
978-1-4244-2575-4/08/$20.00 c©2008 IEEE

Securing Coding Based Distributed Storage in Wireless Sensor Networks

Levente Buttyán, László Czap, István Vajda

Budapest University of Technology and Economics

Laboratory of Cryptography and Systems Security (CrySyS)

{buttyan,czap,vajda}@crysys.hu

Abstract

We address the problem of pollution attacks in coding

based distributed storage systems proposed for wireless

sensor networks. In a pollution attack, the adversary ma-

liciously alters some of the stored encoded packets, which

results in the incorrect decoding of a large part of the orig-

inal data upon retrieval. We propose algorithms to detect

and recover from such attacks. In contrast to existing ap-

proaches to solve this problem, our approach is not based

on adding cryptographic checksums or signatures to the en-

coded packets. We believe that our proposed algorithms are

suitable in practical systems.

1 Introduction

In many wireless sensor network (WSN) applications,

there are multiple, distributed sources that generate data that

must be stored efficiently in multiple storage nodes, each

having constrained communication, computation, and stor-

age capabilities. Using the principles of network coding

[1, 6, 8, 13] and storing encoded data instead of raw data

can help to increase the efficiency of the system. Suppose

we have k source nodes and n storage nodes. Instead of
storing raw data packets, each storage node stores a linear

combination of a subset of the k data packets. The ran-
dom coding techniques (distributed erasure codes, fountain

codes) introduced in [2, 3, 4, 5] ensure that, for appropri-

ately selected parameters, a collector node can reconstruct

all the k data packets with high probability by downloading
the encoded packets from any k storage nodes and solving a
system of linear equations (s.l.e.). Thus, the collector node

can retrieve the interested data from k nearby nodes, which
results in decreased energy consumption, and hence, longer

network lifetime. Note that these are primary design criteria

in WSNs.

While coding may increase the efficiency of distributed

storage systems in a benign environment, it has a poten-

tial problem in hostile environments, where an adversary

may attack the storage nodes. In particular, the problem

that we are interested in in this paper is the so called pol-

lution attack, whereby the adversary modifies some of the

stored encoded data, which results in erroneous decoding

of a large part of the original data upon retrieval. Note that

coding schemes mix (typically, linearly combine) blocks

of the original data, therefore, a single corrupted encoded

block can affect the decoding of multiple data blocks. This

amplification effect of the pollution attack is particularly an-

noying and undesirable.

The latest important result for correcting errors intro-

duced by a Byzantine adversary in network coding based

communication systems is presented in [10]. In that paper,

the authors introduce an information-theoretically rate opti-

mal code. The packets from the adversarial nodes are intu-

itively considered as packets coming from a second source,

and the packets arriving at the destination are linear combi-

nations of the source’s batch of packets and the adversary’s

batch of packets. Compared to that work, the model we

have apopted is different, because we assume k indepen-
dent sources each producing one packet (per time epoch).

In addition, we do not assume any encoding of packets at

the source nodes.

Cryptographic techniques have also been proposed to de-

tect attacks in coding based communication and storage sys-

tems. An approach to prevent the pollution attack is to re-

quire the source nodes to digitally sign [11] (or hash [9]) the

data blocks before they are injected in the system. The dig-

ital signature scheme must have some homomorphic prop-

erties, similar to the case of homomorphic hash functions.

Recently, a homomorphic digital signature scheme has been

proposed for network coding based content distribution in

[12] based on an elliptic curve.

Unfortunately, homomorphic signature schemes are

computationally expensive, and they need a public key in-

frastructure (PKI) for the management of the signature veri-

fication keys. These problems hinder their usage in practical

applications; in particular, due to the large computational

complexity they cannot be used in sensor networks.

Our main contribution in this paper is a novel non-

cryptographic approach to counteract pollution attacks in

coding based distributed storage systems in WSNs. Com-

pared to other approaches in the same vein, we do not add

redundancy to the data packets, but rather, we take advan-

tage of the inherent redundancy provided by the coding

scheme itself. This redundancy comes from the fact that

the content of each storage node corresponds to the same

data block vector. To the best of our knowledge, our pro-

posal is the first error detection/correction method that does

not require any new functionality at the source nodes or at

the storage nodes.

