed in the academic literature
(see [7] for a good overview), but their security have been analyzed by informal
means only. In [3] and in [1], we show that flaws in routing protocols can be very
subtle (leading to very sophisticated attacks), and therefore, they are very diffi-
cult to discover by informal reasoning. In [1], we propose a systematic approach
based on a mathematical framework, in which the security of on-demand source
routing protocols (e.g., DSR [8], Ariadne [6], and SRP [11]) can be analyzed rig-
orously. In this paper, we extend that approach to on-demand, distance vector
routing protocols (e.g., AODV [12], SAODV [14] and ARAN [13]).

We must emphasize that by secure routing we mean the security of the route
discovery part of the routing protocol only. In other words, we are not concerned
with the problem of misbehaving nodes that do not forward data packets either
for selfish or for malicious reasons. There are many attacks that aim at paralyzing
the entire network by denial of service (e.g., rushing attack) or subverting the
neighbor discovery mechanism (e.g., wormhole attack). In our notion these are
not against the route discovery process primarily, and thus, we are not concerned
with them in the rest of the paper.
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Rather, we focus on the problem of how to maintain the “correctness” of the
routing information stored in the routing tables of the honest nodes in the pres-
ence of an adversary. We will define precisely what we mean by the “correctness”
of routing table entries later in this paper.

Our mathematical framework is based on the simulation paradigm that has
been successfully used to analyze the security of various cryptographic algorithms
and protocols (see parts V and VI of [9] for an overview). In this approach, one
constructs a real-world model that describes the real operation of the system,
and an ideal-world model that captures what the system wants to achieve in
terms of security. Then, in order to prove the security of the system, one proves
that the outputs of the two models are indistinguishable (statistically or com-
putationally). In [1], we apply this approach to source routing protocols, where
the output of the models are sets of routes returned by the routing protocol in
route reply messages. In case of distance vector routing, however, no routes are
returned explicitly in the route reply messages. Hence, the main novelty of this
paper is that here, the output of the models is the state of the system, which is
represented by the content of the routing tables of the honest nodes.

The rest of the paper is organized as follows. In Section 2, we introduce our
mathematical framework, which includes a precise definition of a “correct” sys-
tem state, and based on that, a definition of routing security. Then, in Section 3,
we illustrate the concepts introduced in Section 2 by representing known and
new attacks on SAODV in our framework. In Section 4, we demonstrate the use-
fulness of our approach by formally proving that ARAN is secure in our model.
Finally, we report on some related work in Section 5, and conclude the paper in
Section 6.

2 Model

2.1 Static Representation of the System

Network model: We model the ad hoc network as an undirected labelled graph
G(V, E), where V is the set of vertices and E is the set of edges. Each vertex
represents a node, and there is an edge between two vertices if and only if there
is a radio link between the corresponding nodes. We assume that the radio links
are symmetric, and that is why the graph is undirected.

We assume that the nodes use authenticated identifiers (e.g., public keys, sym-
metric keys) during neighbor discovery and in the routing protocol. We denote
the set of identifiers by L, and we label each vertex v of G with the identifiers
used by the node corresponding to v. We assume that honest (non-corrupted)
nodes use a single identifier that is unique in the network, whereas corrupted
nodes may use multiple compromised identifiers (see attacker model below).
We represent the assignment of identifiers to the nodes by a labelling function
L : V → 2L, which returns for each vertex v the set of labels assigned to v. As
we mentioned above, if v corresponds to a non-corrupted node, then L(v) is a
singleton, and L(v) �⊆ L(v′) holds for any other vertex v′.
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We also assign cost values to the nodes and to the radio links that may
be interpreted as (minimum) processing and transmission costs, respectively,
and may be used to compute routing metrics. The assignment of cost values is
represented by two functions Cnode : V → R and Clink : E → R. Quite naturally,
Cnode(v) will represent the cost assigned to the node that corresponds to vertex
v, and Clink (e) will represent the cost assigned to the link that corresponds to
edge e. In the following, we will omit the indices node and link of C when the type
of the argument unambiguously determines which of the two functions is used
in a given context. An example for a typical cost assignment is the following:
C(v) = 1 for all v ∈ V , and C(e) = 0 for all e ∈ E, which leads to the widely
used hop count metric, where the cost of a route is equal to the number of
intermediate nodes on the route.

