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Abstract—In this paper, we address the problem of service avail-
ability in mobile ad-hoc WANs. We present a secure mechanism to
stimulate end users to keep their devices turned on, to refrain from
overloading the network, and to thwart tampering aimed at convert-
ing the device into a “selfish” one. Our solution is based on the ap-
plication of a tamper resistant security module in each device and
cryptographic protection of messages.

I. I NTRODUCTION

A. The context

The Terminodes Project [1], [2] is a 10-year research
program (2000-2010)with the aim to investigate wide area,
large, totally wireless, mobile networks that we callmo-
bile ad-hoc wide area networks. In this project, we fol-
low a radically distributed approach, in which all network-
ing functions are embedded in the terminals themselves.
Because they act as network nodes and terminals at the
same time, we call these devicesterminodes. A network
of terminodes is an autonomous, self-organized network,
completely independent of any fixed infrastructure or other
equipment.

Our vision of the Terminodes Project can be illustrated
by a free, amateur, wireless ad-hoc network covering a
wide area, which operates at unlicensed frequencies. In
this scenario, terminodes are small personal devices that
everyone in the area could potentially own. The size of
the network can reach several million devices in regions of
high density population. Communication among users is
based on packet switched1, multi-hop, wireless communi-
cation of voice and data. An important characteristic of ter-
minode networks is that there are no routing tables stored
in the devices. Instead, a simplepacket forwarding mech-
anism lets each of the terminodes located on the route of a
given packet compute the “best” next hop toward the final
destination [3].

c� IEEE/ACM 2000 (1st IEEE/ACM Workshop on Mobile Ad Hoc
Networking and Computing)
�While circuit switching is an advantage for supporting voice, the com-

plexity associated with establishing, maintaining, and releasing circuits,
or any form of connection, is at odds with the requirement that interme-
diate systems are user equipment, and may operate quite irregularly.

B. The problem

The problem that we address in this paper is the avail-
ability of services in terminode networks. In civilian appli-
cations of ad-hoc networks, which we are exclusively con-
cerned with in the Terminodes Project, availability is often
considered to be the security issue of greatest relevance for
users [4]. We concentrate on two aspects of availability in
terminode networks:
� Stimulation for co-operation. Since all networking
services (e.g., packet forwarding, mobility management)
should be provided by the terminodes themselves, these
services are available only if the terminodes (or, more pre-
cisely, their users) are willing to provide them. On the
other hand, service provision is not in the direct interest of
users, because it consumes energy and thus, reduces bat-
tery lifetime. Therefore, a stimulation mechanism that en-
courages users to leave their terminodes switched on and
let them provide services to other terminodes is required.
One can say that being able to receive messages is enough
motivation for the user to leave her terminode switched on.
While this may indeed be true, it is certainly not enough
to encourage users to provide services to other terminodes.
The hardware and the software of the terminode can be
tampered with and their behavior can be modified by the
user in a way that the device can receive messages but it
does not provide any services to the community. Further-
more, criminal organizations can tamper with terminodes
and sell corrupted devices, which do not co-operate in or-
der to save energy, on a large scale.
So far, civilian applications of ad-hoc networks have been
envisioned mainly in crisis situations (e.g., rescue opera-
tions). For this reason, it was assumed that users are natu-
rally motivated to co-operate. In terminode networks, this
assumption does not hold, because of the size of the net-
work, and because we consider that the network lifetime
can be long (typically, several years).
� Prevention of overloading.Often, services are unavail-
able because the network is overloaded and it can no longer
carry useful information. The network can become over-
loaded because of a malicious denial-of-service attack, or
simply because some of the (otherwise legitimate) users



want to send too much information. Therefore, we need
a mechanism that makes denial-of-service attacks “expen-
sive” and discourages users from flooding the network with
useless traffic. In cellular networks, this objective is auto-
matically achieved by charging the users.

C. The approach

One possible approach to stimulate a co-operative be-
havior and prevent congestion is to introduce the concept
of money and service charges. The natural idea is that ter-
minodes that used a service should be charged and termin-
odes that provided a service should be remunerated. To
this end, we introduce a terminode currency that we call
nuggets. We assume that the terminode hardware comes
with an initial stock of nuggets. The terminode nuggets
have no monetary value, and they can only be used within
terminode networks.

