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Abstract

Routing is one of the most basic networking functions in mobile ad hoc networks. Hence,
an adversary can easily paralyze the operation of the network by attacking the routing protocol.
This has been realized by many researchers, and several “secure” routing protocols have been
proposed for ad hoc networks. However, the security of those protocols have mainly been ana-
lyzed by informal means only. In this paper, we argue that flaws in ad hoc routing protocols can
be very subtle, and we advocate a more systematic way of analysis. We propose a mathematical
framework in which security can be precisely defined, and routing protocols for mobile ad hoc
networks can be analyzed rigorously. Our framework is tailored for on-demand source routing
protocols, but the general principles are applicable to other types of protocols too. Our approach
is based on the simulation paradigm, which has already been used extensively for the analysis of
key establishment protocols, but to the best of our knowledge, it has not been applied in the con-
text of ad hoc routing so far. We also propose a new on-demand source routing protocol, called
endairA, and we demonstrate the usage of our framework by proving that it is secure in our model.

Keywords: Mobile ad hoc networks, secure routing, provable security

∗This technical report is an updated version of our earlier report that appeared on IACR ePrint. In this new version, we
extend the adversary model to Active-y-x adversaries and we allow multiple parallel protocol runs. We also slightly modify
the endairA protocol, and we propose a few variants of it.
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1 Introduction

Routing is one of the most basic networking functions in mobile ad hoc networks. Hence, an adversary
can easily paralyze the operation of the network by attacking the routing protocol. This has been
realized by many researchers, and several “secure” routing protocols have been proposed for ad hoc
networks (see [11] for a survey). However, the security of those protocols have been analyzed either
by informal means only, or with formal methods that have never been intended for the analysis of
this kind of protocols. In this paper, we present a new attack on Ariadne, a previously published
“secure” routing protocol [8]. Other attacks can be found in [4]. These attacks clearly demonstrate
that flaws can be very subtle, and therefore, hard to discover by informal reasoning. Hence, we
advocate a more systematic approach to analyzing ad hoc routing protocols, which is based on a
rigorous mathematical model, in which precise definitions of security can be given, and sound proof
techniques can be developed.

Routing has two main functions: route discovery and packet forwarding. The former is concerned
with discovering routes between nodes, whereas the latter is about sending data packets through the
previously discovered routes. There are different types of ad hoc routing protocols. One can distin-
guish proactive (e.g., OLSR [5]) and reactive (e.g., AODV [17] and DSR [12]) protocols. Protocols of
the latter category are also called on-demand protocols. Another type of classification distinguishes
routing table based protocols (e.g., AODV) and source routing protocols (e.g., DSR). In this paper,
we focus on the route discovery part of on-demand source routing protocols, but we believe that the
general principles of our approach are applicable to the route discovery part of other types of protocols
too.

At a very informal level, security of a routing protocol means that it can perform its functions
even in the presence of an adversary. Obviously, the objective of the adversary is to prevent the
correct functioning of the routing protocol. Since we are focusing on the route discovery part of
on-demand source routing protocols, in our case, attacks are aiming at achieving that honest nodes
receive “incorrect” routes as a result of the route discovery procedure. We will make it more precise
later what we mean by an “incorrect” route.

Regarding the capabilities of the adversary, we assume that it can mount active attacks (i.e., it
can eavesdrop, modify, delete, insert, and replay messages) from corrupted nodes that have the same
communication capabilities as the nodes of the honest participants in the network. This means that the
adversary is not all powerful, and it cannot fully control the communication of the honest participants;
it can receive only those messages that were transmitted by one of its neighbors, and its transmissions
can be heard only by its neighbors. We further assume that the adversary has compromised some iden-
tifiers by which we mean that it has compromised the cryptographic keys that are used to authenticate
those identifiers. Thus, the adversary can appear as an honest participant under the compromised
identities. Using the notation introduced in [8], our adversary is anActive-y-xadversary, which means
that it controlsx corrupted nodes in the network, and it can usey compromised identifiers.

The mathematical framework that we introduce in this paper is based on the so calledsimulation
paradigm. This has been successfully used in the analysis of some cryptographic algorithms and
some cryptographic protocols (see Section 5 for a very brief overview). However, it has never been
applied in the context of ad hoc routing protocols. One of the main contributions of this work is the
application of this approach in a new context. Another contribution of this work is the discovery of
as yet unknown attacks against previously published ad hoc routing protocols. Finally, yet another
contribution is a new on-demand source routing protocol for mobile ad hoc networks, called endairA,
which is provably secure in our model, and which may be of independent interest for practitioners.

Preliminary results of this work has been presented in [4]. However, in that paper, we considered
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only an Active-1-1 adversary, and we did not allow parallel protocol runs. In this paper, we extend our
previous results to an Active-y-x adversary, wherex, y ≥ 1, and we allow the simultaneous execution
of any number of instances of the route discovery protocol. We also present a new Active-1-2 attack
against Ariadne, as well as some extensions and variants of the endairA protocol, which have never
been published before.

The rest of the paper is organized as follows: In Section 2, we present a new Active-1-2 attack
on Ariadne, and motivate the need for a rigorous analysis technique. In Section 3, we introduce
our mathematical framework, which includes a precise definition of security. In Section 4, we present
endairA, a new on-demand source routing protocol for ad hoc networks, and we demonstrate the usage
of our framework by proving endairA secure. We report on some related work in Section 5, where we
also highlight some novelties of our modelling approach with respect to previous applications of the
simulation paradigm. Finally, in Section 6, we conclude the paper.

2 An Active-1-2 attack on Ariadne

We have already published attacks against Ariadne and SRP in [4]. In this section, we present a
new, as yet unpublished attack against Ariadne. Our goal is to demonstrate that attacks against ad
hoc routing protocols can be very subtle, and therefore, difficult to discover. Consequently, it is also
difficult to gain sufficient assurances that a protocol is free of flaws. The approach of verifying the
protocol for a few number of specific configurations can never be exhaustive, and thus, it is far from
being satisfactory as a method for security analysis. The attack presented in this section motivates a
more rigorous way of analyzing ad hoc routing protocols, which is the main theme of this paper.

2.1 Operation of Ariadne with MACs

Ariadne has been proposed in [8] as a secure on-demand source routing protocol for ad hoc networks.
Ariadne comes in three different flavors corresponding to three different techniques for data authen-
tication. More specifically, authentication of routing messages in Ariadne can be based on TESLA
[18], on digital signatures, or on MACs. We discuss Ariadne with MACs.

The initiator of the route discovery generates a route request message and broadcasts it to its
neighbors. The route discovery message contains the identifiers of the initiator and the target, a
randomly generated request identifier, and a MAC computed over these elements with a key shared by
the initiator and the target. This MAC is hashed iteratively by each intermediate node together with
its own identifier using a publicly known one-way hash function. The hash values computed in this
way are called per-hop hash values. Each intermediate node that receives the request for the first time
re-computes the per-hop hash value, appends its identifier to the list of identifiers accumulated in the
request, and computes a MAC on the updated request with a key that it shares with the target. Finally,
the MAC is appended to a MAC list in the request, and the request is re-broadcast. The purpose of
the per-hop hash value is to prevent removal of identifiers from the accumulated route in the route
request.