Adversary model: We assume that the adversary is not all powerful, but it
launches its attacks from corrupted nodes that it controls and that have similar
communication capabilities as regular nodes. We denote the vertices that cor-
respond to corrupted nodes by V ∗. In addition, we assume that the adversary
compromised some identifiers, by which we mean that the adversary compro-
mised the cryptographic keys that are used to authenticate those identifiers. We
denote the set of compromised identifiers by L∗. We further assume that the
adversary distributed all compromised identifiers to all corrupted nodes, and
hence, we have L(v) = L∗ for all v ∈ V ∗. Using the notation introduced in
[6], the adversary described above is an Active-y-x adversary, where x = |V ∗|
and y = |L∗|. In addition, we assume that the adversary is static in the sense
that it does not corrupt more nodes and compromise more identifiers during the
operation of the system.

Since neighboring corrupted nodes can communicate with each other in an
unrestricted manner (e.g., by sending encrypted messages), they can appear as
a single node (under all the compromised identifiers) to the other nodes. Hence,
without loss of generality, we assume that corrupted nodes are not neighbors in
G; if they were, we could merge them into a single corrupted node that would
inherit all the neighbors of the original nodes.

Configuration: A configuration is a five tuple (G(V, E), V ∗, L, Cnode , Clink ) that
consists of the network graph, the set of corrupted nodes, the labelling function,
and the cost functions.

2.2 System States and Correctness

The state of the system is represented by the routing tables of the non-corrupted
nodes. We assume that an entry of the routing table of a given node v contains
the following three fields: the identifier of the target node, the identifier of the
next hop towards the target, and the cost value that represents the believed
cost of the route to the given target via the given next hop. Without loss of
generality, we assume that the routing metric is such that routes with lower cost
values are preferred.
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Consequently, the state of the system in our model will be represented by a
set Q ⊂ (V \ V ∗) × L × L × R of quadruples such that for any (v, �tar, �nxt, c)
and (v′, �′tar, �

′
nxt, c

′) in Q, v = v′ and �tar = �′tar and �nxt = �′nxt implies
c = c′. The quadruple (v, �tar, �nxt, c) in Q represents an entry in v’s routing
table with target identifier �tar, next hop identifier �nxt, and believed route cost
c. The ensemble of quadruples that have v as their first element represent the
entire routing table of v, and the ensemble of all quadruples in Q represent the
ensemble of the routing tables of the non-corrupted nodes (i.e., the state of the
system). Note that we allow that a node’s routing table contains multiple entries
for the same target, but the next hops should be different.

We define a correct state as follows:

Definition 1 (Correct state). A state Q is correct if for every (v,�tar,�nxt,c) ∈
Q, there exists a sequence v1, v2, . . . , vp of vertices in V such that (vi, vi+1) ∈ E
for all 1 ≤ i < p, and

• v1 = v,
• �tar ∈ L(vp),
• �nxt ∈ L(v2), and
•

∑p−1
i=2 Cnode(vi) +

∑p−1
i=1 Clink (vi, vi+1) ≤ c.

Intuitively, the system is in a correct state if all the routing table entries of the
non-corrupted nodes are correct in the sense that if v has an entry for target �tar

with next hop �nxt and cost c, then indeed there exists a route in the network
that

• starts from node v
• ends at a node that uses the identifier �tar

• passes through a neighbor of v that uses identifier �nxt, and
• has a cost that is smaller than or equal to c.

The requirement on the believed cost of the route (last point above) deserves
some explanation. First of all, recall the assumption that routes with a lower
cost are preferred. It is, therefore, natural to assume that the adversary wants
to make routes appearing less costly than they are. This means that if node v
believes that there exists a route between itself and target �tar (passing through
neighbor �nxt) with a cost c, while in reality, there exist only routes between
them with a cost higher than c, then the system should certainly be considered
to be in an incorrect state (i.e., under attack). On the other hand, allowing
the existence of routes with a smaller cost does not have any harm (under the
assumption that the adversary has no incentive to increase the believed costs
corresponding to the routes), and it makes the definition of the correct state less
demanding. This has a particular importance in case of protocols that use one-
way hash chains to protect hop count values (e.g., SAODV and alike), since in
those protocols, the adversary can always increase the hop count by hashing the
current hash chain element further. However, this ability of the attacker should
rather be viewed as a tolerable imperfection of the system than a flaw in those
protocols.
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2.3 Dynamic Representation of the System

The simulation paradigm: The main idea of the simulation paradigm is to
define two models: a real-world model that represents the behavior of the real
system and an ideal-world model that describes how the system should work
ideally. In both models, there is an adversary, whose behavior is not constrained
apart from requiring it to run in time polynomial in the security parameter
(e.g., size of the cryptographic keys used by the cryptographic primitives). This
allows us to consider any feasible attacks, and makes the approach very general.
Although the adversary is not constrained, the construction of the ideal-world
model ensures that all of its attacks are unsuccessful against the ideal-world
system. In other words, the ideal-world system is secure by construction.