Now, if a terminode wants to use a service (e.g., wants
to send a message), then it has topay for it in nuggets.
This motivates each terminode to increase its number of
nuggets, because nuggets are indispensable for using the
network. Thus, the terminode is no longer interested in
sending useless messages and overloading the network be-
cause this would decrease its number of nuggets, and it is
better off providing services to other terminodes because
this is the only way to earn nuggets2.

D. Outline

In the sequel, we focus on the rewarding of one of the
most important services that the terminodes should provide
to each other, namely, packet forwarding. In Section II, we
introduce two approaches to solve this problem: the Packet
Purse Model and the Packet Trade Model. The remaining
sections are concerned with the implementation of these
models. In Section III, we summarize our general assump-
tions. Then, we present implementations that enforce the
models in Section IV. Finally, in Section V, we discuss
the robustness and the efficiency of our solution, and, in
Section VI, we conclude the paper.

II. REWARDING THE PACKET FORWARDING SERVICE

A. The Packet Purse Model (PPM)

In this model, the originator of the packet pays for
the packet forwarding service. The service charge is dis-

�Similar to money in real life, nuggets can be lost as well. This loss
has to be compensated somehow, otherwise the system gets poorer and
poorer. One way to solve this problem is to let users buy nuggets. Nuggets
can be created by international treaty organizations and their agencies.
This would mean that providing services is, actually, not the only way to
earn nuggets. However, it can be made the preferred way by appropriately
choosing the price of one nugget.

tributed among the forwarding terminodes in the follow-
ing way: When sending the packet, the originator loads it
with a number of nuggets sufficient to reach the destina-
tion. Each forwarding terminode acquires one or several
nuggets from the packet and thus, increases the stock of its
nuggets; the number of nuggets depends on the direct con-
nection on which the packet is forwarded (long distance
requires more nuggets). If a packet does not have enough
nuggets to be forwarded, then it is discarded.

Packet forwarding in the Packet Purse Model is illus-
trated in Figure 1. Let us assume that originally each ter-
minode has 7 nuggets (1). Furthermore, let us assume that
A wants to send a packet toD. In order to do so,A loads,
say, 5 nuggets in the packet and sends it to the next hopB

(2). B takes out 1 nugget from the packet, and forwards
it with the remaining 4 nuggets toC (3). C takes out 2
nuggets from the packet and forwards it with the remaining
2 nuggets to the final destinationD (4). Note that termin-
odesB andC, which forwarded the packet, increased their
stock of nuggets, whereas terminodeA, which originated
the packet, decreased its stock of nuggets.

The basic problem with this approach is that it might
be difficult to estimate the number of nuggets that are re-
quired to reach a given destination. If the originator under-
estimates this number, then the packet will be discarded,
and the originator loses its investment in this packet. If the
originator over-estimates the number (like in our example
above), then the packet will arrive, but the originator still
loses the remaining nuggets in the packet3. The model de-
scribed in the next subsection overcomes this problem.

B. The Packet Trade Model (PTM)

In this approach, the packet does not carry nuggets, but
it is traded for nuggets by intermediate terminodes. Each
intermediary “buys” it from the previous one for some
nuggets4, and “sells” it to the next one (or to the desti-
nation) for more nuggets. In this way, each intermediary
that provided a service by forwarding the packet, increases
its number of nuggets, and the total cost of forwarding the
packet is covered by the destination of the packet.

As an example, let us consider Figure 2. Let us assume
that originally each terminode has 7 nuggets (1). Further-
more, let us assume thatA wants to send a packet toD. A
sends the packet to the first hopB for free (2).B then sells
it to the next hopC for 1 nugget (3). Finally,C sells it to

�Although, if the destination of the packet is a terminode that provides
information services, then the remaining nuggets can be used to pay for
these.
�Except for the first intermediary that receives the packet for free from

the originator.
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Fig. 1. The Packet Purse Model

the final destinationD for 2 nuggets (4). Note that termin-
odesB andC, which forwarded the packet, increased their
number of nuggets, whereas the destinationD decreased
its number of nuggets.

An advantage of this approach is that the originator does
not have to know in advance the number of nuggets re-
quired to deliver a packet. Furthermore, letting the desti-
nation pay for the packet forwarding makes this approach
applicable in case of multicast packets as well.

A disadvantage is that this approach for charging does
not directly deter users from flooding the network. How-
ever, allowing each terminode to decide if it buys a packet
or not can provide a sort of “back pressure” mechanism,
which may deter a user from generating too much traffic,
by ensuring that eventually nobody will buy packets from
users who try to overload the network.