When the target receives the request, it verifies the per-hop hash by re-computing the initiator’s
MAC and the per-hop hash value of each intermediate node. Then it verifies the MAC of each in-
termediate node. If all these verifications are successful, then the target generates a route reply and
sends it back to the initiator via the reverse of the route obtained from the route request. The route
reply contains the identifiers of the target and the initiator, the route obtained from the request, and
the MAC of the target on all these elements that is computed with a key shared by the target and the
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initiator. Each intermediate node passes the reply to the next node on the route (towards the initiator)
without any modification. When the initiator receives the reply, it verifies the MAC of the target. If
the verification is successful, then it accepts the route returned in the reply.

Although Ariadne does not specify it explicitly, we will nonetheless assume that each node also
performs the following verifications when processing route request and route reply messages:

• When a nodev receives a route request for the first time, it verifies if the last identifier of
the accumulated route in the request corresponds to a neighbor ofv. If no identifiers can be
found in the accumulated route, thenv verifies if the identifier of the initiator corresponds to a
neighboring node.

• When a nodev receives a route reply, it verifies if its identifier is included in the route carried by
the reply. In addition, it also verifies if the preceding identifier (or if there is no preceding iden-
tifier, then the identifier of the initiator) and the following identifier (or if there is no following
identifier, then the identifier of the target) in the route correspond to neighbors ofv.

If these verifications fail, then the message is dropped. Note, however, that the intermediate nodes
cannot verify the MACs of the preceding nodes in the route request and the MAC of the target in the
route reply, because they do not possess the necessary keys for that.

2.2 The attack

Let us consider now the network configuration illustrated in Figure 1. We assume that the adversary
controls two nodes (represented by the black nodes in the figure), but it uses only a single corrupted
identifierZ (hence, it is an Active-1-2 adversary). We explain the attack when Ariadne is used with
standard MACs, but it also works if TESLA is used, or when digital signatures are used and intermedi-
ate nodes do not verify the signature list in the route request (which is an assumption that is compliant
with the description of Ariadne in [8]).

S
...

Z Z TA B C D

Figure 1: Part of a configuration where an Active-1-2 attack against Ariadne is possible

S initiates a route discovery process towardT . The first adversarial node receives the following
route request:

msg1 = (rreq, S, T, id , hA, (A), (macA))

The adversary does not append the MAC ofZ to the request, instead, it putshA on the MAC list, and
re-broadcasts the following request:

msg2 = (rreq, S, T, id , hA, (A,Z), (macA, hA))

Recall that the intermediate nodes cannot verify the MACs in the request. Note also that MAC func-
tions based on cryptographic hash functions (e.g., HMAC [13]) output a hash value as the MAC, and
therefore,hA looks like a MAC. Hence,B will not detect the attack, and the following request arrives
to the second adversarial node:

msg3 = (rreq, S, T, id , H(C, . . . , H(B, hA)), (A,Z, B, . . . , C), (macA, hA,macB, . . . ,macC))
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The adversary removesB, . . . , C from the node list and the corresponding MACs from the MAC
list. The adversary can do this in the following way: By recognizing identifierZ in the accumulated
route, the adversary knows that the request passed through the first adversarial node. By looking at the
position of identifierZ in the node list, the adversary will know wherehA is on the MAC list. From
hA, the adversary computeshZ = H(Z, hA) and a MAC on(rreq, S, T, id , hZ , (A,Z),macA), and
re-broadcasts the following request:

msg4 = (rreq, S, T, id , hZ , (A, Z), (macA,macZ))

Since the per-hop hash value and both MACs are correct inmsg4, T will receive a correct request,
and returns the following reply:

msg5 = (rrep, T, S, (A,Z, D), macT )

When the reply reaches the second adversarial node, it will forward the following message toC:

msg6 = (rrep, T, S, (A, Z, B, . . . , C, Z, D), macT )

Note thatB, . . . , C cannot verify the MAC inmsg6. In addition, their identifiers are in the route
carried by the reply, and the preceding and following identifiers belong to their neighbors. Therefore,
each of them forwards the reply. Finally, when the first adversarial node receives the reply, it removes
B, . . . , C and one of theZ ’s from the node list:

msg7 = (rrep, T, S, (A,Z, D), macT )

In this way,S receives the route reply thatT sent. This means that the MAC verifies correctly andS
accepts the route(S, A,Z, D, T ), which is non-existent.

It must be noted that inmsg6, the compromised identifierZ appears twice in the node list. Note,
however, that Ariadne does not specify that intermediate nodes should check the node list in the reply
for repeating identifiers. If each honest node checks only that its own identifier is in the list and that
the preceding and following identifiers belong to its neighbors, then the attack works. Moreover, a
slightly modified version of the attack would work even if the intermediate nodes checked repeating
identifiers in the reply. In that case, the second adversarial node would send the following reply
towardsS:

msg ′6 = (rrep, T, S, (A,X, B, . . . , C, Z, D), macT )

whereX can be any identifier that is different from the other identifiers in the node list. With non-
negligible probability1, X is a neighbor ofB, and thus,B will pass the reply on, so that the first
adversarial node can overhear it. Then, the adversary can remove the identifiersX,B, . . . , C, and
send the reply containing the node list(A,Z,D) to A. A will process the reply, because it con-
tains no repeating identifiers andZ is its neighbor. Alternatively, the first adversarial node may send
information about the neighborhood ofB to the second adversarial node in a proprietary way.

2.3 Some notes on the attack

The attack presented in the previous subsection is very powerful (more powerful than the attack pub-
lished in [4]), because despite the usage of the per-hop hash mechanism, the adversary manages to

1In fact, the probability thatX is a neighbor ofB is greater thannB/N , whereN is the number of nodes in the network
andnB is the number ofB’s neighbors.
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shorten a discovered route, and therefore, the initiator will probably prefer this short route over others.
In other words, the adversary is able to divert the communication betweenS andT through itself, and
then control it.

One can notice that the attack can be prevented by not appending the MACs computed by the
intermediate nodes to the route request, but rather updating a single MAC field. More precisely, in
this modified version of Ariadne, the route request re-broadcast by thei-th intermediate nodeFi would
have the following form:

(rreq, S, T, id , (F1, . . . , Fi−1, Fi), macFi)

wheremacFi is a MAC computed byFi with the key that it shares withT on the route request that it
received:

(rreq, S, T, id , (F1, . . . , Fi−1), macFi−1)

with the convention thatmacF0 = macS .
Besides being more robust than the original version, this modified version of Ariadne has two

other advantages. First, there is no need anymore for the per-hop hash mechanism, since the MACs
computed by the intermediate nodes can play the same role as the per-hop hash values in the original
protocol. Second, route requests are shorter, because they do not contain a per-hop hash value and they
contain only a single MAC instead of a MAC list. Note, however, that such an iterative updating would
not work with digital signatures, because neitherT norS would be able to re-generate the signatures
of the intermediate nodes, which would be necessary for the verification of the route request. When
MACs are used, this is not a problem, because each intermediate node uses a key that it shares with
T , and thus,T can re-generate the MACs computed by the intermediate nodes, one after the other,
which, at the end, makes it possible to verify the last MAC received in the route request.

We note that the authors of Ariadne also come across this modified version of the protocol in
[9]. However, they mention it only as an optimization that reduces overhead, and not as a significant
modification that increases the security of the protocol.

