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Abstract—A hybrid ad hoc network is a structure-based network that is extended using multihop communications. Indeed, in this kind

of network, the existence of a communication link between the mobile station and the base station is not required: A mobile station that

has no direct connection with a base station can use other mobile stations as relays. Compared with conventional (single-hop)

structure-based networks, this new generation can lead to a better use of the available spectrum and to a reduction of infrastructure

costs. However, these benefits would vanish if the mobile nodes did not properly cooperate and forward packets for other nodes. In this

paper, we propose a charging and rewarding scheme to encourage the most fundamental operation, namely packet forwarding. We

use “MAC layering” to reduce the space overhead in the packets and a stream cipher encryption mechanism to provide “implicit

authentication” of the nodes involved in the communication. We analyze the robustness of our protocols against rational and malicious

attacks. We show that—using our solution—collaboration is rational for selfish nodes. We also show that our protocols thwart rational

attacks and detect malicious attacks.

Index Terms—Network-level security and protection, wireless communication, authentication security, payment schemes.
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1 INTRODUCTION

THE geographic area covered by a conventional structure-

based network (e.g., cellular network, WiFi network,
etc.) is populated with base stations (also called access

points) that are connected to each other via a backbone. A

mobile node can use the network when it has a direct

(single-hop) connection to a base station, but as soon as it is

beyond the reach of the base stations’ coverage, the mobile

node is disconnected from the structure-based network. For

the operator, the usual solution to this problem consists in

increasing the coverage by adding antennas and for the user
to move until he reaches a covered region. An alternative

solution1 would be to allow multihop communications in

the structure-based network, which would make it possible

for the isolated node to ask other nodes to relay its traffic to

or from a base station.
The resulting hybrid ad hoc network [1], [27], [11], [3],

[25], also called multihop cellular network, offers several
benefits [18], [19]. First of all, the coverage of the network is
increased while the number of fixed antennas is kept
relatively small. Reducing the number of antennas is
beneficial for the operator because it represents a cost

reduction and also because of the “NIMBY” (Not in my
back yard) [24] attitude that makes site acquisition and
approval both tedious and difficult. Second, the energy
consumption of the nodes can be reduced because the
signal has to cover a smaller distance. And finally, as the
radiated energy is reduced, the interference with other
nodes diminishes as well.

Given the advantages listed above, hybrid ad hoc
networks represent a new and promising paradigm.
However, the proper operation of this new family of
networks requires the mobile nodes to collaborate with
each other. This collaboration cannot be taken for granted in
a civilian network because each user wants to maximize his
benefit while minimizing his contribution. Indeed, forward-
ing packets is energy-consuming and a selfish user can
tamper with his mobile device to remove the relaying
functions or simply shut down the device when he is not
using it. A systematic denial of the packet forwarding
service would remove all the benefits introduced by the
multihop aspect of the communications.

In this paper, we propose a set of protocols to foster
cooperation for the packet forwarding service in hybrid ad
hoc networks. This solution is based on a charging and
rewarding system.

This paper extends and completes our previous treat-
ment of the same problem [4]. This work is part of the MICS
Terminodes Project [14]. The rest of the paper is organized
as follows: We introduce the system, including the adver-
sarial model, in Section 2 and describe our proposed
protocols in Section 3. In Section 4, we analyze the
robustness of our solution against rational and malicious
attacks and we show that the charging and rewarding
scheme encourages cooperation in hybrid ad hoc networks.
In Section 5, we present an estimate of the communication
and computation overhead of our protocols. Finally, we
describe the related work in Section 6 and we present our
conclusions and future work in Section 7.
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1. Note that we do not assume that multihop communication is always
the best solution to increase infrastructure coverage. The decision whether
or not a given network should be extended using multihopping is out of the
scope of this paper.
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2 SYSTEM MODEL

2.1 Assumptions

The system consists of a set of base stations connected to a
high speed backbone and a set of mobile nodes. The mobile
nodes use the base stations and, if necessary, the backbone
to communicate with each other or with a host connected to
the backbone. Communication between the mobile nodes
and the base stations is based on wireless technology and
the nodes are loosely synchronized with their base station.
We assume that all communication is packet-based and that
all the base stations and the backbone are operated by a
single operator that is fully trusted by all mobile nodes, be it
for charging, for route setup, or for packet forwarding. For
the sake of simplicity, we consider that the nodes and the
base stations have the same power range, which, we
assume, will lead to bidirectional links (i.e., even if the
quality of the link is not necessarily the same in both
directions, we assume that the communication is still
possible in both directions).

We call a cell [18] the geographical area that is controlled
by a given base station. The power range of the base station
is smaller than the radius of the cell, meaning that some
nodes have to rely on multihop relaying to communicate with
the base station. We consider a model in which the nodes
move. However, we assume that the routes are stable
enough to allow for the sending of a substantial number of
packets and, thus, to amortize the cost of running a routing
protocol (see Section 5). We assume each node i to be
registered with the operator and to share a long-term
symmetric key Ki with it. Ki is the only long-term
cryptographic material stored in i. The secret keys of all
the nodes in the network are maintained at the operator.

2.2 Rationale of the Solution

When a mobile node A (the initiator) wants to communicate
with another mobile2 node B (the correspondent), it first
establishes an end-to-end session with B. As we will see in
detail in Section 3.2 a session is a route on which all nodes
are authenticated. This is done by establishing an initiator
session between A and the base station of the initiator BSA
and a correspondent session between the base station of the
correspondent BSB and B. These sessions are used to
exchange packets between A and B, in both directions.

For each packet, we call S its source (which is A or B)
and D its destination (therefore, B or A, respectively). The
base stations of S and D are denoted by BSS and BSD,
respectively. The packet is then sent by the source S to BSS ,
if necessary in multiple hops. If D resides in a different cell,
then the packet is forwarded by BSS to BSD via the
backbone. Finally, the packet is sent to D, possibly in
multiple hops again. If one of the routes is broken, then a
new session is established using an alternative route. Note
that the system model described above is similar to that of
[18] with the difference that we require all communication
to pass through a base station. Although this may lead to
suboptimal routes, our model has the advantage of
significantly reducing the complexity of routing from the
nodes’ point of view since they have to maintain only a
single route (to the base station) instead of one route per
correspondent. Of course, the base station has to maintain a
route to every node in its cell.

To encourage the intermediate nodes to forward the
traffic, we propose to charge the initiator A for the traffic in
both directions and to reward the forwarding nodes (the
operator is rewarded as well). We take advantage of the
presence of the trusted operator and assume that it
maintains a billing account for every node in the system;
our remuneration scheme (see Section 3.4.1) is implemented
by manipulating the appropriate billing accounts.