C. Problems to be solved

Clearly, the models described above must be enforced
somehow, otherwise the terminodes may depart from them.
Terminodes (users) may misbehave in several ways if no
enforcement and no protection are applied. One important
general problem is, for instance, to prevent nugget forgery.

In addition, the problems that we have to cope with in
the Packet Purse Model include the following:
� The originator of a packet should be denied the re-use of
the nuggets that it loaded in the packet purse.
� A forwarding terminode should be denied taking more
nuggets out of the packet than it deserves for the packet
forwarding (i.e., “packet robbery” should be prevented).
� Each intermediary should be forced to indeed forward
the packet after having taken the nuggets out of it.
� The integrity of the packet purse should be protected
during transit.
� The replay of a packet purse should be detected5.

�Consider the following subtle replay attack. An intermediary receives

� Detachment of a packet purse from its original packet
and re-use of it with another packet should be impossible.

Problems to be solved in the Packet Trade Model include
the following:
� Each terminode should be denied the re-use of the
nuggets that it spent for buying packets.
� A forwarding terminode should receive the nuggets from
the next hop if, and only if, the next hop receives the packet
from the forwarding terminode (fairness of the exchange).
� An intermediary should be prevented from selling the
same packet several times (possibly to different next hops).

Furthermore, all the problems above should be solved
in an efficient way; forwarding a single packet should not
require complex cryptographic protocols and heavy com-
putational effort, because the cost of these may well exceed
the value of the service. We believe that we have found the
best trade-off between robustness and efficiency in our im-
plementations of the Packet Purse Model and the Packet
Trade Model, which we present in the following sections.

III. G ENERAL ASSUMPTIONS

In this section, we summarize our general assumptions,
which our implementations of the models described above
rely on.
� Tamper resistant security module. We assume that
each terminode has a tamper resistant security module,
such as, for instance, a special chip or a smart card, that
is used for the management of cryptographic parameters
(e.g., keys) and nuggets. We assume that this security mod-
ule functions correctly and its behavior cannot be modified
by the user of the terminode or other attackers. Contrary to
the security module, other parts of the terminode hardware

a packet with a packet purse, it copies them and then, simulates the recep-
tion of the same packet with the same packet purse several times (each
time increasing its stock of nuggets) without forwarding the packet. If
this kind of replay was not detected, then the intermediary can, actually,
become arbitrarily rich from this single packet.
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Fig. 2. The Packet Trade Model

and software are not tamper resistant and their behavior
can be modified by anybody who has physical access to
the device. We understand that regular users usually do
not have the required level of knowledge and skills to mod-
ify their terminodes. Criminal organizations, however, can
have enough interest and resources to reverse engineer a
terminode and sell tampered terminodes with modified be-
havior on a large scale. Users may be interested in buying
these tampered devices if they offer advantages over cor-
rectly behaving ones (e.g., longer battery lifetime). Our de-
sign goal is to distribute the terminode functions between
the tamper resistant security module and the rest of the ter-
minode device, which can be altered by an attacker, in a
way that modification of the latter cannot give any advan-
tages to the attacker.
� Public key infrastructure. We assume that there exists
a public key infrastructure that the terminodes (or, more
precisely, their security modules) can use to authenticate
each other and to establish secure communication links.
The design of an appropriate public key infrastructure for
terminodes is an interesting and non-trivial problem that is
beyond the scope of this paper. An approach to solve this
problem is described in [5], other possible approaches are
mentioned in [3].
� Slowly changing neighborhood. We assume that the
neighborhood of a terminode does not change very fast.
This makes it feasible for the terminode to keep track of
its neighbors by running a sort of “hello protocol” at reg-
ular time intervals. Besides discovering its neighbors, the
security module of the terminode uses the hello protocol
to establish shared secrets with the security modules of
its neighbors (different secrets with different neighbors, of
course). The establishment of the shared secret is based
on public key cryptography and relies on the existing pub-
lic key infrastructure. In addition to the shared secret, we
require that the security module agrees on the initial val-