3 The proposed framework

We follow the so called simulation-based approach to define and prove the security of ad hoc rout-
ing protocols. In this approach, two models are constructed for the protocol under investigation: a
real-world model, which describes the operation of the protocol with all its details in a particular
computational model, and anideal-world model, which describes the protocol in an abstract way
mainly focusing on the services that the protocol should provide. One can think of the ideal-world
model as a description of a specification, and the real-world model as a description of an implemen-
tation. Both models contain adversaries. The real-world adversary is an arbitrary process, while the
abilities of the ideal-world adversary are usually constrained. The ideal-world adversary models the
tolerable imperfectionsof the system; these are attacks that are unavoidable or very costly to defend
against, and hence, they should be tolerated instead of being completely eliminated. The protocol is
said to be secure if the real-world and the ideal-world models are equivalent, where the equivalence is
defined as some form of indistinguishability (e.g., statistical or computational) from the point of view
of the honest protocol participants. Technically, security of the protocol is proven by showing that
the effects of any real-world adversary on the execution of the real protocol can besimulatedby an
appropriately chosen ideal-world adversary in the ideal-world model.

In the rest of this section, we describe the construction of the real-world model and the ideal-world
model, we give a precise definition of security, and briefly discuss some proof techniques, which can
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be used to prove that a given routing protocol satisfies our definition. We begin the description of the
models by introducing two important notions: the notion of a configuration and that of a plausible
route.

3.1 Configurations and plausible routes

We model the ad hoc network as an undirected graphG(V, E), whereV is the set of vertices, andE is
the set of edges. Each vertex represents a node, and there is an edge between two vertices if the corre-
sponding nodes established a wireless link between themselves by successfully running the neighbor
discovery protocol. We assume that some of the nodes are under the control of an adversary; we call
them corrupted nodes. We assume that corrupted nodes have the same communication capabilities
as the non-corrupted nodes in the network. We denote the set of vertices corresponding to corrupted
nodes byV ∗, and thus, we haveV ∗ ⊂ V .

If two corrupted nodes are neighbors, then they can share information freely (e.g., by sending
encrypted messages to each other). In effect, neighboring corrupted nodes can appear as a single
node to the other nodes. Hence, without loss of generality, we assume that corrupted nodes are not
neighbors inG; if they were, we could merge them into a single corrupted node that would inherit all
the neighbors of the original nodes.

Nodes are identified by identifiers in the neighbor discovery protocol and in the routing proto-
col. We assume that the identifiers are authenticated during neighbor discovery, and therefore, the
possibility of a Sybil attack [6] is excluded. We also assume that wormholes [10] are detected at the
neighbor discovery level, which means that nodes that are not within each other’s radio range are not
able to run the neighbor discovery protocol successfully. Hence, the edges inE represent pure radio
links.

We assume that the adversary has compromised some identifiers, by which we mean that the
adversary has compromised the cryptographic keys that are necessary to authenticate those identifiers.
We assume that all the compromised identifiers are distributed to all the corrupted nodes, and they are
used in the neighbor discovery protocol and in the routing protocol. On the other hand, we assume that
each non-corrupted node uses a single and unique identifier, which is not compromised. We denote
the set of all identifiers byL, and the set of the compromised identifiers byL∗.

Let L : V → 2L be a labelling function, which assigns to each vertex inG a set of identifiers in
such a way that for every vertexv ∈ V \V ∗,L(v) is a singleton, and it contains the non-compromised
identifier ` ∈ L \ L∗ that is used by the non-corrupted node represented by vertexv; and for every
vertexv ∈ V ∗, L(v) containsall the compromised identifiers inL∗.

A configurationis a triplet(G(V, E), V ∗,L). Figure 2 illustrates a configuration, where the solid
black vertices are the vertices inV ∗, and each vertex is labelled with the set of identifiers thatL
assigns to it. Note that the vertices inV ∗ are not neighboring.

We make the assumption that the configuration is static (at least during the time interval that
is considered in the analysis). Thus, we view the route discovery part of the routing protocol as a
distributed algorithm that operates on this static configuration. The algorithm is run by the nodes with
the aim of finding routes (i.e., sequence of identifiers assigned to the vertices inG), while of course,
each node has only a partial knowledge of the configuration.

Intuitively, the minimum that one may require from the route discovery part of the routing protocol
is that it returns only existing routes. Our definition of routing security is built on this intuition. Now,
we make it more precise what we mean by an existing route.

If there was no adversary, then a sequence`1, `2, . . . , `n (n ≥ 2) of identifiers would be an
existing route given that each of the identifiers`1, `2, . . . , `n are different, and there exists a sequence
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{A}

{B}

{C}
{D}

{E} {F}

{X,Y,Z}
{G} {H}

{X,Y,Z}

Figure 2: Illustration of a configuration. Corrupted nodes are represented by solid black vertices.
Labels on the vertices are identifiers used by the corresponding nodes. Note that corrupted nodes are
not neighboring.

v1, v2, . . . , vn of vertices inV such that(vi, vi+1) ∈ E for all 1 ≤ i < n andL(vi) = {`i} for all
1 ≤ i ≤ n.

However, the situation is more complex due to the adversary that can use the compromised iden-
tifiers in L∗. Essentially, we must take into account that the adversary can always emulate the ex-
ecution of the routing protocol using the compromised identifiers locally within a single corrupted
node. Hence, the adversary can always extend any route that passes through a corrupted node with
any sequence of compromised identifiers. This is a fact that our definition of security must tolerate,
since otherwise we cannot hope that any routing protocol will satisfy it. This observation leads to the
following definition:

Definition 1 (Plausible route) Let(G(V, E), V ∗,L) be a configuration. A sequence`1, `2, . . . , `n of
identifiers is a plausible route with respect to(G(E, V ), V ∗,L) if each of the identifiers̀1, `2, . . . , `n

is different, and there exists a sequencev1, v2, . . . , vk (2 ≤ k ≤ n) of vertices inV and a sequence
j1, j2, . . . , jk of positive integers such that

1. j1 + j2 + . . . + jk = n,

2. (vi, vi+1) ∈ E (1 ≤ i < k),

3. {`Ji+1, `Ji+2, . . . , `Ji+ji} ⊆ L(vi) (1 ≤ i ≤ k), whereJi = j1 + j2 + . . . + ji−1 if i > 1 and
Ji = 0 if i = 1.

Intuitively, the definition above requires that the sequence`1, `2, . . . , `n of identifiers can be
partitioned intok sub-sequences (condition 1) in such a way that each of the resulting partitions
is a subset of the identifiers assigned to a vertex inV (condition 3), and in addition, these ver-
tices form a path inG (condition 2). As an example let us consider again the configuration in
Figure 2. It is easy to verify that(A,X, Y,G, C) is a plausible route, because it can be parti-
tioned into{A}, {X,Y }, {G}, {C}, and these partitions can be assigned to neighboring nodes in
the graph. On the other hand,(A, X, G, D,H) is non-plausible, because it can only be partitioned2

into {A}, {X}, {G}, {D}, {H}, and the partitions{G} and{D} cannot be assigned to neighboring
vertices in the graph.