We believe that our proposal is much more practical

than the approach based on homomorphic digital signatures.

First of all, we need neither a PKI, nor any cryptographic

key management scheme, as we do not use cryptography at

all. The practical value of this feature should not be under-

estimated. Second, while our approach also requires inten-

sive computational effort, this is required only for the entity

that retrieves information from the distributed storage sys-

tem. In wireless sensor networks, where the computational

overhead really matters, this entity is typically the base sta-

tion, which is usually assumed to be powerful enough. In

contrast to this, in the approach based on homomorphic dig-

ital signatures, the source nodes and the storage nodes need

to perform intensive computation, and those are typically

resource constrained sensor nodes.

The remainder of the paper is organized as follows: In

Section 2, we introduce the system model and the adver-

sary model. In Section 3, we describe our proposed attack

detection algorithm, together with the analysis of its error

probability and complexity. In Section 4, a recovery algo-

rithm is proposed and analyzed. Finally, in Section 5, we

draw some conclusions.

2 Model

Systemmodel: The general model of the distributed stor-

age systems that we consider in this paper is taken from [3].

The system consists of k source nodes, n storage nodes, and
one or more collector nodes. Note that these are roles, and

therefore, the sets of source nodes, storage nodes, and col-

lector nodes may overlap.

Each source node i generates a data blockXi, and trans-

fers it to some randomly selected subset of the storage

nodes. Each storage node j computes a random linear com-
bination of all the data blocks that it receives; the result is

a single code block Yj . Formally, we can write that Yj =
XGj , whereX = (X1, X2, . . . , Xk) is the row vector of all
the data blocks, and Gj = (g1j , g2j, . . . , gkj)

T is a column

vector, the non-zero elements of which are the random coef-

ficients used in the linear combination. Here, gij ∈ GF (q)
for all i = 1, 2, . . . , k and j = 1, 2, . . . , n, and for some q.
Each storage node j stores the pair Zj = (Gj , Yj), which

represents the equation Yj = XGj .

The entire system is represented by the system of

linear equations (s.l.e.) Y = XG, where Y =
(Y1, Y2, . . . , Yn) is the row vector of all code blocks, and
G = (G1, G2, . . . , Gn) is a k × n matrix that contains the
coefficient vectors in its columns. Matrix G is also called
generator matrix. For appropriately selected values of k and
q, any k×k submatrix ofG is non-singular with high prob-
ability (see e.g., Theorems 1 and 2 in [3]), therefore, the

collector node can reconstruct all the data blocks with high

probability by downloading the equations from any k stor-
age nodes and solving the obtained s.l.e. for X . In the rest
of the paper, we assume that this property of G holds.
In fact, each data blockXi can itself be a column vector

ofm symbols (x1i, x2i, . . . , xmi)
T, where xℓi ∈ GF (q) for

all i = 1, 2, . . . , k and ℓ = 1, 2, . . . , m. In that case, each
code block Yj is also a column vector (y1j , y2j , . . . , ymj)

T

of m symbols in GF (q). The linear combination Yj =
XGj is computed in a symbol-by-symbol manner, mean-

ing that yℓj =
∑k

i=1 xℓigij for all j = 1, 2, . . . , n and
ℓ = 1, 2, . . .m. Thus, one can think ofX and Y in the s.l.e.
Y = XG as matrices of sizem×k andm×n, respectively.

Adversary model: We assume that the adversary has ac-

cess to t storage nodes, and she can observe and modify
the equations stored by them. This means that if the ad-

versary has access to storage node j, then she can modify
both Gj and Yj stored by node j. Let G∗ = G + ∆G and
Y ∗ = Y + ∆Y be the modified generator matrix and the
modified code block vector after an attack, where the modi-

fications made by the adversary are contained in matrix∆G
and vector∆Y . We assume that the adversary modifies the
content of each compromised node independently.

Note that the adversary has no access to the source

nodes, neither she can attack the communication between

the source nodes and the storage nodes. This assumption

is plausible, because storage nodes are exposed to attacks

for an extended period of time, whereas the source nodes,

and the communication between them and the storage nodes

must be attacked during the limited time period of data gen-

eration and distribution.