Once the models are defined, the goal is to prove that for any real-world adver-
sary, there exist an ideal-world adversary that can achieve essentially the same
effects in the ideal-world model as those achieved by the real-world adversary in
the real-world model (i.e., the ideal-world adversary can simulate the real-world
adversary). A successful proof means that no attacks can be successful in the
real-world model (or more precisely attacks can be successful only with negligible
probability), since otherwise, an attack would be successful in the ideal-world
model too, which is impossible by definition.

Real-world model: The real-world model that corresponds to a configuration
conf = (G(V, E), V ∗, L, Cnode , Clink ) and adversary A is denoted by sys real

conf ,A,
and it is illustrated on the left hand side of Figure 1. sys real

conf ,A consists of a
set {M1, . . . , Mn, A1, . . . , Am, H, C} of interacting Turing machines, where the
interaction is realized via common tapes. Each Mi represents a non-corrupted
device that corresponds to a vertex in V \V ∗, and each Aj represents a corrupted
vertex in V ∗. H is an abstraction of higher-layer protocols run by the honest
parties, and C models the radio links represented by the edges in E. All machines
are probabilistic.

We describe the operation of the real-world model only briefly, since it is
essentially the same as the operation of the model described in [1]. Each machine
is initialized with some input data (e.g., identifiers of neighbors, cryptographic
keys, etc.), which determines its initial state. In addition, the machines also
receive some random input (the coin flips to be used during the operation).
Once the machines have been initialized, the computation begins. The machines
operate in a reactive manner, which means that they need to be activated in
order to perform some computation. When a machine is activated, it reads the
content of its input tapes, processes the received data, updates its internal state,
writes some output on its output tapes, and goes back to sleep. The machines
are activated in rounds by a hypothetic scheduler (not illustrated in Figure 1).
The order of activation is not important, apart from the requirement that C
must be activated at the end of the round.

Machine C is intended to model the broadcast nature of radio communica-
tions. Its task is to read the content of the output tape of each machine Mi

and Aj and copy it on the input tapes of all the neighboring machines, where
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the neighbor relationship is determined by the configuration conf . Machine H
models higher-layer protocols (i.e., protocols above the routing protocol) and the
end-users of the non-corrupted devices. H can initiate a route discovery process
at any machine Mi by placing a request on tape reqi. A response to this request
is eventually returned via tape resi. Machines Mi (1 ≤ i ≤ n) represent the
non-corrupted nodes, which belong to the vertices in V \ V ∗. Mi communicates
with the other protocol machines via its output tape out i and its input tape ini,
and its operation is essentially defined by the routing algorithm.

Finally, machines Aj (1 ≤ j ≤ m) represent the corrupted nodes, which be-
long to the vertices in V ∗. Regarding its communication capabilities, Aj is identi-
cal to any machine Mi. However, Aj may not follow the routing protocol faithfully.
In addition, Aj may send out-of-band requests to H by writing on extj by which
it can instruct the honest parties to initiate route discovery processes. Here, we
make the restriction that the adversary triggers a route discovery only between
non-corrupted nodes. Moreover, we restrict each Aj to write on extj only once, at
the very beginning of the computation (i.e., before receiving any messages from
other machines). This essentially means that we assume that the adversary is non-
adaptive; it cannot initiate new route discoveries as a function of previously ob-
served messages. Note, however, that each Aj can write multiple requests on extj ,
which means that we allow several parallel runs of the routing protocol.
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Fig. 1. The real-world model sys real
conf ,A (left hand side) and the ideal-world model

sys ideal
conf ,A (right hand side)
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The computation ends when H reaches one of its final states. This happens
when H receives a response to each of the requests that it placed on the tapes reqi

(1 ≤ i ≤ n), where a response can also be a time-out. The output of sys real
conf ,A

is the ensemble of the routing tables of the non-corrupted nodes, which is a
set of quadruples as defined above in Subsection 2.2. We denote the output by
Out real

conf ,A(r), where r is the random input of the model. In addition, Out real
conf ,A

will denote the random variable describing Out real
conf ,A(r) when r is chosen uni-

formly at random.