2Note that a non-compromised identifier must always form a separate partition because of the last condition in Defini-
tion 1.
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3.2 Real-world model

The real-world model that corresponds to a configurationconf = (G(V, E), V ∗,L) and adversaryA
is denoted bysys real

conf ,A, and it is illustrated on the left side of Figure 3.sys real
conf ,A consists of a set

{M1, . . . , Mn, A1, . . . , Am,H, C} of interacting Turing machines, where the interaction is realized
via common tapes. EachMi represents a non-corrupted device that corresponds to a vertex inV \V ∗,
and eachAj represents a corrupted device inV ∗. H is an abstraction of higher-layer protocols run by
the honest parties, andC models the radio links represented by the edges inE. All machines apart
from H are probabilistic.

M1

. .
 .

C

Mn

H

req1

res1

reqn

resn

ext1

out1

in1

outn

inn

out*1

in*1

M1'

. .
 .

Mn'

H

req1

res1

reqn

resn

out1

in1'

outn

inn'

T

C'

. .
 .

Am

out*m

in*m

A1

extm

ext1

out*1

in*1
. .

 .

Am

out*m

in*m

A1

extm

Figure 3: Interconnection of the machines insys real
conf ,A (on the left side) and insys ideal

conf ,A (on the right
side)

Each machine is initialized with some input data, which determines its initial state. In addition,
the probabilistic machines also receive some random input (the coin flips to be used during the op-
eration). Once the machines have been initialized, the computation begins. The machines operate
in a reactive manner, which means that they need to be activated in order to perform some compu-
tation. When a machine is activated, it reads the content of its input tapes, processes the received
data, updates its internal state, writes some output on its output tapes, and goes back to sleep (i.e.,
starts to wait for the next activation). Reading a message from an input tape removes the message
from the tape, while writing a message on an output tape means that the message is appended to the
current content of the tape. Note that each tape is considered as an output tape for one machine and
an input tape for another machine. The machines are activated inroundsby a hypotheticscheduler
(not illustrated in Figure 3). In each round, the scheduler activates the machines in the following or-
der: A1, . . . , Am,H,M1, . . . , Mn, C. In fact, the order of activation is not important, apart from the
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requirement thatC must be activated at the end of the round. Thus, the round ends whenC goes back
to sleep.

Now, we describe the operation of the machines in more detail:

• MachineC: This machine is intended to model the broadcast nature of radio communications.
Its task is to read the content of the output tape of each machineMi andAj and copy it on the
input tapes ofall the neighboring machines, where the neighbor relationship is determined by
the configurationconf . Clearly, in order forC to be able to work, it needs to be initialized with
some random input, denoted byrC , and configurationconf .

• MachineH: This machine models higher-layer protocols (i.e., protocols above the routing
protocol) and ultimately the end-users of the non-corrupted devices.H can initiate a route
discovery process at any machineMi by placing a request(ci, `tar ) on tapereq i, whereci is
a sequence number used to distinguish between different requests sent toMi, and`tar ∈ L is
the identifier of the target of the discovery. A response to this request is eventually returned
via taperes i. The response has the form(ci, routes), whereci is the sequence number of
the corresponding request, androutes is the set of routes found. In some protocols,routes is
always a singleton, in others it may contain several routes. If no route found, thenroutes = ∅.
In addition toreq i andres i, H can access the tapesextj . These tapes model an out-of-band
channel through which the adversary can instruct the honest parties to initiate route discovery
processes. The messages read fromextj have the form(`ini , `tar ), where`ini , `tar ∈ L are the
identifiers of the initiator and the target, respectively, of the route discovery requested by the
adversary. WhenH reads(`ini , `tar ) from ext j , it places a request(ci, `tar ) in req i wherei is
the index of the machineMi that has identifier̀ini assigned to it (see also the description of how
the machinesMi are initialized). In order for this to work,H needs to know which identifier
is assigned to which machineMi; it receives this information as an input in the initialization
phase.

• MachineMi (1 ≤ i ≤ n): These machines represent the non-corrupted nodes, which belong to
the vertices inV \ V ∗. The operation ofMi is essentially defined by the routing algorithm.Mi

communicates withH via its input tapereq i and its output taperes i. Through these tapes, it
receives requests fromH for initiating route discoveries and sends the results of the discoveries
to H, as described above.

Mi communicates with the other protocol machines via its output tapeout i and its input tape
ini. Both tapes can contain messages of the form(sndr , rcvr ,msg), wheresndr ∈ L is the
identifier of the sender,rcvr ∈ L ∪ {∗} is the identifier of the intended receiver (∗ meaning a
broadcast message), andmsg ∈ M is the actual protocol message. Here,M denotes the set of
all possible protocol messages, which is determined by the routing protocol under investigation.

WhenMi is activated, it first reads the content ofreq i. For each request(ci, `tar ) received from
H, it generates a route requestmsg , updates its internal state according to the routing protocol,
and then, it places the message(L(Mi), ∗,msg) in out i, whereL(Mi) denotes the identifier
assigned to the node that is represented byMi.

When all the requests found inreq i have been processed,Mi reads the content ofini. For
each message(sndr , rcvr ,msg) found onini, Mi checks ifsndr is its neighbor andrcvr ∈
{L(Mi), ∗}. If these verifications fail, thenMi ignoresmsg . Otherwise,Mi processesmsg and
updates its internal state. The way this is done depends on the particular routing protocol in
question.
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We describe the initialization ofMi after describing the operation of machinesAj .

• MachineAj (1 ≤ j ≤ m): These machines represent the corrupted devices, which belong to
the vertices inV ∗. Regarding its communication capabilities,Aj is identical to any machine
Mi, which means that it can read fromin∗j and write onout∗j much in the same way asMi

can read from and write onini andout i, respectively. In particular, this means that theAj

cannot eavesdrop messages that were transmitted by devices that are not neighbors ofAj . It
also means that “rushing” is not allowed in our model (i.e.,Aj must send its messages in a given
round before it receives the messages of the same round from other machines). We intend to
extend our model and study the effect of “rushing” in our future work.

While its communication capabilities are similar to that of the non-corrupted devices,Aj may
not follow the routing protocol faithfully. In fact, we place no restrictions on the operation
of Aj apart from being polynomial-time in the security parameter (e.g., the key size of the
cryptographic primitives used in the protocol) and in the size of the network (i.e., the number of
nodes). This allows us to consider arbitrary attacks during the analysis. In particular,Aj may
delay or delete messages that it would send if it followed the protocol faithfully. In addition, it
can modify messages and generate fake ones.

In addition,Aj may send out-of-band requests toH by writing onext j as described above. This
gives the power to the adversary to specify who starts a route discovery process and towards
which target. Here, we make the restriction that the adversary initiates a route discovery only
between non-corrupted nodes, or in other words, for each request(`ini, `tar) thatAj places on
ext j , `ini, `tar ∈ L \ L∗ holds.

Note that eachAj can write several requests onext j , which means that we allow several parallel
runs of the routing protocol. On the other hand, we restrict eachAj to write on ext j only
once, at the very beginning of the computation (i.e., before receiving any messages from other
machines). This essentially means that we assume that the adversary isnon-adaptive; it cannot
initiate new route discoveries as a function of previously observed messages. We intend to
extend our model with adaptive adversaries in our future work.

As it can be seen from the description above, eachMi should know its own assigned identifier,
and those of its neighbors inG. Mi receives these identifiers in the initialization phase. Similarly,
eachAj receives the identifiers of its neighbors and the setL∗ of compromised identifiers.