The adversary has no information about which k stor-
age nodes will be chosen by the collector node for re-

construction, neither has the collector node information

about which storage nodes are compromised. In the se-

quel, we will assume without loss of generality that the ad-

versary randomly chooses the t storage nodes to be com-
promised, and the collector node downloads the equations

of the first k storage nodes, where the order of the stor-
age nodes is defined randomly by the collector node. Thus,

the set of equations downloaded by the collector node is

Z∗

1..k = (G∗

1..k, Y ∗

1..k), where G∗

1..k = (G∗

1, G
∗

2, . . . , G
∗

k)
and Y ∗

1..k = (Y ∗

1 , Y ∗

2 , . . . , Y ∗

k).

Let us now investigate the effect of an attack. The collec-

tor node solves the s.l.e. Y ∗

1..k = XG∗

1..k forX , and obtains
the result X∗ = Y ∗

1..k(G∗

1..k)−1. The modification induced

by the attack in the decoded data blocks can be computed

as follows:

X + ∆X = (Y1..k + ∆Y1..k)(G∗

1..k)−1

(X + ∆X)G∗

1..k = Y1..k + ∆Y1..k

X∆G1..k + ∆XG∗

1..k = ∆Y1..k

∆X = (∆Y1..k − X∆G1..k)(G∗

1..k)−1

where in the second step we used that G∗

1..k = G1..k +
∆G1..k and XG1..k = Y1..k. If at least one of the first k
coefficient vectors has been modified by the adversary, then

G∗

1..k 6= G1..k, and thus, (G
∗

1..k)−1 can be completely dif-

ferent from (G1..k)−1. Therefore, in general, such a modifi-

cation affects all decoded data blocks in every row. Even if

the adversary modifies code blocks only and all coefficient

vectors are intact (G∗ = G), all decoded data blocks are
affected, however the effect is limited to the rows ofX that
correspond to a nonzero row in∆Y .
These observations illustrate the amplification effect of

the pollution attack: a small amount of modifications in the

stored coded information can result in a large amount of

modifications in the decoded data. In the worst case all data

blocks are entirely destroyed. Below, we address this prob-

lem by proposing mechanisms to detect and recover from

such attacks.

3 Attack detection

Principle: The basic idea of our attack detection mecha-

nism is the following: We observe that it is very unlikely

that the adversary will compromise all the first k equations.
Indeed, the probability of this event is around (t/n)k. Thus,

some parts of Y ∗

1..k and G∗

1..k are not controlled by the ad-

versary, and for this reason, she cannot enforce a particular

solution X∗ = Y ∗

1..k(G∗

1..k)−1. Indeed, X∗ will be a ran-

dom vector in most of the cases, except if all the first k
equations are intact, in which caseX∗ = X will hold.
Now, suppose that we have an additional intact equation:

Yk+1 = XGk+1 (i.e., the collector downloaded Zk+1 =
(Gk+1, Yk+1)). If X∗ is random, then it will not satisfy

the additional intact equation with high probability, while it

will satisfy it with probability 1 if X∗ = X . Thus, we can
detect if the decoded data block vector X∗ is polluted with

the help of an additional intact equation.

Algorithm: The proposed attack detection algorithm

works in the following way: The collector downloads the

first k equations Z∗

1..k and computesX
∗ = Y ∗

1..k(G∗

1..k)−1.

Then, the collector downloads the next equation Z∗

k+1. If

Y ∗

k+1 = X∗G∗

k+1, then no attack is detected (and the col-

lector accepts X∗ as the correct solution). Otherwise, if

Y ∗

k+1 6= X∗G∗

k+1, an attack is signalled.

Complexity: We measure the communication complex-

ity in the number of downloaded equations and the compu-

tational complexity in the number of s.l.e.’s that we need

to solve. Thus, the communication complexity of the pro-

posed attack detection algorithm is k + 1, and its computa-
tional complexity is 1. As the collector needs to download
k equations and solve one s.l.e. in any case, the incurred
communication overhead of the attack detection is the the-

oretical minimum: 1 more equation to download.