Our protocols are based entirely on symmetric key
cryptography. Although asymmetric cryptographic primi-
tives may seem to be more suitable for implementing some
of the functions of our scheme, they have a high computa-
tional overhead (compared to symmetric key primitives),
which prevents their application in resource constrained
mobile devices.

2.3 Adversarial Model

Attacker model. An attacker M is rational if it misbehaves
only when this is beneficial in terms of remuneration,
service provision or saving resources. Otherwise, M is
malicious. The users are selfish and, thus, each node in the
network is potentially an attacker. We assume that several
attackers can collude to perform more sophisticated attacks.
We also assume that an attacker is occasionally able to
compromise “good” nodes by retrieving their secret keys.

Attack Model. We do not attempt to ensure secrecy or
anonymity of communication and, thus, we do not study
passive attacks (where the attacker analyzes the data without
altering it). Instead, we are interested in active attacks, where
the attacker modifies, deletes, or injects data in the network.
We consider exclusively the attacks performed against our
solution (e.g., we do not consider DoS attacks based on
jamming) and we identify the following active attacks:

. Packet dropping: M drops a packet it is asked to
forward.

. Replay:M replays a valid packet from an expired or
still existing session.

. Filtering:M modifies a packet it is asked to forward.

. Emulation: M uses the secret key of a node it
compromised to perform actions in its name.

2.4 Interaction with the Underlying Routing
Protocol

Our solution assumes the existence of an underlying
(proactive or reactive) ad hoc routing protocol that provides
the initiator A and the base station BSB with the initiator
route (route between A and BSA) and the correspondent route
(route between BSB and B), respectively. The main
incentive for the nodes on these routes to cooperate in the
routing is the expected future benefit (i.e., the remunera-
tion). Our solution does not require the underlying routing
protocol to be secure. Indeed, the operator is able, in our
solution, to detect several routing attacks such as those
described in [13] (see Section 4.6 for more details).

3 PROPOSED SOLUTION

3.1 Building Blocks and Notation

Our protocols use two cryptographic building blocks: A
MAC (Message Authentication Code) function and a stream
cipher [21]. However, our use of these primitives is
unconventional:
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. During the session setup phase (see Section 3.2), we
need all the nodes in the path to authenticate the
request message and, instead of appending one
MAC computed by each of the nodes to the message,
we use an iterative “MAC layering” technique. The
principle of this technique is explained in Section 3.2.
Our solution achieves a similar effect to that of the
classical MAC appending technique but keeps the
size of the request constant. Therefore, our technique
is more efficient in terms of bandwidth usage. To the
best of our knowledge, such a scheme has not been
proposed yet for ad hoc networks.

. During the packet sending phase (see Section 3.3),
we apply an iterative stream cipher encryption
mechanism that can be considered as an “implicit”
authentication mechanism because it allows the
operator to verify that the packet took the route it
was supposed to take. At the same time, it thwarts
the free-riding attack (see Section 4.3).

Notation. We denote the concatenation operator by j
and the XOR operator by �.

3.2 Session Setup

As explained in Section 2, when an initiator A wants to
communicate with a correspondentB, it first has to set up an
end-to-end session. The goal of the session setup is 1) to test the
initiator route (route betweenA andBSA, containing a relays)
and the correspondent route (route between BSB and B,
containing b relays), obtained from the underlying routing
protocol, 2) to authenticate all nodes belonging to these
routes, and 3) to inform these nodes about the traffic that will
follow. A node can decide to not join the session, in which
case the session setup fails and a new session is established
using an alternative route. Successful completion of the
session setup phase is a confirmation that both the initiator
and correspondent routes are operational and that the end-
to-end intermediate nodes accept to forward the traffic.

In order to set up a session, A generates an initiator
session setup request message AReq0 that contains a fresh
request identifier AReqID (e.g., generated in sequence), the
initiator route ARoute, and some information TrafficInfo

about the traffic to be sent.3 In addition, the request has a
field oldASID to carry the session ID of the broken initiator
session, in case the request is sent to reestablish a broken
session. This field is set to zero in the case of a new session

establishment. Finally, AReq0 contains a MAC computed by
A using its secret key KA:

AReq0 ¼ ½AReqID j oldASID j ARoute j TrafficInfo j
MACKA

ðAReqID j oldASID j ARoute j TrafficInfoÞ�:

Each forwarding node i (1 � i � a) on the initiator route
checks the traffic information TrafficInfo. If i decides to
participate in the forwarding, then it computes a MAC on
the whole message using its own key Ki, replaces the MAC
in the request with the newly computed MAC, and forwards
the request AReqi to the next hop (or to BSA) where:

AReqi ¼½AReqID j oldASID j ARoute j
TrafficInfo jMACKi

ðAReqi�1Þ�:

Thus, when the request arrives to BSA, it contains a
single “layered” MAC that was computed by A and all the
nodes on the initiator route in an iterative manner. BSA
then repeats all the MAC computations and checks the
result against the MAC in the received request. It also
verifies that the request ID is fresh (i.e., the message is not a
duplicate) and, if the request is sent to reestablish a broken
initiator session, it verifies that oldASID corresponds to a
valid session identifier previously initiated by A. If one of
these verifications is not successful, then BSA drops the
request; otherwise, it sends the request, via the backbone, to
the base station BSB. BSB generates and sends a corre-
spondent session setup request BReq0 toward B:

BReq0 ¼ ½BReqID j oldBSID j BRoute j TrafficInfo�;

where BReqID is a fresh request identifier generated by the
base station BSB, oldBSID is the session ID of the broken
correspondent session, in case the request is sent to
reestablish a broken session and BRoute is the correspon-
dent route.