In addition, the machines may need some cryptographic material (e.g., public and private keys)
depending on the routing protocol under investigation. We model the distribution of this material
as follows. We assume a functionI, which takes only random inputrI , and it produces a vector
I(rI) = (κpub , κ1, . . . , κn, κ∗). The componentκpub is some public information that becomes known
to all Aj and allMi. κi becomes known only toMi (1 ≤ i ≤ n), andκ∗ becomes known to allAj

(1 ≤ j ≤ m). Note that the initialization function can model the out-of-band exchange of initial
cryptographic material of both asymmetric and symmetric cryptosystems. In the former case,κpub

contains the public keys of all nodes, whileκi contains the private key that corresponds to the non-
compromised identifierL(Mi), andκ∗ contains the private keys corresponding to the compromised
identifiers inL∗. In the latter case,κpub is empty,κi contains the symmetric keys known toMi, and
κ∗ contains the symmetric keys known to the adversary (i.e., allAj).

Finally, allMi and allAj receive some random input in the initialization phase. The random input
of Mi is denoted byri, and that ofAj is denoted byr∗j .

The computation ends whenH reaches one of its final states. This happens whenH receives
a response to each of the requests that it placed on the tapesreq i (1 ≤ i ≤ n). The output of
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sys real
conf ,A is the sets of routes found in these responses. We will denote the output byOut real

conf ,A(r),
wherer = (rI , r1, . . . , rn, r∗1, . . . , r

∗
m, rC). In addition,Out real

conf ,A will denote the random variable

describingOut real
conf ,A(r) whenr is chosen uniformly at random.

3.3 Ideal-world model

The ideal-world model that corresponds to a configurationconf = (G(V, E), V ∗,L) and adversary
A is denoted bysys ideal

conf ,A, and it is illustrated on the right side of Figure 3. One can see that the ideal-
world model is very similar to the real-world one. Just like in the real-world model, here as well, the
machines are interactive Turing machines that operate in a reactive manner, and they are activated by
a hypothetic scheduler in rounds. The tapes work in the same way as they do in the real-world model.
There is only a small (but important) difference between the operation ofM ′

i andMi, and that ofC ′

andC. Below, we will focus on this difference.
Our notion of security is related to the requirement that the routing protocol should return only

plausible routes. The differences between the operation ofM ′
i andMi, andC ′ andC, will ensure that

this requirement is satisfied in the ideal-world model. In fact, the ideal-world model is meant to be
ideal exactly in this sense.

The main idea is the following: SinceC ′ is initialized withconf , it can easily identify and mark
those route reply messages that contain non-plausible routes. A marked route reply is processed by
each machineM ′

i in the same way as a non-marked one (i.e., the machines ignore the marker) except
for the machine that initiated the route discovery process to which the marked route reply belongs.
The initiator first performs all the verifications on the route reply that the routing protocol requires,
and if the message passes all these verifications, then it also checks if the message is marked as non-
plausible. If so, then it drops the message, otherwise it continues processing (e.g., returns the received
route toH). This ensures that in the ideal-world model, every route reply that contains a non-plausible
route is caught and filtered out by the initiator of the route discovery3.

Now, we describe the operation ofM ′
i andC ′ in more detail:

• MachineM ′
i (1 ≤ i ≤ n): The main difference betweenM ′

i andMi is thatM ′
i is prepared to

process messages that contain aplausibility flag. The messages that are placed on tapein ′i have
the form(sndr , rcvr , (msg , pf )), wheresndr , rcvr , andmsg are defined in the same way as
in the real-world model, andpf ∈ {true, false, undef} is the plausibility flag, which indicates
whethermsg is a route request (pf = undef), or it is a route reply and it contains only plausible
routes (pf = true) or it contains a non-plausible route (pf = false). When machineM ′

i reads
(sndr , rcvr , (msg , pf )) from in ′i, it verifies if sndr is its neighbor andrcvr ∈ {L(M ′

i), ∗}.
If these verifications are successful, then it performs the verifications required by the routing
protocol onmsg (e.g., it checks digital signatures, MACs, the route or route segment inmsg ,
etc.). In addition, ifmsg is a route reply that belongs to a route discovery that was initiated
by M ′

i , thenM ′
i also checks ifpf = false. If so, thenM ′

i dropsmsg , otherwise it continues
processing it. Ifmsg is not a route reply orM ′

i is not the initiator, thenpf is ignored. The
messages generated byM ′

i have no plausibility flag attached to them, and they are placed in
out i.

• MachineC ′: Just likeC, C ′ copies the content of the output tape of eachM ′
i andAj onto the

3Of course, marked route reply messages can also be dropped earlier during the execution of the protocol for other
reasons. What we mean is that if they are not caught earlier, then they are surely removed at latest by the initiator of the
route discovery to which they belong.
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input tapes of the neighboring machines. However, before copying a message(sndr , rcvr ,msg)
on any tapein ′i, C ′ attaches a plausibility flagpf to msg . This is done in the following way:

– if msg is a route request, thenC ′ setspf to undef;

– if msg is a route reply and all routes carried bymsg are plausible with respect to the
configurationconf , thenC ′ setspf to true;

– otherwiseC ′ setspf to false.

Note thatC ′ does not attach plausibility flags to messages that are placed on the tapesin∗j .
Hence, the input and the output tapes of allAj contain messages of the same format as in the
real-world model, which makes it easy to “plug” a real-world adversary into the ideal-world
model.

Before the computation begins, each machine is initialized with some input data. This is done
in the same way as in the real-world model. The computation ends whenH reaches one of its final
states. This happens whenH receives a response to each of the requests that it placed on the tapesreq i

1 ≤ i ≤ n. The output ofsys ideal
conf ,A is the sets of routes returned in these responses. We will denote

the output byOut ideal
conf ,A(r), wherer = (rI , r1, . . . , rn, r∗1, . . . , r

∗
m, rC). Out ideal

conf ,A will denote the

random variable describingOut ideal
conf ,A(r) whenr is chosen uniformly at random.

3.4 Definitions of routing security

Now, we are ready to introduce our definition of secure routing:

Definition 2 (Statistical security) A routing protocol is said to be statistically secure if, for any con-
figurationconf and any real-world adversaryA, there exists an ideal-world adversaryA′, such that
Out real

conf ,A
s= Out ideal

conf ,A′ , where
s= means “statistically indistinguishable”.

Two random variables are statistically indistinguishable if theL1 distance of their distributions
is negligibly small. In fact, it is possible to give a weaker definition of security, where instead of
statistical indistinguishability, we require computational indistinguishability. Two random variables
are computationally indistinguishable if no feasible algorithm can distinguish their samples (although
their distribution may be completely different). Clearly, statistical indistinguishability implies compu-
tational indistinguishability, but not vice versa, therefore, computational security is a weaker notion.
In this paper, we will only use the concept of statistical security.

Intuitively, statistical security of a routing protocol means that the effect of any real-world adver-
sary in the real-world model can besimulated“almost perfectly” by an ideal-world adversary in the
ideal-world model. Since, by definition, no ideal-world adversary can achieve that a non-plausible
route is accepted in the ideal-world model, it follows that no real-world adversary can exist that can
achieve that a non-plausible route is accepted with non-negligible probability in the real-world model,
because if such a real-world adversary existed, then no ideal-world adversary could simulate it “almost
perfectly”. In other words, if a routing protocol is statistically secure, then it can return non-plausible
routes only with negligible probability in the real-world model. This negligible probability is related
to the fact that the adversary can always forge the cryptographic primitives (e.g., generate a valid
digital signature) with a very small probability.
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3.5 Proof technique

In order to prove the security of a given routing protocol, one has to find the appropriate ideal-world
adversaryA′ for any real-world adversaryA such that Definition 2 is satisfied. Due to the con-
structions of our models, a natural candidate isA′ = A. This is because for any configuration
conf , the operation ofsys real

conf ,A can easily besimulatedby the operation ofsys ideal
conf ,A assuming

that the two systems were initialized with the same random inputr. In order to see this, let us as-
sume for a moment that no message is dropped due to its plausibility flag beingfalse in sys ideal

conf ,A.