Ideal-world model: The ideal-world model that corresponds to a configuration
conf = (G(V, E), V ∗, L, Cnode , Clink ) and adversary A is denoted by sys ideal

conf ,A,
and it is illustrated on the right hand side of Figure 1. One can see that the
ideal-world model is similar to the real-world model; the main difference is
that machines Mi (1 ≤ i ≤ n) are replaced with a new machine called T .
The operation of the ideal-world model is very similar to the real-world model,
therefore, we do not detail it here. We focus only on the operation of the new
machine T .

In effect, machine T emulates the behavior of the machines Mi (1 ≤ i ≤ n),
with the difference that T is initialized with conf , and hence, it can detect when
the system gets into an incorrect state. When this happens, T records that
the system has been in an incorrect state, but the computation continues as if
nothing wrong had happened.

Similar to the real-world model, the computation ends, when H reaches one
if its terminal states, which happens when H receives a response to each of the
requests that it placed on the tapes reqi (1 ≤ i ≤ n), where a response can
also be a time-out. The output of the ideal-world model is either the ensemble
of the routing tables if T has not recorded an incorrect state during the com-
putation, or a special symbol that indicates that an incorrect state has been
encountered. The output is denoted by Out ideal

conf ,A(r). Moreover, Out real
conf ,A de-

notes the random variable describing Out real
conf ,A(r) when r is chosen uniformly

at random.

2.4 Definition of Security

Based on the model introduced in the previous subsections, we define routing
security formally as follows:

Definition 2. (Statistical security) A routing protocol is said to be statistically
secure if, for any configuration conf and any real-world adversary A, there exists
an ideal-world adversary A′, such that Out real

conf ,A is statistically indistinguish-
able1 from Out ideal

conf ,A′ .

The intuitive meaning of the definition above is that if a routing protocol is statis-
tically secure, then any system using this routing protocol gets into an incorrect
1 Two random variables are statistically indistinguishable if the L1 distance of their

distributions is negligibly small.
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state only with negligible probability. This negligible probability is related to the
fact that the adversary can always forge the cryptographic primitives (e.g., gen-
erate a valid digital signature) with a very small probability.

3 Insecurity of SAODV

SAODV [14] is a “secure” variant of the Ad hoc On-demand Distance Vector
(AODV) [12] routing protocol. In the following, we briefly overview the operation
of SAODV, and we show that, in fact, it is not secure in our model.

3.1 Operation of SAODV

The operation of SAODV is similar to that of AODV, but it uses cryptographic
extensions to provide integrity of routing messages and to prevent the manip-
ulation of the hop count information. Conceptually, SAODV routing messages
(i.e., route requests and route replies) have a non-mutable and a mutable part.
The non-mutable part includes, among other fields, the node sequence numbers,
the addresses of the source and the destination, and a request identifier, while
the mutable part contains the hop count information. Different mechanisms are
used to protect the different parts.

The non-mutable part is protected by the digital signature of the originator
of the message (i.e., the source or the destination of the route discovery). This
ensures that the non-mutable fields cannot be changed by an adversary without
the change being detected by the non-corrupted nodes.

In order to prevent the manipulation of the hop count information, the au-
thors propose to use hash chains. When a node originates a routing message
(i.e., a route reply or a route request), it first sets the HopCount field to 0, and
the MaxHopCount field to the TimeToLive value. Then, it generates a random
number seed, and puts it in the Hash field of the routing message. After that, it
calculates the TopHash field by hashing seed iteratively MaxHopCount times. The
MaxHopCount and the TopHash fields belong to the non-mutable part of the mes-
sage, while the HopCount and the Hash fields are mutable. Every node receiving
a routing message hashes the value of the Hash field (MaxHopCount−HopCount)
times, and verifies whether the result matches the value of the TopHash field.
Then, before rebroadcasting a route reply or forwarding a route request, the
node increases the value of the HopCount field by one, and updates the Hash
field by hashing its value once.