Each forwarding node j (1 � j � b) on the correspondent
route computes and sends BReqj in the same way as the
forwarding nodes in the initiator route did:

BReqj ¼½BReqID j oldBSID j BRoute
j TrafficInfo jMACKj

ðBReqj�1Þ�:

When B receives the request BReqb, it returns to BSB a
correspondent session setup reply BRep that contains the
correspondent request ID BReqID and a MAC that is
computed over the received request BReqb (including the
MAC therein) using the key KB of B:

BRep ¼ ½BReqID jMACKB
ðBReqbÞ�:

The reply is relayed back without any modifications to
BSB on the reverse route of the request. BSB checks the
“layered” MAC and, if it verifies correctly, BSB informs
BSA that the session is valid. Then, BSA (respectively, BSB)
sends an initiator (respectively, a correspondent) session
setup confirmation message toward A (respectively B). The
initiator session setup confirmation message AConf con-
tains the initiator request ID AReqID and two freshly
generated random numbers AUSID and ADSID represent-
ing the initiator session IDs to be used for packets sent from
A to BSA and from BSA to A, respectively. It also contains a
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Fig. 1. The session setup phase.



series of MACs where each MAC is intended for one of the
nodes on the initiator route (including A):

AConf ¼ ½AReqID j AUSID j ADSID
j AMACA j AMAC1 j . . . j AMACa�;

AMACi ¼MACKi
ðAReqID j AUSID j ADSID

j oldASID j ARoute j TrafficInfoÞ:

The correspondent session setup confirmation BConf
has a similar structure:

BConf ¼ ½BReqID j BUSID j BDSID
j BMAC1 j . . . j BMACb j BMACB�;

BMACj ¼MACKj
ðBReqID j BUSID j BDSID

j oldBSID j BRoute j TrafficInfoÞ:

Each node on the initiator and correspondent routes
(including A and B) verifies its own AMAC or BMAC and
stores the two initiator or correspondent session IDs,
respectively. The state information related to the established
sessions (including session IDs, routes and cryptographic
parameters) is stored in the operator’s database. Then,
using its secret key Ki and the session identifier, each node i
involved in the communication generates a session key K0i
(e.g., K0i ¼ hKi

ðSIDÞ, SID ¼ AUSID and ADSID if i is in
the initiator route, and SID ¼ BUSID and BDSID if i is in
the corresponding route, which leads to two session keys
for each node, one for each direction of the communication)
that it will use during the packet sending and the payment
redemption phases. The base stations BSA and BSB also
compute the session keys of all the nodes involved in the
communication and save them locally.

The session becomes active for the base stations when
they send the confirmation messages and for the nodes
when they receive a valid confirmation message. Node i
starts a timer ti when it receives the request message; ti is
restarted each time i receives a valid message or packet that
belongs to the session. Node i closes the session if ti expires;
closing a session means that the node discards all
subsequent messages or packets that belong to the session.
The nodes and the base stations keep state information in
the memory until the acknowledgement and (if needed)
packet receipts are sent to the operator (see Section 3.4).

Note that, in the case of initiator (respectively, corre-
spondent) session reestablishment, it is not necessary to also
reestablish the correspondent (respectively, the initiator)
session if the latter is still valid. The broken session is
reestablished using an alternative route and it is linked to
the other (still valid) session in the operator’s database.

3.3 Packet Sending

Once the session has been set up, S (which is A or B) starts
sending packets to D.

The ‘th packet SPkt0;‘ sent by S contains the session ID
SSID (which is called AUSID if S ¼ A and BUSID if
S ¼ B), the sequence number ‘, and the payload Payload‘. It
also contains the “receipt seed” SRcpt0;‘ (details about the
computation and the use of the receipts are given in
Sections 3.4.1 and 3.4.4). In addition, S computes a MAC on
the packet using the session key K0S and encrypts the body
of the packet (including the MAC) by XORing it with the
pad PADS;‘:

SPkt0;‘ ¼ ½SSID j SRcpt0;‘ j ‘ j Body0;‘�
where SRcpt0;‘ ¼MACK0

S
ðSSID j ‘Þ

and Body0;‘ ¼ PADS;‘ � ½Payload‘ j
MACK0

S
ðSSID j ‘ j Payload‘Þ�:

The pads PADi;‘ are generated by node i (i ¼ S for the

source) as follows (see Fig. 3): The session IDSSID (DSID for

the down-stream nodes) andK0i are used as a seed to initialize

the key stream generator of the stream cipher. Then,PADi;‘ is

chosen as the ‘th block of lengthMaxLength of the generated

key stream, where MaxLength denotes the maximum

allowed length of packets in bytes. If the length L‘ of the

packet to be encrypted is smaller thanMaxLength, then only

the last L‘ bytes of PADi;‘ are used, the rest of PADi;‘ is

thrown away.

The node i in the up-stream route (route between S and

BSS) verifies that the packet is not a duplicate, updates (and

stores) the receipt4 SRcpti;‘ (details are in Section 3.4.4) and

encrypts the body of the packet using the pad PADi;‘:

SPkti;‘ ¼ ½SSID j SRcpti;‘ j ‘ j Bodyi;‘�
where SRcpti;‘ ¼MACK0iðSSID j SRcpti�1;‘Þ

and Bodyi;‘ ¼ PADi;‘ �Bodyi�1;‘:

When BSS receives the packet, it retrieves the session

keys of the nodes on the up-stream route, recomputes the

pads, and removes all encryptions from the packet. If the

resulting packet verifies correctly (i.e., it is not a duplicate

and it has a valid MAC), the packet is forwarded5 to the

base station of the destination BSD, otherwise it is dropped.

BSD changes the up-stream session ID to the corresponding
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Fig. 2. The packet sending phase.

Fig. 3. Encryption of the packets.

4. The receipt SRcpti;‘ can be used by node i as a proof that it correctly
received the packet SPkti;‘ (see Section 3.4.1 for more details).

5. The packet is forwarded only if it is a data packet. The treatment of up-
stream acknowledgement packets is presented in Section 3.4.2.



down-stream session ID DSID (which is BDSID if S ¼ A
and ADSID if S ¼ B), computes a new MAC for D,

computes the pad PADj;‘ for each node j on the down-

stream route (route between BSD and D), including D, and

encrypts the packet (including the MAC) by iteratively

XORing it with all these pads. The result is:

DPkt0;‘ ¼ ½DSID j ‘ j Body0;‘� where

Body0;‘ ¼ PAD1;‘ � . . .� PADd;‘ � PADD;‘

� ½Payload‘ jMACK0
D
ðDSID j ‘ j Payload‘Þ�:

BSD stores MACK0
D
ðDSID j ‘ j Payload‘Þ of every packet

it sends together with the sequence number ‘ in order to be
able to verify future destination acknowledgements and

packet receipts. Note that, for the down stream, we do not
need to add a field dedicated to the receipt; the receipt is

generated using several fields of the down-stream packet
(see Section 3.4.4).

Upon reception of DPktj�1;‘, each node j computes and

stores the receipt DRcptj;‘ for the packet (as explained in
Section 3.4.4), decrypts the body of DPktj�1;‘ by XORing it

with the pad PADj;‘, and forwards the result DPktj;‘ to the
next hop where:

DPktj;‘ ¼ ½DSID j ‘ j Bodyj;‘� and

Bodyj;‘ ¼ PADj;‘ �Bodyj�1;‘:

When the packet reaches D, it removes the remaining
encryption pad by XORing the packet with PADD;‘. D can

then verify the validity of the MAC generated by BSD and
store the MAC and ‘ for the generation of the acknowl-

edgement (see Section 3.4.2). Note that for up-stream and
down-stream packets, removing the encryptions and ver-

ifying the correctness of the resulting packet implicitly
identifies the forwarding nodes and ensures that the packet

took the right route.