In this case,sys real
conf ,A and sys ideal

conf ,A are essentially identical, meaning that in each step the state
of the corresponding machines and the content of the corresponding tapes are the same (apart from
the plausibility flags attached to the messages insys ideal

conf ,A). Since the two systems are identical,

Out real
conf ,A(r) = Out ideal

conf ,A(r) holds for everyr, and thus, we haveOut real
conf ,A

s= Out ideal
conf ,A. 4

However, if some route reply messages are dropped insys ideal
conf ,A due to their plausibility flags

being set tofalse, thensys real
conf ,A andsys ideal

conf ,A may end up in different states and their further steps

may not match each other, since those messages are not dropped insys real
conf ,A (by definition, they have

already successfully passed all verifications required by the routing protocol). We call this situation
a simulation failure. In case of a simulation failure, it might be thatOut real

conf ,A(r) 6= Out ideal
conf ,A(r).

Nevertheless, the definition of statistical security can still be satisfied, if simulation failures occur only
with negligible probability. Hence, when trying to prove statistical security, one tries to prove that for
any configurationconf and adversaryA, the event of dropping a route reply insys ideal

conf ,A due to its
plausibility flag being set tofalse can occur only with negligible probability.

Note that if the above statement cannot be proven, then the protocol can still be secure, because
it might be possible to prove the statement for another ideal-world adversaryA′ 6= A. In practice,
however, failure of a proof in the case ofA′ = A usually indicates a problem with the protocol,
and often, one can construct an attack by looking at where the proof failed. Indeed, that is how we
discovered an Active-1-1 attack against Ariadne, which is presented in [4].

4 endairA: a provably secure on-demand source routing protocol

Inspired by Ariadne with digital signatures5, we designed a routing protocol that can be proven to be
statistically secure. We call the protocol endairA (which is the reverse of Ariadne), because instead of
signing the route request, we propose that intermediate nodes should sign the route reply. In the next
subsection, we describe the operation of the basic endairA protocol, and we prove it to be statistically
secure. We discuss possible extensions and variants of endairA in Subsection 4.2.

4.1 The basic endairA protocol

The operation and the messages of endairA are illustrated in Figure 4. In endairA, the initiator of the
route discovery process generates a route request, which contains the identifiers of the initiator and the
target, and a randomly generated request identifier. Each intermediate node that receives the request
for the first time appends its identifier to the route accumulated so far in the request, and re-broadcasts
the request. When the request arrives to the target, it generates a route reply. The route reply contains
the identifiers of the initiator and the target, the accumulated route obtained from the request, and a

4In fact, in this case the two random variables have exactly the same distribution.
5Ariadne with digital signatures is similar to Ariadne with MACs presented in Section 2 with the difference that instead

of computing MACs, the intermediate nodes digitally sign the route request before re-broadcasting it.
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digital signature of the target on these elements. The reply is sent back to the initiator on the reverse of
the route found in the request. Each intermediate node that receives the reply verifies that its identifier
is in the node list carried by the reply, and that the preceding identifier (or that of the initiator if there
is no preceding identifier in the node list) and the following identifier (or that of the target if there is no
following identifier in the node list) belong to neighboring nodes. Each intermediate node also verifies
that the digital signatures in the reply are valid and that they correspond to the following identifiers
in the node list and to the target. If these verifications fail, then the reply is dropped. Otherwise, it
is signed by the intermediate node, and passed to the next node on the route (towards the initiator).
When the initiator receives the route reply, it verifies if the first identifier in the route carried by the
reply belongs to a neighbor. If so, then it verifies all the signatures in the reply. If all these verifications
are successful, then the initiator accepts the route.

S → ∗ : (rreq, S, T, id , ())
A → ∗ : (rreq, S, T, id , (A))
B → ∗ : (rreq, S, T, id , (A,B))
T → B : (rrep, S, T, (A,B), (sigT ))
B → A : (rrep, S, T, (A,B), (sigT , sigB))
A → S : (rrep, S, T, (A,B), (sigT , sigB, sigA))

Figure 4: An example for the operation and messages of endairA. The initiator of the route discovery
is S, the target isT , and the intermediate nodes areA andB. id is a randomly generated request
identifier. sigA, sigB, andsigT are digital signatures ofA, B, andT , respectively. Each signature is
computed over the message fields (including the signatures) that precede the signature.

The proof of the following theorem illustrates how the framework introduced in Section 3 can be
used in practice.

Theorem 1 endairA is statistically secure if the signature scheme is secure against chosen message
attacks.

Proof: We provide only a sketch of the proof. We want to show that for any configurationconf =
(G(V,E), V ∗,L) and any adversaryA, a route reply message insys ideal

conf ,A is dropped due to its
plausibility flag set tofalse with negligible probability.

In what follows, we will refer to non-corrupted nodes (machines) with their identifiers. Let us
suppose that the following route reply is received by a non-corrupted node`ini in sys ideal

conf ,A:

msg = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p
, . . . , sig`1))

Let us suppose thatmsg passes all the verifications required by endairA at`ini , which means that all
signatures inmsg are correct, and̀ini has a neighbor that uses the identifier`1. Let us further suppose
thatmsg has been received with a plausibility flag set tofalse, which means that(`ini , `1, . . . , `p, `tar )
is a non-plausible route inconf . Hence,msg is dropped due to the its plausibility flag beingfalse.

Recall that, by definition, corrupted nodes cannot be neighbors. In addition, each non-corrupted
node has a single and unique non-compromised identifier. It follows that every route, including
(`ini , `1, . . . , `p, `tar ), has a uniquemeaningfulpartitioning, which is the following: each non-compromised
identifier, as well as each sequence of consecutive compromised identifiers should form a partition.

Let P1, P2, . . . , Pk be the unique meaningful partitioning of the route(`ini , `1, . . . , `p, `tar ). The
fact that this route is non-plausible implies that at least one of the following two statements holds:
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• Case 1:There exist two partitionsPi = {`j} andPi+1 = {`j+1} such that both̀j and`j+1 are
non-compromised identifiers, and the corresponding non-corrupted nodes are not neighbors.

• Case 2:There exist three partitionsPi = {`j}, Pi+1 = {`j+1, . . . , `j+q}, andPi+2 = {`j+q+1}
such that̀ j and`j+q+1 are non-compromised and`j+1, . . . , `j+q are compromised identifiers,
and the non-corrupted nodes that use`j and`j+q+1 have no common corrupted neighbor.

We show that in both cases, the adversary must have forged the digital signature of a non-corrupted
node.