The rationale behind using the above hash chaining mechanism is that given
the values of the Hash, the TopHash, and the MaxHopCount fields, anyone can
verify the value of the HopCount field. On the other hand, preceding hash values
cannot be computed starting from the value in the Hash field due to the one-way
property of the hash function. This ensures that an adversary cannot decrease
the hop count, and thus, cannot make a route appearing shorter than it really
is. However, as we will see later (and as pointed out by the authors of SAODV
themselves), this latter statement does not hold in general, because a corrupted
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node that happens to be on a route between the source and the destination may
pass on the routing message without increasing the value of the HopCount field
and without updating the value of the Hash field.

3.2 Simple Attacks Against SAODV

According to our definition of security, a routing protocol is secure if it ensures
that incorrect entries in the routing tables of the non-corrupted nodes can be
generated only with negligible probability. In case of SAODV, a node v creates
an entry in its routing table for a target �tar only if it receives a fresh enough
routing message that carries a valid digital signature of �tar. The fact that this
routing message arrived to v means that there must be a route between v and
a node that uses the identifier �tar, since otherwise, the message cannot reach
v. However, SAODV cannot guarantee that the next hop and the hop count
information in the newly created routing table entry is correct. This is illustrated
by the following two examples.

Attack 1: Let us consider the configuration illustrated in Figure 2. Since SAODV
uses the hop count as the routing metric, we set the node cost to 1 for every node
and the link cost to 0 for every link. Let us assume that the node labelled by S
starts a route discovery towards the node labelled by T . When the route request
message reaches the corrupted node labelled by Z, it does not increase the hop
count and does not update the hash value in the message. Therefore, when this
route request is eventually received by the node labelled by T , it will create an
entry (S, B, 1) in its routing table. In addition, this entry will not be overwritten
when the other route request message arrives through the node labelled by C,
since that request will have a hop count of 2. This means that the system ends up
in an incorrect state, because there is not any route in this network that starts at
the node labelled by T , passes through the node labelled by B, ends at the node
labelled by S, and has a cost less than or equal to 1.
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Fig. 2. A configuration where the adversary can achieve that the node labelled by T
creates in its routing table an entry with an incorrect cost value when SAODV is used

We note that this weakness of SAODV has already been known by its authors
(see Subsection 5.3.5 of [14]). Our purpose with this example is simply to illus-
trate how an attack that exploits the weakness can be represented within our
framework.
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Fig. 3. A configuration where the adversary can achieve that the node labelled by S
creates in its routing table an entry for target T with an incorrect next hop A when
SAODV is used

Attack 2: Let us now consider the configuration illustrated in Figure 3. Let us
assume again that the source is the node labelled by S and the destination is
the node labelled by T . Furthermore, let us assume that a route request message
reached the destination, and it returned an appropriate route reply. When this
reply reaches the corrupted node labelled by Z, it forwards it to the node labelled
by S in the name of A. Therefore, the node labelled by S will create a routing
table entry (T, A, 2). Note, however, that there is no route at all from the node
labelled by S to the node labelled by T that passes through the node labelled by
A. In other words, the system ends up in an incorrect state again. To the best
of our knowledge, this weakness of SAODV has not been published yet.

4 Security of ARAN

ARAN (Authenticated Routing for Ad hoc Networks) is another secure, distance
vector routing protocol for ad hoc networks proposed in [13]. In this section, we
briefly overview its operation, and we prove that it is secure in our model.

4.1 Operation of ARAN

Just like SAODV, ARAN as well uses public key cryptography to ensure the
integrity of routing messages. Initially, a source node S begins a route discovery
process by broadcasting a route request message:

(RREQ, T, certS , NS , t, SigS)

where RREQ means that this is a route request, S and T are the identifiers of the
source and the destination, respectively, NS is a nonce generated by S, t is the
current time-stamp, certS is the public-key certificate of the source, and SigS

is the signature of the source on all of these elements. NS is a monotonically
increasing value that, together with t and S, uniquely identifies the message,
and it is used to detect and discard duplicates of the same request (and reply).

Later, as the request is propagated in the network, intermediate nodes also
sign it. Hence, the request has the following form in general:

(RREQ, T, certS , NS, t, SigS, SigA, certA)
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where A is the identifier of the intermediate node that has just re-broadcast
the request. When a neighbor of A, say B, receives this route request, then it
verifies both signatures, and the freshness of the nonce. If the verification is
successful, then B sets an entry in its routing table with S as target, and A
as next hop. Then, B removes the certificate and the signature of A, signs the
request, appends its own certificate to it, and rebroadcasts the following message:

(RREQ, T, certS , NS, t, SigS, SigB, certB)

When destination T receives the first route request that belongs to this route
discovery, it performs verifications and updates it routing table in a similar
manner as it is done by the intermediate nodes. Then, it sends a route reply
message to S. The route reply is propagated back on the reverse of the discovered
route as a unicast message. The route reply sent by T has the following form:

(RREP, S, certT , NS, t, SigT )

where RREP means that this is a route reply, NS and t are the nonce and the
time-stamp obtained from the request, S is the identifier of the source, certT
is the public-key certificate of T , and SigT is the signature of T on all of these
elements.