3.4 Payment Redemption

3.4.1 Charging

As we have already mentioned in Section 2.2, charging and

remuneration are performed by the network operator by
manipulating the accounts of the nodes. When BSS receives

the packet Pkt‘ of length L‘ sent by the source S, the up-
stream forwarding nodes are credited �ðL‘Þ and the
initiator A is charged nðL‘Þ. Both �ðL‘Þ and nðL‘Þ depend

on the packet size and not on the number of forwarding
nodes in the path. The operator will then take a loss for long

routes but will make a profit from short routes. The charges
and rewards should thus be set so that—relative to the

average path length—the operator makes the desired profit.
The down-stream forwarding nodes are credited when

Pkt‘ is acknowledged by D (see Section 3.4.2) because the

operator may have no other reliable information about the
delivery of the packet. The only incentive for D to not send

the acknowledgement is to save resources. In order to
discourage this misbehavior, D is charged a small amount "

when BSD injects Pkt‘ in the down-stream route and is
reimbursed when Pkt‘ is acknowledged. Note that, as the

operator cannot distinguish between a packet loss and the

case where D does not want to send the acknowledgment, it
keeps the charge " if no acknowledgement arrives for Pkt‘.

If the packet is dropped or lost in the up-stream route,
the nodes that relayed it can present the receipt for this
packet (see Section 3.4.4) to the operator. The operator
identifies the last node k (1 � k � u) in the path who sent a
valid receipt for the packet and gives it a reward �ðLminÞ,
whereas the nodes that are before k in the path receive a
reward �ðLminÞ, where Lmin denotes the minimum length of
a packet. This choice of reward is made because if the
reward is higher than �ðLminÞ, the forwarding nodes may
be tempted to drop short packets in order to get higher
rewards than the ones they would get if they forward them.
A is charged n0ðLminÞ ¼ ðk� 1Þ � �ðLminÞ þ �ðLminÞ. Receiv-
ing �ðLminÞ can be perceived by k as its reward for
informing the operator that the nodes 1 to k� 1 in the path
behaved properly. The �-reward should be sufficiently large
to strongly counterbalance the cost c of forwarding the
packet and the cost c0 of maintaining and sending the
receipt (� � c and � � c0). The �-reward should also be
substantially larger than � (�� �) to prevent nodes from
systematically dropping packets. Note that, even if c and c0

are not constants (e.g., they depend on the battery level of
the node), we can choose the � and �-reward in such a way
that the conditions listed above are fulfilled.

If the packet is dropped or lost in the down-stream route,
the nodes that relayed it are rewarded in a similar way as
for the up-stream forwarding nodes, except for �ðLminÞ and
�ðLminÞ that are replaced by �ðL‘Þ and �ðL‘Þ, respectively,
because the operator received the packet and knows its real
length L‘. The initiator A is fully charged nðL‘Þ.

3.4.2 Destination Acknowledgement

The destination D must acknowledge every packet it
correctly receives. However, in order to save resources, it
does not send acknowledgements on a per packet basis.
Instead, the session is subdivided into “time periods” and
the packets received during each period are acknowledged
in a single batch. The acknowledgment DAckt of the
tth time period of the session is formatted as the payload
of a regular packet6 and sent by D via the down-stream
route to BSD:

DAckt ¼½Batcht j DFPktt j DLPktt j DLostt j
MACK0

D
ðBatcht j DFPktt j DLPktt j DLosttÞ�;

where DFPktt and DLPktt are the sequence numbers of,
respectively, the first and the last received packets during
the tth time period, DLostt is the list of the missing packets
between DFPktt and DLPktt and

Batcht ¼M

DFPktt�‘�DLPktt; ‘=2DLostt
MACK0

D
ðDSID j ‘ j Payload‘Þ;

where MACK0
D
ðDSID j ‘ j Payload‘Þ is the MAC received in

the packet Pkt‘.
The packet is forwarded as a regular packet of the

session. When BSD receives it, the packet is decrypted and
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identified as being an acknowledgement. Then, BSD
verifies the MAC and checks Batcht by XORing all the
MACs of the packets from DFPktt to DLPktt, excluding
those in DLostt and comparing the result with the received
value. If the verification fails, then BSD ignores the
acknowledgement. If BSD does not receive DAckt during
the tþ 1th time period or if the throughput is not
satisfactory (i.e., too many lost packets), an alternative
route is used to establish a new session.

3.4.3 Up-Stream Acknowledgment

To attenuate the effect of several malicious attacks (see
Section 4), the base station BSS sends a single acknowl-
edgment UAckt to S for all the packets it received during
the tth time period of the session. UAckt is sent in a regular
packet and its format is similar to the format of DAckt,
except that the base station does not have to provide a
Batch-like proof to the source:

UAckt ¼½UFPktt j ULPktt j ULostt j
MACK0

S
ðUFPktt j ULPktt j ULosttÞ�:

When S receives UAckt, it identifies it as being an
acknowledgement and checks its validity by verifying its
MAC. S can choose to reestablish the session to BSS using
an alternative route if no acknowledgement arrives for a
given time period or if the throughput is unsatisfactory.

3.4.4 Packet Receipts

The concept of receipt we use in this paper is similar to the
one used in [28]. It does not represent a proof that the node
forwarded the packet but rather that it received it correctly.
As we will see in Section 4.1, the use of the receipts helps to
make packet forwarding rational.

For an up-stream forwarding node i, the receipt SRcpti;‘
for the packet Pkt‘ is sent together with the payload and it
is computed as explained in Section 3.3. We need a field
dedicated to the receipt in the up-stream part of the
communication because, if a part of the packet is used to
compute the receipt, BSS has no way to verify it in the case
of packet loss, which is the very purpose of the receipts. For
a down-stream forwarding node j, the receipt DRcptj;‘ is
computed as follows:

DRcptj;‘ ¼MACK0jðDSID jMj;‘Þ;

where Mj;‘ represents the MAC field of the packet DPktj;‘.
It is possible for the operator to verify the receipts because it
stores the MACs of the packets (they are also used to
compute/verify the destination acknowledgements).