ues of two counters with each of its neighbors. The shared
secret and the two counters are used to protect the commu-
nication between neighboring security modules and will be
discussed further in Section IV.
� Omnidirectional antennae. We assume that the ter-
minodes use omnidirectional antennae, which means that
a message sent by a terminode can be heard by all the ter-
minodes within the communication range of the sender.
We further assume that such a message can not only be
heard, but it is understood by all of the neighbors. By this,
we mean that all the neighbors receive the message and
can determine who the sender and the intended receiver
are and what the content of the message is6. Depending on
the MAC layer used, this may require that the terminodes
agree on further parameters with their neighbors during the
hello protocol. If, for instance, access to the shared radio
resource is based on code division (CDMA), then the ter-
minode should inform its neighbors about all the codes that
it uses, in order for the neighbors to be able to receive mes-
sages sent by the terminode.
� Symmetry of the neighbor relationship. For the sake
of simplicity, we assume that the neighbor relationship is
symmetric, which means that if terminode A is a neighbor
of terminode B, then terminode B is a neighbor of termin-
ode A as well.
� Reliable communication between neighbors.Another
simplifying assumption we made is that the communica-
tion channel between neighboring terminodes is reliable.
This means that if a message is sent successfully (e.g.,
without any collision), then it arrives to the intended next
hop correctly. We will address the problem of unreliable
communication links in a future paper. We note, however,
that this assumption does not imply that end-to-end com-

�More precisely, each neighbor can see the bits of the message, al-
though not necessarily understanding the real meaning of the message
(e.g., in case of end-to-end encrypted messages).



munication is reliable. Since messages can be modified
and intercepted by the forwarding terminodes themselves,
successfully sending a message to the next hop does not
mean that the message will correctly arrive to the final des-
tination.
� Pricing. In the Packet Purse Model, we assume that
there exists a mechanism to estimate the number of nuggets
that the originator of a packet must load in the packet purse
in order for the packet to be delivered to the final destina-
tion. Furthermore, we also assume that there is a mecha-
nism to determine the number of nuggets that a forward-
ing terminode can acquire from a packet purse. Similarly,
in the Packet Trade Model, we assume that there exists a
mechanism to determine the number of nuggets, for which
a forwarding terminode can sell a packet to the next hop.
In order to ease presentation, in this paper, we assume that
each forwarding terminode should be rewarded with ex-
actly one nugget for the packet forwarding. This means,
that in the Packet Purse Model, each intermediate termin-
ode that forwards the packet can take exactly one nugget
out of it, and in the Packet Trade Model, each forwarding
intermediary can sell the packet for one more nugget than
it paid for. Our solution, however, works without modifi-
cations in the general case as well.
� Terminodes are greedy.We assume that terminodes are
greedy, and they always want to increase their number of
nuggets. On one hand, this is reasonable, because nuggets
are indispensable for using the network. On the other hand,
there might be situations, where greediness is not the best
strategy. Consider, for instance, a terminode that has a lot
of nuggets, but whose battery is almost exhausted. In this
situation, earning more nuggets has clearly less benefit,
than saving battery power. But if the terminode is greedy,
then it keeps on forwarding packets, and uses up all of its
energy. It would be more realistic to assume that the be-
havior of the terminode depends on both the number of its
nuggets and the status of its battery. This issue is left for
further study.
� No network operator. We assume that the network is
totally self-organized and self-operated. Users simply pur-
chase and use terminodes, which come with an initial stock
of nuggets. The inter-working with existing fixed and wire-
less networks is left for future study.

IV. I MPLEMENTING THE MODELS

We use the tamper resistant security module to enforce
the behavior described by the models. In this section, we
present the description of this module and the protocols
that it runs with its environment. Our leading design prin-
ciple is to put as little as possible in the security module in

order to rely on as few assumptions as possible.

A. Long and medium term data in the security module

The security module stores and manipulates data that are
critical for the correct behavior of the system. Since the
security module is tamper resistant, these data cannot be
corrupted by the user of the terminode or other attackers.

The following long term data are stored in the security
moduleSM :
� Unique identifier. The security module stores its
system-wide unique identifier, which we denote byidSM .
� Private key. The security module has a public key and
a corresponding private key. The private key is exclusively
known toSM and, thus, it must be stored bySM . The
public key does not need to be kept secret, therefore, it can
be stored elsewhere. It is important, however, that other
security modules associate the right public key (i.e., the
public key ofSM ) with the unique identifier ofSM . This
is ensured with the help of the assumed public key infras-
tructure.
� Number of nuggets.Nuggets are represented by coun-
ters in the security modules of the terminodes. The wealth
of each terminode is equal to the value of the nugget
counter in its security module. We denote the nugget
counter in the security module bynSM .