Probability of a false negative decision: Let us assume

for the moment that the adversary does not modify the co-

efficient vectors, meaning that G∗ = G. In this case, the
collector obtains the solution X∗ = X + ∆Y1..kG−1

1..k =
X + ∆X .
If we further assume that the additional equation that we

use for detection is intact, then we have Z∗

k+1 = Zk+1 =
(Gk+1, Yk+1). In this case, the false negative error proba-
bility, denoted by Pfneg , can be computed as follows:

Pfneg = Pr{Yk+1 = X∗Gk+1|∆Y1..k 6= 0}

= Pr{Yk+1 = (X + ∆X)Gk+1|∆Y1..k 6= 0}

= Pr{∆XGk+1 = 0|∆Y1..k 6= 0} (1)

where in the last step we used that Yk+1 = XGk+1.

If ∆Y1..k has a non-zero element in the i-th row (and
G1..k is intact), then ∆X also has some non-zero elements
in the i-th row. Otherwise, if the i-th row of∆Y1..k contains

only zeros, then the i-th row of∆X contains only zeros too.
We can write the i-th element of∆XGk+1 as

k
∑

ℓ=1

∆xiℓgℓ(k+1) (2)

By the argument above, (2) is a non-trivial linear combi-

nation of the elements of Gk+1. However, the elements of

Gk+1 are chosen randomly, therefore, the probability of (2)

being 0 is equal to 1/q.
>From this, it follows that

Pfneg =
1

qt′
(3)

where t′ is the number of rows in ∆Y1..k that contain non-

zero elements. Clearly, in order to maximize the error prob-

ability (and hence minimize the success probability) of the

detection, the adversary must make all modifications to the

code blocks in a single row1.

1Note that if the code blocks contain standard error detection elements,

such as a CRC checksum, then at least 2 rows must be changed by the

adversary in every attacked code block. Consequently, in that case, we

have that Pfneg ≤ 1/q2.

Next, we keep the assumption that the adversary does

not modify the coefficient vectors (hence G∗ = G), but
we assume that the code block of the additional equation

that we use for detection is attacked, meaning that Z∗

k+1 =
(Gk+1, Y

∗

k+1) = (Gk+1, Yk+1 + ∆Yk+1). In this case, a
simple derivation similar to the previous case can be used

to arrive to the following result:

Pfneg = Pr{∆XGk+1 = ∆Yk+1|∆Y1..k 6= 0} (4)

Note that the i-th row of ∆X contains only zeros if the i-
th row of ∆Y1..k contains only zeros. In this case, the i-th
element of ∆XGk+1 must be a zero too. Thus, if the i-th
element in ∆Yk+1 is not zero, then the above error prob-

ability is 0 (i.e., we can detect the attack even though the
additional equation used for detection is not intact). On the

other hand, if ∆Yk+1 contains zeros in every row where

∆Y1..k contains only zeros, then due to the randomness of

Gk+1, we get again that Pfneg = 1/qt′ , where t′ is the num-
ber of rows in ∆Y1..k that contain non-zero elements.

Finally, let us consider the general case when the ad-

versary may modify both the coefficient vectors and the

code blocks, hence ∆G 6= 0 and ∆Y 6= 0. Recall that

if ∆G1..k 6= 0, then the solution X∗ = Y ∗

1..k(G∗

1..k)−1 ob-

tained from the first k equations is a random vector. It fol-
lows that the equation Y ∗

k+1 = X∗G∗

k+1 holds with proba-

bility around 1/qm, and thus

Pfneg = Pr{Y ∗

k+1 = X∗G∗

k+1|∆G1..k 6= 0} ≈
1

qm
(5)

The conclusion of this analysis is that the probability

Pfneg of false negative detection is maximized if the adver-

sary makes modifications only in a single row of the code

block matrix Y and leaves the coefficient matrix G intact.
In this case, Pfneg = 1/q. Hence, if q is chosen sufficiently
large (in the order of 260), then the probability of not detect-

ing a pollution attack is negligible.