In order to save memory space, both up and down-
stream forwarding nodes do not store the receipts for each
packet but rather for a whole session; the forwarding node i
stores a batch for each session it is involved in as a
forwarding node:

BatchSID;i ¼
M

‘�LPkt ;‘=2Lost
Rcpti;‘;

where LPkt is the sequence number of the last packet
received so far and Lost is the set of the sequence numbers
of missing packets preceding LPkt.

Note that, for a node in the initiator route, AUSID and
ADSID correspond to two distinct sessions. When a given

session is closed and the last destination acknowledgement
is sent, the operator informs the forwarding nodes, typically
when the node is within the power range of a base station,
about the rewards they received (e.g., using a packet similar
to the up-stream acknowledgement). If a node i forwarded
a packet Pkt‘ and was not paid for it, i sends the receipt to
the operator. If the receipt is valid, the node is rewarded as
explained in Section 3.4.1. A single receipt is sent to ask
remuneration for several packets:

RcptSID;i ¼ ½SID j BatchSID;i j LPkt j Lost j
MACK0iðSID j BatchSID;i j LPkt j LostÞ�:

Upon reception of this message, the operator verifies the
MAC and if the verification is positive, it remunerates the
node according to the rewarding scheme (see Section 3.4.1).
Note that a node can ask for remuneration (by sending the
receipt) even if it did not provide the service; this attack is
studied in Section 4.1.

4 SECURITY ANALYSIS

In this section, we study the robustness of our set of
protocols against the active attacks identified in Section 2.3.

4.1 Packet Dropping

In this attack, an attacker M that is part of the end-to-end
route between S and D decides to drop a packet it is asked
to forward. In this paragraph, we consider the effect of the
attack on the different phases of our protocols and we show
that this attack is not rational. This result proves, particu-
larly for the packet sending phase, that our solution fosters
cooperation.

Session setup phase. M can drop one or several of the
following messages:

. The request message: The sender of the request
(which is A or BSB) does not receive the confirma-
tion or the reply message, respectively. It then
establishes a new session to the target (BSA and B,
respectively) using an alternative route. Note that
dropping the request message is not necessarily an
attack because the forwarding nodes can decide to
not participate in a given session.

. The reply message: BSB never receives the reply and
the correspondent session setup fails. It then uses
another route to establish the correspondent session.

. The confirmation message: Some of the nodes
involved in the communication are not aware of
the establishment of the session. If the initiator A is
the source of the first packet to be sent during the
session, we can have two cases: 1) M is in the
initiator route, therefore A does not receive the
confirmation message and considers that the session
setup failed; it then establishes a new session using
another route. 2) M is in the correspondent route,
the session is then active for all the nodes, except for
those that are after M in the correspondent route
(including B); these nodes discard all the packets
sent by A during the session. B is thus unable to
send the periodic acknowledgment to BSB and the
session is reestablished. The problem is totally
symmetric if B is the source of the first packet of
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the session. In both cases, this attack is not rational
and can be detected rapidly by the operator.

Packet sending phase. In this paragraph, we show that

denying to forward packets is not rational; cooperation is

thus the best choice for a selfish, rational node.

Proposition 1. If a node i received a packet Pkt‘ to forward and

if, later on, Pkt‘ was not acknowledged by the target (BSS for

the up-stream and D for the down-stream), then it is rational

for i, once the session is closed, to send a receipt for Pkt‘ to the

network operator.

Proof. As explained in Section 3.4.4, after a given session is

closed, the operator informs the nodes involved in that

session about the rewards they received. If a node i

correctly forwarded (or simply received) Pkt‘ and was

not paid for it, i can send a receipt for it.
Sending a receipt Rcpt of length LRcpt (see Section 5 for

numerical values) represents a cost of c0=NumPkts per
packet, where NumPkts denotes the number of packets
received by i during the session and c0 denotes the cost of
sendingRcpt. Given the assumption of route stability (see
Section 2.1), it is possible to neglect c0=NumPkts in
comparison with c (and, thus, in comparison with � and
�) because NumPkts is large.

If i decides not to send a receipt for Pkt‘ or if it sends
an invalid receipt, then its payoff is:

. 0 if i dropped Pkt‘ during the packet sending
phase,

. �c if it forwarded Pkt‘ but none of the following
nodes sent a valid receipt for it,

. �� c if it forwarded the packet and at least one of
the following nodes in the path sent a valid
receipt for the packet.

If i sends a valid receipt for Pkt‘, then its payoff is:

. � if i dropped Pkt‘ during the packet sending
phase,

. � � c if it forwarded Pkt‘ but none of the
following nodes sent a valid receipt for it,

. �� c if it forwarded the packet and at least one of
the following nodes in the path sent a valid
receipt for the packet.

Given that 1) a forwarding node cannot know if the
receipt is valid or not before sending it to the operator,
2) the cost of sending the receipt is negligible, and
3) �� � � c, we can state that sending the receipt is
rational. tu

Proposition 2. If all the nodes involved in the communication are

rational, then forwarding the packet Pkt‘ is rational for node i.

Proof. As we will show in Section 4.3, the filtering attack is

malicious. As the nodes involved in the communication

are rational, they will not perform this attack on the

packets they are asked to forward and, thus, the receipts

produced by the intermediate nodes will be correct.

If node i decides to defect and drops a packet Pkt‘ it is

asked to forward, i will still send a receipt for Pkt‘ since,

according to Proposition 1, this is the rational behavior.

The payoff of i would then be �.

If i decides to cooperate, then:

. If Pkt‘ reaches its target, then the payoff of i is
�� c.

. If, on the contrary, Pkt‘ does not reach its target,
then at least one node j (j > i) will send a receipt
for it (according to Proposition 1) and the payoff
of i is also �� c.

As we have �� � � c, cooperation is rational for
node i. tu

Proposition 3. If the route contains an attacker that repeatedly
drops the packet Pkt‘, then the network operator can identify it.

Proof. As long as Pkt‘ is relayed by rational nodes, the
packet is computed and correctly forwarded until it
reaches the malicious nodeM that drops it. The rational
nodes that are beforeM in the path will then send valid
receipts for Pkt‘ (according to Proposition 1). The
operator identifies the last node k in the path that sent
a valid receipt, which is M or the rational node that is
before it on the route (becauseM is also able to generate
a valid receipt for the packet). The operator suspects then
both k and kþ 1 of misbehavior. By crosschecking the
information about different sessions and identifying the
nodes that are suspected significantly more than average,
the operator can identify the attacker and punish it in
consequence. Note that, ifM performed this attack only
a few times, then the detection would be slower but the
attack would be less harmful. tu

Proposition 4. Forwarding the packet Pkt‘ is rational for node i
even if an attacker M will drop it later on.