In addition, the security module keeps a list of current
neighbors and maintains data associated to each of these.
SM stores the following medium term data for each neigh-
boring security moduleSM �:
� Unique identifier. The system-wide unique identifier
idSM � of the neighbor.
� Shared secret key.WhenSM andSM � become neigh-
bors, they establish a shared secret keykSM�SM � between
them using the hello protocol and public key cryptography.
This shared secret is exclusively known toSM andSM �,
and it is used to protect the communication between them.
This protection, in turn, is based on symmetric key cryp-
tography for efficiency reasons. Protection is necessary,
because the security modules cannot communicate directly
but only through their hosting terminodes, which are under
the control of (potentially malicious) users.
� Sending and receiving counters.SM stores a send-
ing countercSM�SM � and a receiving countercSM�SM �

associated withSM �. These counters are used to detect
message replay, which, as mentioned in Subsection II-
C, would fool the security module to process the same
message twice.SM � has similar counterscSM ��SM and
cSM ��SM , which are associated withSM . WhenSM
andSM � become neighbors, they initialize their receiv-
ing counters to random values and use the hello proto-



col to set their sending counters such that the following
holds: cSM�SM � � cSM �

�SM � � and cSM �
�SM �

cSM�SM � � �. Then, each timeSM sends a mes-
sage toSM �, it includes the current value of its sending
countercSM�SM � in the message, and then increments
the counter. WhenSM receives a message fromSM �,
it verifies if the message contains a counter value that is
greater than its current receiving countercSM�SM � . If so,
then it accepts the message and increases its counter to the
received value, otherwise it rejects the message.SM � be-
haves similarly.
� Fine. Another counter isfSM�SM � , the initial value of
which is 0. SM uses this counter to account for the mis-
behavior of the terminode that hostsSM � with respect to
the terminode that hostsSM . The protocols that are used
by the security modules are such thatSM does not imme-
diately increase its nugget counter if its hosting terminode
forwarded a packet, but it waits for an acknowledgment
from the security moduleSM � of the next hop in order to
be sure that the packet has indeed been forwarded. If this
acknowledgement does not arrive, thenSM records the
misbehavior of the next hop by increasing the fine counter
fSM�SM � associated withSM �. The next time it sends a
packet to the same next hop,SM also sends the value of
the fine counter. If this packet is processed by the next
hop, thenSM � takes into account the fine by decreasing
its nugget counter accordingly, andSM can reset its fine
counter. If, however, this packet is not processed either
(i.e., no acknowledgement arrives), thenSM further in-
creases the fine counter. If the counter exceeds a limit, then
the hosting terminode ofSM may stop forwarding packets
toward the misbehaving next hop. This mechanism stimu-
lates terminodes to send acknowledgements.
We should note that a missing acknowledgment does not
necessarily mean that the next hop is misbehaving and did
not send it. It is also possible that the hosting terminode
of SM cheated and it did not actually forward the packet
or it falsely claims the acknowledgement to be missing.
However, we assume that this is not the case, because it
would contradict our assumption about the greediness of
the terminode: the terminode cannot increase its number
of nuggets by not forwarding the packet or claiming an
arrived acknowledgement missing, whereas it can increase
its number of nuggets if it behaves correctly.

B. Implementing the Packet Purse Model

B.1 The Packet Purse Header (PPH)

In the Packet Purse Model, each packet has to carry
some nuggets required to forward the packet. These
nuggets are stored in the Packet Purse Header (PPH),

which is an additional header between the MAC Layer
Header and the Network Layer Header as it is illustrated
in Figure 3. The PPH is created and manipulated by secu-
rity modules. It is cryptographically protected in order to
prevent forgery and illegitimate modification during tran-
sit.

The PPH is re-computed by the security module of each
forwarding terminode. It has three parts: a part that is in-
tended for the security module of the next hop, another
part that is an acknowledgement for the security module of
the previous hop, and a third one that is common and in-
tended for both the next and the previous hops. The com-
mon part contains only the unique identifier of the security
module that computed this PPH. The acknowledgement
part contains the identifier of the security module of the
previous hop, the sending counter that was received from
that hop, and an Acknowledgement Authentication Code
(AAC) that is computed from the previous PPH, which was
attached to the packet, using a keyed cryptographic hash
functiong, where the key is the shared secret between this
security module and the security module of the previous
hop. Finally, the purse part that is intended for the secu-
rity module of the next hop contains the identifier of that
security module, the sending counter associated with that
security module, the number of nuggets in the packet, a
fine to be paid by the next hop, and a Purse Authentication
Code (PAC), which is computed from the purse part of the
PPH and the cryptographic hash valueh�NetworkPDU�
of the content of the packet using a keyed cryptographic
hash functiong, where the key is the shared secret between
this security module and the security module of the next
hop.