Probability of a false positive decision: Let us close this

section with the analysis of the probability of a false posi-

tive decision. A false positive decision may occur only if the

first k equations downloaded by the collector node are intact
(Z∗

1..k = Z1..k) and the additional equation downloaded for

attack detection is not intact. From this, a good approxima-

tion of the probability of a false positive decision, denoted

by Pfpos , is the following:

Pfpos ≈ Pr{∆Zk+1 6= 0|∆Z1..k = 0} (6)

Given that the first k equations are intact, the probability
that the (k + 1)-st equation is also intact is

(

n − k − 1
t

)

(

n − k
t

) =
n − k − t

n − k
(7)

where t is the number of randomly chosen storage nodes
that are attacked by the adversary. From this, we get that

Pfpos = 1 −
n − k − t

n − k
=

t

n − k
(8)

While Pfpos is not negligible, false positive decisions

do not have serious effects. Indeed, when the attack de-

tection algorithm signals an attack, the recovery procedure

described in the next section is executed. This procedure

tries to recover the original data block vector, and as we will

see, it succeeds in a few steps when the number of attacked

equations is small.

4 Recovery from attack

Principle: When the collector node detects that the orig-

inally downloaded set S = Z∗

1..k of equations is polluted,

it can download more equations and use them to clean the

polluted set S. The basic idea of cleaning is the following:
Let us denote the set of equations downloaded for cleaning

by C, and let e be an additional equation. We use the equa-
tions in C to replace a subset of size ≤ |C| of the equations
in S. We denote the resulting new set of equations by S′.

Then, we run our attack detection mechanism on S′ with

equation e used for testing. If no attack is detected, then we
accept the solution of the s.l.e. determined by S′ as the cor-

rect data block vector. Otherwise, we take S again, replace
another subset of size ≤ |C| of its equations, and run the
attack detection again. We repeat these steps until either the

cleaning succeeds or all possible replacements of subsets of

C have been tried.
In the rest of this section, we propose a specific recov-

ery algorithm based on the principle described above. As

we will see, the algorithm is optimal with respect to suc-

cess probability and communication complexity. However,

the price of this optimality is the increased computational

complexity. Nevertheless, the algorithm is still usable for

practical systems.

We also developed other approaches for recovery pur-

poses. We designed an algorithm that has improved compu-

tational complexity, but it has higher communication com-

plexity and it is prepared to clean at most a pre-defined num-

ber of attacked equations in S. Due to space limitations we
do not detail that algorithm here.

Algorithm: The basic idea of our algorithm is to start the

cleaning with a cleaning set C of size one (i.e., to assume
first that there is only one attacked equation in set S), and
then, if cleaning fails, to increase the size of C iteratively.
In this way, sooner or later, we arrive to a cleaning setC that
contains as many intact equations as the number of attacked

equations in S. In each iteration, we select all possible sub-
sets of the equations inC and replace with them all possible

subsets of equations in S. Thus, eventually, we replace the
attacked equations with the intact ones, and arrive to a clean

set.

The operation of the algorithm is the following: The al-

gorithm first downloads Z∗

1..k+1 and runs the attack detec-

tion algorithm on Z∗

1..k using Z∗

k+1 as the testing equation.

If no attack is detected, then Z∗

1..k is clean and the algo-

rithm stops. Otherwise, the algorithm starts the cleaning of

S = Z∗

1..k. This is an iterative process, where in each iter-

ation, exactly one new equation is downloaded. The newly

downloaded equation, denoted by e, becomes the testing
equation used for attack detection in the current iteration.

The rest of the equations downloaded so far, not counting

the equations in S, constitute the cleaning set denoted by
C. The algorithm takes every possible subset C′ of C, such
that |C′| = τ is not greater than k, and uses the equations
in C′ to replace τ equations in S in all possible ways. After
each replacement, the attack detection mechanism is exe-

cuted on the resulting set S′ of equations using e as the test-
ing equation. If no attack is detected, then S′ is clean and

the algorithm stops.

Success probability: It is easy to see that the algorithm

succeeds iff the number t′ of the attacked equations in
S = Z∗

1..k is smaller than the number of the intact equa-

tions in the remaining set Z∗

k+1..n. On the one hand, if this

condition holds, then we have at least t′ + 1 intact equa-
tions inZ∗

k+1..n, and therefore, as we continue downloading

more and more equations for cleaning, we eventually reach

a state where the cleaning set C contains at least t′ intact
equations and the last downloaded equation e used for at-
tack detection is also intact. In this case, eventually, all the

attacked equations in S will be replaced by intact equations
from C, hence S will be cleaned. In addition, as e is intact,
the attack detection mechanism will indicate no attack, and

we can actually realize that S is cleaned.
On the other hand, if t′ is not smaller than the number of