Proof. Node i has no information about whether the nodes
after it in the path are rational or not. If it expects all of
them to be rational, then the best choice for i is to
cooperate (according to Proposition 2). If it expects
node iþ 1 to be rational, then the best choice for i is to
cooperate (its payoff would be �� c because according
to Proposition 1, iþ 1 would send a receipt for the
packet). Finally, if it expects node iþ 1 to be malicious
and drop the packet, then the best choice for i is also to
cooperate, because otherwise the operator would even-
tually believe it is malicious (according to Proposition 3)
and would punish it. tu
Payment redemption phase. The acknowledgement is

encapsulated in a regular packet and the body is encrypted
by all the nodes in the path, including the generator of the
acknowledgement. An attacker M has thus no way to
distinguish a packet containing an acknowledgement from
a data packet, especially if some padding is used to prevent
the acknowledgement packet from having a fixed and
predefined length. A brute force attack would be for M, in
order to specifically drop the tth acknowledgement, to drop
all the packets sent during the tþ 1th time period. The
consequence of this attack is the reestablishment of the
session using another route.

4.2 Replay Attack

We consider that a replay attack performed by an
attacker M is successful if the replayed message or packet
is considered as valid by all the parties involved in the
communication (including the operator). Note thatM is not
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necessarily part of the network. In this section, we will

show that this attack is malicious and never successful.
Session setup phase. The operator maintains the

information about all the sessions established so far. The
replayed message (request, reply or confirmation) is thus
detected by the first base station that receives it. A detection
at the nodes is also possible; when a node i receives a
replayed request message, it can identify it as a duplicate
(and discard it) if:

. i is not part of the route in the request,

. i is supposed to be the initiator of the communication,

. or the session to be established is already active or it
is closed but still in memory. Indeed, even if the
mobile nodes do not keep track of all the messages
and packets they received, they do maintain a short-
term history (i.e., on-going sessions and session that
are not acknowledged yet).

Packet sending phase. As for the session setup phase,
the duplicate is detected by the first base station that
receives it. But here, the intermediate nodes are also able to
detect it because each forwarding node maintains the list of
all packets it has received so far (for the computation of the
receipt, see Section 3.4.4). The sequence number of the
packet to forward corresponds then to the identifier of an
already handled packet and the duplicate is discarded.

Payment redemption phase. The operator maintains the
list of all acknowledgements and receipts it receives and can
thus detect (and discard) a replayed message. Furthermore,
as explained in Section 4.1, it is difficult to identify the
packets containing the acknowledgements and, thus, to
replay them specifically.

4.3 Filtering Attack

An attackerM that performs a filtering attack modifies one
or several fields of the packet it is asked to forward. In this
section, we analyze the effect of this attack on our protocols.
We also consider the free-riding attack where two colluders
M1 andM2, on the end-to-end route, attempt to piggyback
data (using appending or substitution) on the exchanged
packets, with the goal of not having to pay for the
communication.

Session setup phase. M can tamper with:

. The request or the reply messages: The verification
of the “layered” MAC fails and the base station (BSA
or BSB) discards the message. A new session is then
established using an alternative route.

. The confirmation message: The first node that
receives the tampered message discards it because
the verification of the MAC fails. IfM tampers with
one (or more) MAC(s) in the message, the first node
whose MAC was modified and that receives the
message discards it. This attack has the same effect
as dropping the confirmation message (see
Section 4.1) and is detected in the same way.

The fields of the session setup messages are not
encrypted. It is then possible for two colluders M1 and
M2 to piggyback information. However, the size of fields is
small enough to make the sending of useful data very long
and fastidious.

Packet sending phase. M can tamper with the different
fields of the packet Pkt‘.

. Modifying SID, ‘ or Bodyi;‘ is detected by the target
of the packet (BSS for the up-stream and D for the
down-stream) because the “layered” MAC does not
verify correctly.

. We hereafter define the early duplicate attack, a
malicious attack whereM creates a fake packet with
a sequence number ‘ that it expects to be used by the
legitimate source in the (near) future. This packet is
considered as valid by the intermediate nodes
(because they cannot verify it) but it is discarded at
the target because the MAC is not correct. However,
when the source sends the “real” ‘th packet, the
forwarding nodes consider it as a duplicate and,
thus, discard it. Our protocols, as presented so far,
are vulnerable to this attack. If the operator wants to
attenuate the effect of this subtle attack, it can do so
(at the cost of a small overhead) by making use of
hash chains (i.e., a chain of N hash values where wN
is chosen at random, wN�i ¼ hðwN�iþ1Þ; 0 < i � N ,
and h is a one-way hash function).

Let us first describe the solution for the initiator
session. During the session setup phase, the base
station BSA sends the first hash values AUw0 and
ADw0 of two sufficiently long hash chains, in the
initiator confirmation message, to the nodes in the
initiator route (including A). BSA also sends the
hash value AUwm encrypted with the secret key of A
in the confirmation. A can thus retrieve the elements
0 to m of the hash chain and send the hash value
AUw‘ (1 � ‘ � m) with the ‘th packet it generates.7

BSA sends the hash value ADw‘ with the ‘th packet
it sends toward A. The intermediate nodes can verify
the validity of the hash values by checking that w0 ¼
h‘ðw‘Þ (w ¼ AUw or ADw). The verification of the
hash value can be optimized if we use mechanisms
such as [8] for example. The packets containing
invalid hash values are discarded.

The solution is totally symmetric for the corre-
spondent session. Note here that, given w‘, one can
retrieve the hash values of all the previous packets in
the sesssion. This means that packet out of order
should be discarded. But, this constraint is logical in
our case because we use the notion of sessions. All
the packets are then expected to go through the same
route and to arrive in order; the contrary is thus
suspicious.

The use of the hash values can also solve the case
where the attacker tampers only with w‘; the attack
is detected at the first node that receives the
modified packet because the checking of the hash
value fails.

Modifying both w‘ and ‘ is an even more subtle
malicious attack. Let us assume that a forwarding
node receives the packets Pkt‘�1 and Pkt‘ to forward.
It discards Pkt‘�1 and replaces the sequence number
and the hash value in Pkt‘ by ‘� 1 and w‘�1,
respectively. The sequence number and the hash
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value are considered as valid by the following
forwarding nodes. Of course, the packet is discarded
at the target because the MAC is not correct. The
attack is possible if the attacker is part of the route
and, thus, all the nodes on the route are suspected by
the operator. The first direct effect of this attack is for
the source to cancel the session because the through-
put is too low; the second effect is that the operator
eventually, by crosschecking the information about
the suspected nodes, identifies the attacker.