Similar to the route request, the route reply is signed by intermediate nodes
too. Hence, the general form of the route reply is the following:

(RREP, S, certT , NS, t, SigT , SigB, certB)

where B is the identifier of the node that has just passed the reply on.
A node A that receives the route reply verifies both signatures in it, and if

they are valid, then it forwards the reply to the neighbor node from which it has
received the corresponding route request previously. However, before doing that,
A will remove the certificate and the signature of B, and put its own certificate
and signature in the message:

(RREP, S, certT , NS, t, SigT , SigA, certA)

In addition, A also sets an entry in its routing table for target T with B as the
next hop.

As it can be seen from the description, ARAN does not use hop counts as a
routing metric. Instead, the nodes update their routing tables using the infor-
mation obtained from the routing messages that arrive first; any later message
that belongs to the same route discovery is discarded. This means that ARAN
may not necessarily discover the shortest paths in the network, but rather, it
discovers the quickest ones. In effect, ARAN uses the message propagation delay
(i.e., physical time) as a path length metric.

4.2 Security Proof

Theorem 1. ARAN is a secure ad hoc routing protocol in our model, if the
signature scheme is secure against chosen message attacks.
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Proof. Since ARAN uses the message propagation delay as the routing metric, we
will assume that the node cost values in our model represent minimum message
processing delays (at the nodes), and the link cost values represent minimum
message transmission delays (on the links). In addition, we make the pessimistic
assumption that the adversary’s message processing delay is 0, which means that
Cnode(v) = 0 for all v ∈ V ∗.

In order to be compliant with our framework, we also assume that each routing
table entry explicitly contains a routing metric value too. In our case, this metric
value is the time that was needed for the routing message that triggered the
creation of this entry to get from the originator of the message to the node that
created this entry. Although these times are not represented explicitly in ARAN
routing table entries, representing them in the model does not weaken our results
in any way. In particular, exactly the same routing table entries are created in
our model as in ARAN with respect to the target and the next hop identifiers.

In order to prove that ARAN is secure, one has to find the appropriate ideal-
world adversary A′ for any real-world adversary A such that Definition 2 is
satisfied. Due to the constructions of our models, a natural candidate is A′ = A,
since in that case, the steps of the real-world and the ideal-world models are
exactly the same (for the same random input, of course). If no incorrect state is
encountered during the computation in the ideal-world model, then not only the
steps, but the outputs of the two models will be the same too. On the other hand,
if an incorrect state occurs in the ideal-world model, then the outputs of the
models will be different, since the ideal-world model will output a special symbol.
Hence, Definition 2 is satisfied, if an incorrect state can only be encountered with
negligible probability. We will show that indeed this is the case for ARAN.

Getting into an incorrect statemeans that one of the non-corruptednodes, say v,
sets an incorrect entry in its routing table. Let this incorrect entry be (�tar, �nxt, c).
Since v is non-corrupted, it sets this entry only if it received a routing message that
has been signed by �tar as originator and �nxt as previous hop, v has a neighbor that
uses identifier �nxt, and it took time c for the message to get from its originator to
v. Now, (�tar, �nxt, c) can be incorrect for one of the following three reasons:

1. There is no route from v to a node that uses �tar.
2. There are routes from v to a node that uses �tar, but none of them go through

any neighbor of v that uses �nxt.
3. There are routes from v to a node that uses �tar going through a neighbor

of v using �nxt, but each of them has a cost higher than c.

In case 1, if the signature of �tar in the routing message is not forged, then the
very fact that v received the message proves that there is a route between v and
a node that uses �tar (since otherwise the message could not reach v). Hence,
case 1 is possible only if the signature of �tar is forged, and this has negligible
probability if the signature scheme is secure.