the intact equations in Z∗

k+1..n, then either the cleaning set

C contains fewer than t′ intact equations, and hence, S can-
not be cleaned, or C contains exactly t′ intact equations and
S can be cleaned, but we have no more intact equation for
attack detection purposes, and therefore, we cannot realize

that S is cleaned.
Given that there are t attacked equations all together, and

t′ of them are inZ∗

1..k, we get that the number of intact equa-

tions in Z∗

k+1..n is (n− k)− (t− t′). Hence, the algorithm
succeeds iff t′ < (n−k)−(t−t′), or equivalently, t < n−k.
Thus, we get that

Psuccess =

{

1 if t < n − k
0 otherwise

(9)

Note that if t ≥ n − k then it is theoretically impossible
to recover from an attack, hence, our algorithm is optimal

with respect to success probability.

Communication complexity: Recall that we measure the

communication complexity in the number of the down-

loaded equations. As the algorithm downloads a new equa-

tion in every iteration, its communication complexity de-

pends on the number of the iterations it performs. More

precisely, if the algorithm performs R iterations, then its
communication complexity is (k+1)+R, because it down-
loads k + 1 equations at the beginning before the iterative
phase is started. As k is a fixed parameter, we are interested
in the characterization of R.

The algorithm stops as soon as the following two condi-

tions hold: (a) the number of intact equations in the cleaning

set C is equal to the number of attacked equations in S, and
(b) the last downloaded equation e used for attack detection
is intact. Thus, R is the number of equations needed to be
downloaded to satisfy the two conditions above.

It must be clear that if S contains t′ attacked equations,
then C ∪ {e} must contain at least t′ + 1 intact equations,
as otherwise, we cannot clean S and realize that it has been
cleaned at the same time. Thus, R is minimal in the sense
that for R′ < R downloaded equations, C ∪ {e} contains
fewer than t′ + 1 intact equations, and hence, the algorithm
cannot succeed. This means that our algorithm is optimal in

terms of communication complexity.

We give an estimation of R in the following way. Let
p = t/n, and let W1 denote the number of equations that

need to be downloaded in order for the downloaded set

of equations to contain exactly the same number of intact

equations on average, as the number of attacked equations

in S. The average number of attacked equations in set S
is approximately kp. The average number of intact equa-
tions among theW1 equations is approximatelyW1(1− p).
Hence, we get that W1 ≈ kp/(1 − p). Furthermore, let
W2 denote the average number of equations that need to be

downloaded until we download an intact equation. Clearly,

W2 ≈ 1/(1−p). Thus, whenW1+W2 equations are down-

loaded, both conditions (a) and (b) are satisfied. In other

words, a good estimate of R is R ≈ W1 + W2 ≈ kp+1
1−p

Computational complexity: Recall that we measure the

computational complexity in the number of s.l.e.’s that need

to be solved. In our case, each call to the attack detection

algorithm requires the solution of an s.l.e.

For the derivation of the average case computational

complexityPavg , we assume that the number of the attacked

equations in S is t′, where the average value of t′ is kt/n.
We make the following observations:

• All but the last iterations of the algorithm execute fully.
(term (10) in the sum below)

• In the last iteration, the loops that try to clean S with
τ < t′ equations from C also execute fully. (term (11)
in the sum below)

• When we use τ = t′ equations from C for cleaning,
we have to process on average half of the possible se-

lections of t′ equations from C until we end up with
the subset that contains the t′ intact equations of C.
For all those selections, the inner loop executes fully

and we must process all the possible selections of t′

equations from S. (term (12) in the sum below)

• Finally, when we select the subset of C that contains
the t′ intact equations, we have to process on average
half of the possible selections of t′ equations from S
until we end up with the t′ attacked equations of S.
(term (13) in the sum below)

Thus, we get that

Pavg ≈

R−1
∑

w=1

min(w,k)
∑

τ=1

(

w
τ

) (

k
τ

)

+ (10)

t′−1
∑

τ=1

(

R
τ

) (

k
τ

)

+ (11)

1

2

(

R
t′

) (

k
t′

)

+ (12)

1

2

(

k
t′

)

(13)

Figure 1 shows the average computational complexity of

the recovery algorithm as a function of the number t of at-
tacked equations. The different curves belong to different

values of n and k, and the computation is based on the for-
mula given above. Note the logarithmic scale of the y axis.