. The free-riding attack is not rational during the
packet sending phase; the data sent byM1 cannot be
interpreted by M2 because it was encrypted at least
b one intermediate node.8 If this attack is performed
anyway, it is detected as a “regular” filtering or
packet dropping attack (depending on whether M2

forwarded the tampered packet or not).
. Modifying only the receipt SRcpt in the up-stream

packets (there is no field dedicated to receipts in the
down-stream packets) is a malicious attack. If the
base station BSS detects such an attack (the packet is
correct but the receipt is not), then it reestablishes
the session (if S ¼ B) or asks the initiator to do it (if
S ¼ A). Such a radical solution is needed because, as
explained in Section 3.4.4, the nodes maintain one
batch per session by XORing all the receipts of the
packets they handled. If one of these receipts is
incorrect, then the batch is incorrect and the receipt
does not verify correctly at the operator.

. The attacker M can tamper with the packet it is
asked to forward but without altering the fields used
by the intermediate nodes to generate the receipts.
The following nodes in the route forward the
modified packet. When the target (BSS or D)
receives it, it detects the attack and reestablishes
the session.

Payment redemption phase. This attack is similar to the
packet dropping attack during the payment redemption
phase.

4.4 Emulation Attack

This attack is equivalent to the cloning of a SIM card in a
GSM cellular network and can be detected in the same way;
a node claiming to be in several physical locations
simultaneously (e.g., it is in two geographically distinct
cells) is automatically suspected by the operator. Further-
more, statistical methods can be used to determine whether
certain nodes relay more traffic than is reasonable, given the
type of the node. Either of these events suggests that the
device is dishonest.

4.5 Hybrid Attacks

So far, we have analyzed the effect of each of the four active
attacks we identify in Section 2.3. However, more sophis-
ticated attacks can combine two or more of the attacks
described so far. For example, two colluders M1 and M2

that are on the same route may want to perform,
respectively, the filtering attack and the packet dropping
attack. If the filtering attack does not modify the information

needed by the intermediate nodes to compute the receipts,
the operator will detect a “regular” packet dropping attack
and will identify M2 as being the attacker (see the proof of
Proposition 3). If, on the contrary, the nodes that are
betweenM1 andM2 are not able to generate valid receipts,
then M1 will be identified by the operator as an attacker
that performed a filtering attack (see the appendix, which
can be found on the Computer Society Digital Library at
http://computer.org/tmc/archives.htm). The same reason-
ing can be applied to the case where there are more than
two colluders.

4.6 Securing the Routing Protocol

As stated in Section 2.4, even if the underlying routing
protocol is not secure, the operator is able to detect several
routing attacks. Indeed, during the session setup, the
initiator and correspondent routes are tested and the nodes
belonging to these routes are authenticated, which allows
the operator to detect attacks such as routing loops or
invalid routes. However, some routing attacks cannot be
detected before the packet sending phase (e.g., Gratuitous
detour, Black hole, or Gray hole attacks [13]); the network
operator can then employ statistical methods to detect
them. Note that securing the routing protocol is out of the
scope of this paper; we therefore consider, to exemplify, the
following attacks that we believe are the most pertinent
regarding our solution:

Gratuitous detour attack. In this attack, the adversary
makes the route appear longer by adding virtual nodes [13].
The operator determines statistically if the set of inter-
mediate nodes is inconsistent (e.g., an emulated node is in
the route or an attacker is performing the wormhole attack)
or if the route is much too long (a route in hybrid ad hoc
networks is not expected to be long, having a too long
routes is therefore suspicious). The operator can also
suspect such an attack if two or more nodes seem to be
always neighbors, despite mobility. More heuristics can be
found in [15].

Black or gray holes attack. This attack is similar to the
packet dropping attack during the packet sending phase.

5 OVERHEAD

In this section, we estimate the communication and
computation overheads of the solution we have described.
Reasonable values of the size of the different fields
appearing in our protocol are provided in Table 1. NbFwdrs
is the number of forwarding nodes on the route (up-stream
or down-stream), ‘ is the sequence number of the packet,
and NbLostPkts is the number of packets lost during the
session or the time period.

The request ID and the session IDs are encoded on 4 bytes
each to reduce the risk of using the same identifier for two
different requests or sessions. The field Route is the
concatenation of the 16 byte identifiers (assuming, e.g., an
IPv6 format) of the nodes. The TrafficInfo field is used to
inform the forwarding nodes about the traffic to be
generated; using 16 bytes to encode it seems to be
reasonable. Finally, we encode ‘ on 2 bytes to support long
sessions and SRcpt on only 1 byte because its computation
and storage should be lightweight.

5.1 Communication Overhead

Session Setup Phase. According to Table 1, establishing an
end-to-end session with NbFwdrs forwarding nodes (in
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each of the routes) represents an overhead of 156þ
NbFwdrs � 64 bytes.

The session setup overhead is directly related to the
lifetime of the sessions, which, in turn, very much depends
on the stability of the routes.

Description of the simulations. We consider a network
composed of 100 nodes laid out on a 500	 500m2 single cell
and one base station situated in the center of the cell. We fix
the power range of the nodes and the base station to 100 m.
We use the random waypoint mobility model [16] with a 0 s
pause time and we discard the first 1,000 seconds of
simulation time to remove the initial transient phase [7]. We
perform three sets of simulations where the speed is
uniformly chosen between x and 10 m/s, x ¼ 2, 3, and
4 m/s [26], which corresponds to an average speed
AvrSpeed= 5.6, 6.7, and 7.8, respectively; we run 100 simula-
tions for each value of AvrSpeed. As we are interested in the
lifetime of the routes and not in communication interface,
our silulation is written in plain C++ instead of ns.

Figures of interest. In our simulations, we are interested in
the two following figures:

. The average lifetime of a route (AvrLT): After the
initial transient phase of each simulation, we
randomly choose a node that has a route to the local
base station (we choose the shortest path, the effect
of mobility on the performance of more sophisti-
cated routing protocols is discussed in [2]) and we
observe the lifetime of this route. The simulation
ends when at least one link on the route is broken.
AvrLT represents the average value of all these
lifetime values over the 100 simulations.

. The average number of forwarding nodes (NbFwdrs):
This number is computed for the node we consider
for the AvrLT.

Results. The results, given in Table 2, show that the
stability of the routes decreases with higher mobility of
forwarding nodes. For AvrLT, we consider a 95 percent
confidence interval (CI).