In Case 1,̀ j+1 does not sign the route reply, since it is non-corrupted and it detects that the iden-
tifier that precedes its own identifer in the route does not belong to a neighbor. Hence, the adversary
must have forgedsig`j+1

in msg .
In Case 2, the situation is more complicated. Let us assume that the adversary has not forged the

signature of any of the non-corrupted nodes.`j must have received

msg ′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p
, . . . , sig`j+1

))

from a corrupted neighbor, sayv∗, since`j+1 is compromised, and thus, a non-corrupted node would
not send out a message withsig`j+1

. In order to generatemsg ′, nodev∗ must have received

msg ′′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p
, . . . , sig`j+q+1

))

because by assumption, the adversary has not forged the signature of`j+q+1, which is non-compromised.
Sincev∗ has no corrupted neighbor, it could have receivedmsg ′′ only from a non-corrupted node.
However, the only non-corrupted node that would send outmsg ′′ is `j+q+1. This would mean that
v∗ is a common corrupted neighbor of`j and`j+q+1, which contradicts the assumption of Case 2.
This means that our original assumption cannot be true, and hence, the adversary must have forged
the signature of a non-corrupted node.

It should be intuitively clear that if the signature scheme is secure, then the adversary can forge
a signature only with negligible probability, and thus, a route reply message insys ideal

conf ,A is dropped
due to its plausibility flag set tofalse only with negligible probability. Nevertheless, we sketch how
this could be proven formally. The proof is indirect. We assume that there exist a configurationconf
and an adversaryA such that a route reply message insys ideal

conf ,A is dropped due to its plausibility flag
set tofalse with probability ε, and then, based on that, we construct a forgerF that can break the
signature scheme with probabilityε/n. If ε is non-negligible, then so isε/n, and thus, the existence
of F contradicts with the assumption about the security of the signature scheme.

The construction ofF is the following. Letpuk be an arbitrary public key of the signature scheme.
Let us assume that the corresponding private keyprk is not known toF , butF has access to a signing
oracle that produces signatures on submitted messages usingprk . F runs a simulation ofsys ideal

conf ,A
where all nodes (machines) are initialized as described in the model, except that the public key of
a randomly selected non-corrupted node`i is replaced withpuk . During the simulation, whenever
`i signs a messagem, F submitsm to the oracle, and replaces the signature of`i on m with the
one produced by the oracle. This signature verifies correctly on other nodes later, since the public
verification key of`i is replaced withpuk . By assumption, with probabilityε, the simulation of
sys ideal

conf ,A will result in a route reply messagemsg such that all signatures inmsg are correct andmsg
contains a non-plausible route. As we saw above, this means that there exists a non-corrupted node`j

such thatmsg contains the signaturesig`j
of `j , but `j has never signed (the corresponding part of)

msg . Let us assume thati = j. In this case,sig`j
is a signature that verifies correctly with the public
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keypuk . Sincè j did not signed (the corresponding part of)msg , F did not call the oracle to generate
sig`j

. This means thatF managed to produce a signature on a message that verifies correctly with

puk . SinceF selected̀ i randomly, the probability ofi = j is 1
n , and hence, the success probability

of F is ε/n. 2

Besides being provably secure, endairA has another significant advantage over Ariadne (and sim-
ilar protocols): it is more efficient, because it requires less cryptographic computation overall from
the nodes. This is because in endairA, only the processing of the route reply messages involves cryp-
tographic operations, and a route reply message is processed only by those nodes that are in the node
list carried in the route reply. In contrast to this, in Ariadne, the route request messages need to be
digitally signed by all intermediate nodes; however, due to the way a route request is propagated, this
means that each node in the network must sign each and every route request.

4.2 Extensions and variants

Note that in our model presented in Section 3, we made the assumption that the nodes are static (at least
during the period of time that is analyzed). The proof of security of endairA relies on this assumption.
More precisely, in the proof, we show that if a route is returned by endairA to an honest node, then that
route must exist in the graph that represents the network with overwhelming probability. Moreover,
once a route has been returned, it remains valid forever, because the graph does not change. This
means that under the assumption of static nodes, the basic endairA protocol is not vulnerable to
replay attacks. However, if we relax this assumption, and we allow the nodes to move, then the basic
protocol has a problem. In that case, when a node initiates a route discovery process and the adversary
receives a route request, it can replay an old route reply, and if that reply reaches the initiator, then it
will be accepted, despite the fact that it may contain outdated information (i.e., a route that does not
exist anymore due to the mobility of the nodes).

Fortunately, we can easily extend the basic endairA protocol to mitigate this problem. All we need
to do is to require the target of the route discovery to insert the random request identifierid (received
in the route request) in the route reply. Hence, in the extended endairA protocol, the route reply that
is passed from intermediate nodeFi to nodeFi−1 looks as follows:

(rrep, S, T, id , (F1, . . . , Fn), (sigT , sigFn
, . . . , sigFi

))

Now, when the initiator receives a route reply, it also verifies if it received back the request identifier
that it sent in the route request. This makes it practically impossible for the adversary to successfully
replay an old route reply that belongs to a previous route discovery process. Of course, when nodes
are allowed to move, it is possible that a route reply contains a non-existent route even if there was no
attack at all. In order to alleviate this problem, the time interval within which the initiator accepts a
reply with a specific request identifier should be appropriately limited.

Another problem with the basic endairA protocol is that it is vulnerable to malicious route request
flooding attacks. This is because the route request messages are not authenticated in any way, and
hence, an adversary (even without compromising any identity) can initiate route discovery processes
in the name of honest nodes. These forged route discovery processes will be carried out completely,
including the flooding of the route requests in the whole network, because only the impersonated
initiators can detect that they are forged. In order to prevent this, the route request can be digitally
signed by the initiator, and rate limiting techniques similar to the one used for Ariadne [8] can be
applied with endairA too. Naturally, such extensions put more burden on the nodes, since now they
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also need to verify the initiator’s signature in each route request message and to maintain information
that is required by the rate limiting mechanism.

Finally, a practical problem of the basic endairA protocol is that it requires the intermediate nodes
to verify every signature in the route reply, and this may turn out to be too “expensive” in some
applications. One way to overcome this problem would be to require the intermediate nodes to verify
only the signature of the target (this ensures that they all sign the same route that the target signed) and
the initiator to verify all the signatures in the route reply (this ensures that the order of the signatures
corresponds to the route in the reply). In this case, however, a non-corrupted intermediate node that
is on the node list in the reply could be used by two corrupted nodes to pass messages between them,
and this may lead to successful attacks.
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Figure 5: A configuration where an attack against endairA would be possible if the intermediate nodes
verified only the signature of the target

In order to illustrate the problem, let us consider the configuration in Figure 5. Let us assume
that the initiator isS, the target isT , and the route reply contains the route(A,B, Z, C). This is a
non-plausible route, becauseB andC has no common neighbor that uses identifierZ. Nevertheless,
it is possible thatS accepts this route. In order to see this, note that the adversarial nodev∗2 can send
the following message toA in the name ofB, after receiving the reply fromC:

(rrep, S, T, id , (A,B, Z, C), (sigT , sigC , sigZ))

B will accept this message, because the signature ofT is valid,A is on the node list, andS andB are
neighbors ofA. Thus,A will sign the reply and send it toS:

(rrep, S, T, id , (A,B, Z,C), (sigT , sigC , sigZ , sigA))

S will obviously drop this reply, since the signature ofB is missing. But the other adversarial nodev∗1
will overhear the transmission ofA, it can remove the signature ofA, and send the following message
to B:

(rrep, S, T, id , (A,B, Z, C), (sigT , sigC , sigZ))

B will accept this route reply, sign it, and send the following message toA:

(rrep, S, T, id , (A,B, Z,C), (sigT , sigC , sigZ , sigB))

Finally, A accepts this reply again, signs it, and sends the following message toS:

(rrep, S, T, id , (A,B, Z, C), (sigT , sigC , sigZ , sigB, sigA))
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Now, this reply is accepted byS, although it contains a non-plausible route. Note that the above attack
is not possible when the original version of endairA is used, because in that case,A would not pass
on the reply at the first time, whenB’s signature is missing from it.