5 10 15 20 25 30 35 40 45 50 55

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of attacked equations (t)

A
ve

ra
g

e
 c

o
m

p
u

ta
tio

n
a

l c
o

m
p

le
xi

ty
 (

lo
g

 s
ca

le
)

n = 100, k = 10
n = 300, k = 30
n = 500, k = 50

Figure 1. Average computational complexity

of the recovery algorithm as a function of the

number t of attacked equations. The different
curves belong to different values of n and k.

As we noted before, the price of the optimality of the

success probability and the communication complexity is

the increased computational complexity. However, for prac-

tical system sizes of k in the range of 10 to 50 and n in
the range of 100 to 500, our algorithm is still feasible in
terms of computational complexity. For instance, if k = 50,
n = 500, and t = 55, then the computational complexity
is approximately 2 · 108 ≈ 228, which is feasible. As an-

other example, consider k = 10 and n = 100. In this case,
successful recovery is ensured even if more than half of the

storage nodes are compromised (t = 55), with a computa-
tional effort of approximately 4 · 106 ≈ 222.

Furthermore, note that the algorithm requires solving a

series of s.l.e.’s that differ only in a few equations. This

property can be exploited to accelerate the solution of the

s.l.e.’s. For details, we refer the reader to the Appendix.

Extension of the algorithm: In this paper we consid-

ered an attacker which compromises storage nodes inde-

pendently. The recovery algorithm can be extended to a

more general adversary while retaining its principles. Such

an adversary collects the content from all the compromised

nodes, processes the obtained information, and according to

the output of this processing she reloads the compromised

nodes. It is not hard to see that, in this case, the theoretical

limit for successful recovery from the attack is t < n/2.
This limit is achieved by our extended algorithm. Due to

space limitations here we give only the main idea of the ex-

tension. First, the presented recovery algorithm is executed.

The next step is a checking for consistency. If the output

of the execution (k output data blocks) is consistent with at
least n/2 downloaded equations then we can be sure that
the output is not compromised. Otherwise, we drop all the

equations which are consistent with the output, and execute

the algorithm recursively over the remaining set of equa-

tions.

5 Conclusion

In this paper, we addressed the problem of pollution at-

tacks in coding based distributed storage schemes in WSNs,

and we proposed specific algorithms for detecting and re-

covering from such attacks. A salient feature of the pro-

posed algorithms is that they are not based on cryptographic

checksums or digital signatures, which are traditionally

used for providing integrity services. Instead, we take ad-

vantage of the inherent redundancy in such distributed stor-

age systems. In addition, our approach does not require the

storage nodes to perform additional coding on or to add ad-

ditional information to the encoded packets. Only the col-

lector node needs to perform a substantial amount of com-

putation. For this reason, we believe that our approach is

particularly suitable for wireless sensor networks, where the

storage nodes are energy constrained sensors, while the col-

lector is a powerful base station. Detailed comparison with

cryptographic approaches is part of our future work.

While we presented our approach in the context of

WSNs, it is, in fact, general, and can be applied in any cod-

ing based distributed storage systems, in particular, in the

domain of P2P file distribution [7].

Acknowledgements The work presented in this paper has

been partially supported by the Mobile Innovation Center

(www.mik.bme.hu). Levente Buttyán has been further sup-

ported by the Hungarian Academy of Sciences through the

Bolyai János Fellowship.

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Net-

work information flow. IEEE Transactions on Information

Theory, 46(4):1204–1216, July 2000.

[2] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Dis-

tributed data storage in sensor networks using decentralized

erasure codes. In Proceedings of the Asilomar Conference

on Signals, Systems, and Computers, Pacific Grove, CA,

USA, November 2004.

[3] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiq-

uitous access to distributed data in large-scale sensor net-

works through decentralized erasure codes. In IPSN ’05:

Proceedings of the 4th international symposium on Infor-

mation processing in sensor networks, page 15, Piscataway,

NJ, USA, 2005. IEEE Press.

[4] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. De-

centralized erasure codes for distributed networked storage.

IEEE/ACM Trans. Netw., 14(SI):2809–2816, 2006.