In order to estimate the amount of information that a
node can send during this period of time, let us consider the
case where the nodes are running a Voice over IP application
using a G.711 Codec (Rate = 64 kbit/s) with a frame size
(including the headers) of 200 bytes [10]. If we consider that

the average speed = 7.8 m/s, the route remains stable for an
average of 7.8 s; it is possible during this period to send
62.4 kbytes of data. The overhead of an end-to-end session
setup is 252 bytes (the average number of forwarding nodes
is 1.5), which represents only 0.4 percent of the amount of
information (payload) that is possible to send during the
session. Moreover, as explained in Section 3.2, it is possible
to reestablish only the broken session (the initiator session
or the correspondent session), which reduces this overhead.

The presence of one (or more) active malicious attackers
in the end-to-end route can also lead to a session
reestablishment. However, the operator can statistically
identify the attacker(s) (see Section 4); the risk of being
identified and punished represents a disincentive to cheat.

Packet Sending Phase. Considering the field sizes of
Table 1, we can see that the packet sending phase represents
an overhead of 23 bytes for up-stream packets and 22 bytes
for down-stream packets. If the packet size is 200 bytes
(considering again the VoIP example), the overhead
represents at most 11.5 percent of the packet size. This
overhead is reduced if we use larger packets.

Sending the Acknowledgment. The destination ac-
knowledgement and the up-stream acknowledgement are
generated each time period and their sizes are 36þ 2 �
NbLostPktst bytes and 20þ 2 �NbLostPktst bytes, respec-
tively. The receipt RcptSID;i is a 23þ 2 �NbLostPkts bytes
message that the node i sends directly (i.e., without
relaying) to the operator once per session. We expect the
number of packets lost to be small in both cases (i.e.,
acknowledgement and receipt); otherwise, the session is
reestablished because the throughput is not satisfactory.

5.2 Computation Overhead

In this section, we consider the computation overhead for
the mobile nodes. The overhead is expressed in terms of
battery consumption and number of computations. How-
ever, as shown in [23], we can consider the battery
consumption, due to cryptographic computations, as
negligible compared to the energy needed for data
transmission.

Session Setup Phase. This operation requires all the
nodes to perform 1 MAC computation and 1 MAC
verification each.
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Packet Sending Phase. For each packet, the source and
the destination have to perform one MAC operation each.
However, the main overhead in this phase is represented by
the usage of stream cipher encryption (performed by the
source and all the forwarders), which ensures the authenti-
cation of the nodes involved in the communication and
prevents the free-riding attack. But, stream ciphers are very
fast, and some operate at a speed comparable to that of 32 bit
CRC computation [12].

Acknowledgment computation. For the destination
acknowledgement, D performs one MAC computation/
time period and one XOR operation/packet. For the up-
stream acknowledgement, S performs one MAC verifica-
tion/time period. Finally, for the receipts, each forwarding
node performs one MAC computation/time period and one
XOR operation/packet.

Numerical example. As an example, a Celeron 850 MHz
processor under Windows 2000 SP can perform a MAC
computation (and verification) with HMAC/MD5 algo-
rithm at 99.863 Mbytes/s and a stream cipher encryption
(and decryption) using the Panama Cipher (little endian)
algorithm at 120.301 Mbytes/s [12]. These numbers provide
an order of magnitude; if slower (or faster) processors are
used, they would of course scale correspondingly.

6 RELATED WORK

In this section, we discuss some research efforts related to
the issues of the cooperation of nodes in (pure) ad hoc
networks and in hybrid ad hoc networks.

Cooperation in ad hoc networks. Several research
groups have considered the problem of selfishness and
the stimulation of cooperation in mobile ad hoc networks.
In [9], Félegyházi et al. establish the connection between the
ad hoc network topology and the possible existence of
cooperation. In [20], Marti et al. consider the case where a
node agrees to cooperate but fails to do so. Their solution
uses a “watchdog” mechanism to identify the misbehaving
nodes and a “pathrater” mechanism to construct routes that
avoid those nodes. Both the CONFIDANT [5] and the CORE
[22] approaches propose a reputation based solution to
identify and punish misbehaving nodes. In [28], Zhong et al.
rely on a central authority that collects receipts from the
forwarding nodes and charges/rewards the nodes based on
these receipts. In [6], Buttyán and Hubaux use a virtual
currency (nuglets) to charge/reward the packet forwarding
service provision in ad hoc networks.

Cooperation in hybrid ad hoc networks. In [17],
Lamparter et al. propose a rewarding scheme to encourage
cooperation in hybrid networks (i.e., mobile ad hoc net-
works with access to the Internet, which they call “stub ad
hoc networks”). They assume the existence of an Internet
Service Provider that authenticates the nodes involved in a
given communication and takes care of charging or
rewarding them. However, [17] and our current approach
present two main differences. First of all, in [17], the authors
analyze the robustness of their solution only against
rational attacks, whereas, in our proposal, we consider
malicious attacks as well. The second difference is that the
cryptographic functions used in [17] are based on public-
key cryptography, whereas our solution is based solely on
symmetric key cryptography, which is more suitable for
resource constrained mobile devices.

In [15], we have proposed a micropayment scheme for
hybrid ad hoc networks that encourages collaboration in
packet forwarding. However, our current proposal signifi-
cantly differs from [15] in many aspects. First of all, in [15],
we assume an asymmetric communication model, where
the up-stream communication is potentially multihop and
the down-stream communication is always single-hop,
whereas, in this paper, both the up-stream and the down-
stream communications are potentially multihop. Second,
in [15], the nodes report a fraction of their packet
forwarding actions (on a probabilistic basis) to an account-
ing center that consequently remunerates the nodes. The
approach we propose here does not rely on reports; instead,
we use the concept of session during which each forward-
ing node authenticates itself to the base station by altering
the packet to be forwarded in a specific way. Finally, the
protocol proposed in [15] includes routing decisions,
whereas the protocols that we propose in this paper are
independent of routing.

7 CONCLUSION

In this paper, we proposed a set of protocols that fosters
cooperation for the packet forwarding service in hybrid ad
hoc networks. Our solution is based on the charging and
rewarding of the nodes and relies exclusively on symmetric
cryptography to comply with the limited resources of most
mobile stations. We have used the concept of sessions,
which takes advantage of the relative stability of routes, and
we have shown that our scheme stimulates cooperation in
hybrid ad hoc networks. Finally, we have analyzed the
robustness of our protocols against various attacks and
have shown that our solution thwarts rational attacks and
detects malicious attacks.

As future work, we intend to consider techniques that
aim at the calibration of the relevant parameters, and to
study the reaction of the network to sophisticated attacks
(e.g., by means of simulations). We will also explore further
the statistical detection, at the operator, of malicious attacks
and we will study the coexistence of several operators.
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