Essentially, the above type of attack is possible because one of the corrupted nodes could pass the
reply to the other one through a non-corrupted node that turns out to be on the node list. However,
such an attackalwaysrequires that the victim node processes the reply (at least) twice: once when it
is used as a channel between the corrupted nodes, and once when the reply reaches it normally as one
of the nodes on the node list. Hence, the optimized version of endairA, where the intermediate nodes
verify only the signature of the target, works only if it can be ensured that the intermediate nodes
process each route reply only once. They could, for instance, remember theid of each processed
reply, and refuse accepting a reply with the sameid again. In order to avoid an ever increasing log at
the intermediate nodes, a time intervalt can be specified by the initiator in the route request. When the
request is sent, the initiator would start a timer, and it would accept route reply messages containingid
only before the timer reachest. The intermediate nodes would learn the value oft from the request.
They would also start a timer when they process a reply containingid the first time. In addition,
they would logid , and drop every further reply containingid . Once their timers reacht, they could
removeid from their log, because by that time, the initiator has already timed out, and it would no
longer accept any reply withid . Note that this approach does not require any clock synchronization
between the nodes.

5 Related work

There are several proposals for secure ad hoc routing protocols (see [11] for a recent overview).
However, most of these proposals come with an informal security analysis with all the pitfalls of
informal security arguments. In this section, we report on a few exceptions, where some attempts are
made to use formal methods for the verification of ad hoc routing protocols.

In [22], the authors try to reach a goal similar to ours but with a different approach. They pro-
pose a formal model for ad hoc routing protocols with the aim of representing insider attacks (which
correspond to our notion of corrupted nodes). Their model is similar to the strand spaces model [7],
which has been developed for the formal verification of key exchange protocols. Routing security is
defined in terms of a safety and a liveness property. The liveness property requires that it is possible
to discover routes, while the safety property requires that discovered routes do not contain corrupted
nodes. In contrast to this, our definition of security allows the protocol to return routes that pass
through corrupted nodes, because it seems to be impossible to guarantee that discovered routes do not
contain any corrupted node given that corrupted nodes can behave correctly and follow the routing
protocol faithfully. Our definition of security corresponds to the informal definitions given in [16] and
[8].

Another approach, presented in [15], is based on a formal method, called CPAL-ES, which uses
a weakest precondition logic to reason about security protocols. Unfortunately, the work presented
in [15] is very much centered around the analysis of SRP [16], and it is not general enough. For
instance, the author defines a security goal that is specific to SRP, but no general definition of routing
security is given. In addition, the attack discovered by the author on SRP is not a real attack, because
it essentially consists in setting up a wormhole between two non-corrupted nodes, and SRP is not
supposed to defend against this. In our opinion, wormhole attacks are attacks against the neighbor
discovery mechanism and not against routing. On the other hand, the advantage of the approaches of
[15] and [22] is that they can be automated.
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We must also mention that in [16], SRP has been analyzed by its authors using BAN logic [2].
However, BAN logic has never been intended for the analysis of routing protocols. It has been devel-
oped for verifying authentication properties, and there is no easy way to represent the requirements
of routing security in it. In addition, BAN logic assumes that the protocol participants are trustworthy
[3]. This assumption does not hold in the typical case that we are interested in, namely, when there are
corrupted nodes in the network controlled by the adversary that may not follow the routing protocol
faithfully. All in all, the BAN analysis of SRP in [16] was inappropriate, which is also confirmed by
the fact that even an Active-0-1 adversary can successfully attack it (see [4] for details).

Another set of papers deal with provable security for cryptographic algorithms and protocols (see
Parts V and VI of [14] for a survey of the field). However, these papers are not concerned with ad hoc
routing protocols. The papers that are the most closely related to the approach we used in this paper
are [1], [21], and [19]. These papers apply the simulation paradigm for different security problems: [1]
and [21] deal with key exchange protocols, and [19] is concerned with security of reactive systems in
general, and secure message transmission in particular. To the best of our knowledge, we are the first
who applied the notions of provable security and used the simulation-based approach in the context of
routing protocols for wireless ad hoc networks. The main novelties of our model with respect to the
models proposed so far for the analysis of cryptographic protocols are the following:

• Our communication model does not abstract away the multi-hop operation of the network. In
addition, we model the broadcast nature of radio communications, which allows a node to
overhear the transmission of a message that was not intended to him. We also take into account
that a radio transmission can usually be received only in a limited range around the sender.

• In contrast to previous models, where the adversary has full control over the communications
of the honest nodes, in our model, the adversary can hear only those messages that were trans-
mitted by neighboring nodes, and similarly, the transmissions of the adversary are heard only
by its neighbors.

• In our model, it is a hypothetic scheduler, and not the adversary, that schedules the activities
of the honest nodes. In addition, this activation is done in rounds. This leads to a sort of syn-
chronous model, where each participant is aware of a global time represented by the current
round number. However,this knowledge has never been exploited in our analysis. The advan-
tage is that we can retain the simplicity of a synchronous model, without arriving to conclusions
that are valid only in synchronous systems.

• The simulation-based approach requires the definition of an ideal-world model, which focuses
onwhat the system should do, and it is less concerned abouthow it is done. As a consequence,
the ideal-world model usually contains a trusted entity that provides the intended services of
the system in a “magical” way. In our model, the role of this trusted entity is played byC ′,
which marks route reply messages that contain non-plausible routes. In addition, we do not
limit the capabilities of the ideal-world adversary, but those are the same as the capabilities of a
real-world adversary. Consequently, and in contrast to other models, the tolerable imperfections
(unavoidable vulnerabilities) of the system are not captured in the capabilities of the ideal-world
adversary, but they are embedded in the definition of a plausible route.
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6 Conclusion and future work

The main message of this paper is that attacks against ad hoc routing protocols can be subtle and
difficult to discover by informal reasoning about the properties of the protocol. We demonstrated this
by presenting a novel attack on Ariadne. Another message is that it is possible to adopt rigorous
techniques developed for the security analysis of cryptographic algorithms and protocols, and apply
them in the context of ad hoc routing protocols in order to gain more assurances about their security.
We demonstrated this by proposing a simulation based framework for the security analysis of on-
demand source routing protocols. The proposed framework allows us to give a precise definition of
security, to model the operation of a given routing protocol in the presence of an adversary, and to
prove (or fail to prove) that the protocol is secure. We also proposed a new on-demand source routing
protocol, endairA, and we demonstrated the usage of the proposed framework by proving that it is
secure in our model. Originally, we developed endairA for purely illustrative purposes, however, it
has some noteworthy features that may inspire designers of future protocols.

In this paper, we focused on on-demand source routing protocols. In our future work, we intend
to extend our framework for routing table based protocols too (e.g., S-AODV [23] and ARAN [20]).
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