[5] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Dis-

tributed foutain codes for networked storage. In Proceed-

ings of the IEEE Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), Toulouse, France, 2006.

[6] C. Fragouli, J.-Y. L. Boudec, and J. Widmer. Network cod-

ing: an instant primer. SIGCOMM Comput. Commun. Rev.,

36(1):63–68, 2006.

[7] C. Gkantsidis and P. R. Rodriguez. Network coding for large

scale content distribution. In INFOCOM 2005. 24th Annual

Joint Conference of the IEEE Computer and Communica-

tions Societies. Proceedings IEEE, volume 4, pages 2235–

2245, March 2005.

[8] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros.

The benefits of coding over routing in a randomized setting.

In Information Theory Symposium (ISIT). IEEE, June 2003.

[9] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and

D. Karger. Byzantine modification detection in multicast

networks using randomized network coding. In Proceedings

of the 2004 IEEE International Symposium on Information

Theory (ISIT), June 2004.

[10] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and

M. Medard. Resilient network coding in the presence of

byzantine adversaries. In Proceedings of the IEEE IN-

FOCOM Conference, pages 616–624, Anchorage, Alaska,

USA, 2007.

[11] M. N. Krohn, M. J. Freedman, and D. Mazieres. On-the-

fly verification of rateless erasure codes for efficient content

distribution. In Security and Privacy, 2004. Proceedings.

2004 IEEE Symposium on, pages 226–240, 2004.

[12] K. E. Lauter, D. Charles X, and K. Jain. Digital signature

for network coding, May 2007.

[13] S. Y. R. Li, R.W. Yeung, and N. Cai. Linear network coding.

Information Theory, IEEE Transactions on, 49(2):371–381,

2003.

Appendix: During the recovery algorithm a large number

of s.l.e.’s must be solved, hence the efficiency of the ap-

plied algorithm effects the computational time of the recov-

ery from an attack. We propose a method for accelerating

this step. Note that our algorithm replaces a subset of the

original set S of linear equations, thus when the size of the
substituted set is much smaller than |S|, the majority of the
equations does not change. We take advantage of this fact.

With set S of the original equations we haveX∗G∗

1..k =
Y ∗

1..k. Let us construct the QR decomposition of G∗

1..k.

QGRG = G∗

1..k, where QG is orthogonal and RG is tri-

angular. Now we have X∗QGRG = Y ∗

1..k. Solve this s.l.e.
for X∗QG. As a result of the triangular property of RG,

solving this s.l.e. with back substitution is much more ef-

fective than solving a general s.l.e., that requires matrix in-

version. By multiplying the result with Q−1
G = QT

G, we

get X∗. When solving the original s.l.e., we perform the

costly operation of QR decomposition, but hereafter solv-

ing an additional s.l.e. requires only the back substitution

after some simple additional computing. This can be done

in the following way.

Let us first consider only one equation to replace. As-

sume we replace the i-th equation with X ′

iG
′

i = Y ′

i . Now

we have (X∗)′QGR′

G = (Y ∗

1..k)′. We get R′

G by replacing

the i-th column of RG with QT

GX ′

i, (X
∗)′ equals X∗ with

its i-th element replaced with X ′

i and similarly (Y ∗

1..k)′ is
the same as Y ∗

1..k with its i-th element replaced with Y ′

i .

We solve this s.l.e. with back substitution to get (X∗)′QG.

This can be done after correcting the triangular property of

R′

G. In R′

G only the replaced column interferes this prop-

erty. By performing a single step of the Gaussian elimina-

tion on that column, we get a triangular matrix and can run

the back substitution algorithm. Here an additional multi-

plication results (X∗)′QGQT

G = (X∗)′, that is the solution
of the modified s.l.e.

If c > 1 equations are replaced, that means c replaced
column in RG, and c steps to perform the Gaussian elim-
ination. The whole method requires c + 1 vector-matrix
multiplication, c steps of the Gaussian elimination and per-
forming the back substitution algorithm. The overall cost

(O(k2)) is lower than the cost of a matrix inversion (O(k3)).
The performance of the recovery algorithm can be fur-

ther improved approximately by a factor of 2, if the solu-

tions of all the solved s.l.e.’s can be stored.