In case 2, if the signature of �nxt in the routing message is not forged, then
a neighbor of v, say v′, that uses �nxt has indeed seen and signed the message.
Now, the same reasoning can be used for v′ as in case 1 for v: if the signature
of �tar in the routing message is not forged, then the fact that v′ received the
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message proves that there is a route between v′ and a node that uses �tar, and
hence, there is a route between v and a node that uses �tar that goes through
v′ (since v′ is a neighbor of v). This means that case 2 is possible only if the
signature of �tar or �nxt, or both are forged, and this has negligible probability.

Finally, in case 3, let R be the set of existing routes that start at v, end at a
node that uses �tar, and go through a neighbor of v using �nxt. Moreover, let c′

be the minimum of the costs of the routes in R. By assumption, c′ > c. If the sig-
natures of �tar and �nxt in the routing message received by v are not forged, then
the message must have taken one of the routes in R. However, it could not reach
v in time c < c′, since the node and link costs represent the minimum message
processing and transmission delays at the nodes and on the links. In other words,
the adversary cannot speed up the transmissions on the links and the processing
at the non-corrupted nodes. Hence, case 3 is possible only if either �tar or �nxt,
or both are forged, which can happen only with negligible probability.

5 Related Work

There are several proposals for secure ad hoc routing protocols (see [7] for a
recent overview). However, most of these proposals come with an informal se-
curity analysis with all the pitfalls of informal security arguments. Another set
of related papers deal with provable security for cryptographic algorithms and
protocols (see Parts V and VI of [9] for a survey of the field) and with the ap-
plication of formal methods for the security analysis of cryptographic protocols
(see [4] for an overview of the main approaches). However, these papers are not
concerned with ad hoc routing protocols. There exist only a few papers where
formal techniques are proposed for the verification of the security of ad hoc
routing protocols; we briefly overview them here.

In [15], the authors propose a formal model for ad hoc routing protocols that
is similar to the strand spaces model [5], which has been developed for the formal
verification of key exchange protocols. Routing security is defined in terms of a
safety and a liveness property. The liveness property requires that it is possible
to discover routes, while the safety property requires that discovered routes do
not contain corrupted nodes. In contrast to this, our definition of security admits
routes that pass through corrupted nodes, because it seems to be impossible to
guarantee that discovered routes do not contain any corrupted node, given that
corrupted nodes can behave correctly and follow the routing protocol faithfully.

Another approach, presented in [10], is based on a formal method, called
CPAL-ES, which uses a weakest precondition logic to reason about security
protocols. Unfortunately, the work presented in [10] is very much centered around
the analysis of SRP [11], and it is not general enough. We must also mention that
in [11], SRP has been analyzed by its authors using BAN logic [2]. However, BAN
logic has never been intended for the analysis of routing protocols, and there is
no easy way to represent the requirements of routing security in it. In addition, a
basic assumption of BAN logic is that the protocol participants are trustworthy,
which does not hold in the typical case that we are interested in, namely, when
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there are corrupted nodes in the network controlled by the adversary that may
not follow the routing protocol faithfully.

Finally, in [3] and [1], we have developed and applied an approach based
on the simulation paradigm for on-demand source routing protocols for ad hoc
networks. The framework proposed in this paper is essentially the adaptation of
that approach to on-demand, distance vector routing protocols.

6 Conclusion

In this paper, we proposed an approach for the security analysis of on-demand,
distance vector routing protocols for ad hoc networks, such as AODV, SAODV,
and ARAN. The proposed approach is based on the simulation paradigm that
is used extensively for the analysis of cryptographic algorithms and protocols,
and it provides a rigorous method for proving that a given routing protocol is
secure. We demonstrated the approach by representing two attacks on SAODV
in our framework, and by proving that ARAN is secure in our model.

An important message of this paper is that flaws (leading to attacks) in ad hoc
routing protocols can be very subtle, and hard to discover by informal reasoning.
Another important message is that it is possible to adopt sound analysis tech-
niques known from the cryptographic literature, and to use them in the context
of ad hoc routing protocols.

In our future work, we intend to automate (at least partially) the process of the
security analysis of ad hoc routing protocols. For this purpose, we will identify an
appropriate formal framework, e.g., one based on model checking. Furthermore,
our current definition of a correct state is not strict enough, because it does not
consider that an adversary might have an interest in increasing the cost of a
route passing through it (perhaps, to get rid of the traffic). Thus, we intend to
extend the definition of a correct routing table entry by requiring an appropriate
upper bound on the believed cost of the route.
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