As it can be seen from the description, the acknowledge-
ment that is intended for the previous hop ispiggy backed
on the packet that is sent to the next hop. Here, we rely
on the assumptions that the neighbor relationship is sym-
metric and the terminodes have omnidirectional antennae.
Thus, when a terminode forwards a packet to the next hop,
the previous hop, from which this packet has arrived, also
receives it, and extracts the acknowledgement.

B.2 The packet forwarding protocol

The packet forwarding protocol is illustrated in Figure 4,
where we assume that terminodeTq has received a packet
from terminodeTp (which received it from the previous
hopTo), andTq wants to forward it toTr. To do so,Tq
has to obtain a new Packet Purse HeaderPPH � from its
security moduleSMq by supplying it with the identifier
of the security module of the next hop, the Packet Purse
HeaderPPH received from the previous hop, and the
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cryptographic hash valueh�NetworkPDU� of the con-
tent of the packet.
SMq first verifiesPPH . It reads the identifier of its

senderSMp from the common part ofPPH . Then, it
verifies if the sending counter inPPH is greater than the
receiving countercq�p associated withSMp. If so, then
this PPH is not a replay (i.e., it has not yet been pro-
cessed bySMq), andSMq proceeds by settingcq�p to the
received counter value.SMq then verifies the authenticity
of PPH by re-computing the Purse Authentication Code
and comparing the computed value to the received one. If
they match, then it knows thatPPH has indeed been cre-
ated bySMp and has not been modified . Finally, it checks
if there is a fine to be paid, and if so, then it decreases its
nugget counter accordingly.

After successful verification,SMq calculates the new
Packet Purse HeaderPPH �. This is illustrated in Figure 5.
It puts its own identifieridSMq

in the common part. It de-
creases the number of nuggets in the packet by one, and
constructs the purse part by including the identifier of the
next security moduleSMr, the sending countercq�r as-
sociated withSMr, the number of nuggets in the packet,
the fine counterfq�r associated with the next hop, and the
Purse Authentication CodePACq�r calculated from the
purse and the hash value of the content of the packet us-
ing the cryptographic hash functiong and the shared se-
cretkq�r . ThenSMq increases its sending countercq�r,
and constructs the acknowledgement part by including the
identifier ofSMp, the sending countercp�q form the purse
part ofPPH , and the Acknowledgement Authentication
CodeAACq�p, which is calculated fromPPH using the
cryptographic hash functiong and the shared secretk q�p.
Finally, SMq storesPPH � internally, and outputs a copy
for Tq .

Tq attaches the new Packet Purse HeaderPPH � to the
packet and sends it toTr. Tp also receives the forwarded
message, and it can recognize that there is an acknowl-
edgement for its security moduleSMp in the packet, be-
causePPH � contains the identifier ofSMp in the ac-
knowledgement part.Tp uploadsPPH � to its security
module. SMp tries to findPPH in its internal mem-
ory by matching the identifier ofSMq and the sending
counter received in the acknowledgement part ofPPH �

to the identifiers and sending counters in the purse part of
stored pending Packet Purse Headers. IfSMp findsPPH ,
then it verifies the authenticity of the acknowledgement in
PPH � by re-computing the Acknowledgement Authenti-
cation Code fromPPH and comparing it to the value re-
ceived inPPH �. If they are equal, thenSMp increases its
nugget counter by one, decreases its fine counterfp�q by
the the value of the fine inPPH (but never lets it become
less than 0), and deletesPPH from its internal memory.
Tp keeps track of the forwarded but not yet acknowl-

edged packets. If no acknowledgement arrives to a packet
after a given time, thenTp notifies its security module,
which increases the fine counter that is associated with
the misbehaving neighbor and deletes the corresponding
Packet Purse Header from its internal memory. Although
it would be simpler if the security module itself measured
the time-out, we do not want to require the security module
to have an internal clock, because this would also require
an internal source of energy, and we believe that building
such a tamper resistant module is quite difficult. Our solu-
tion still works well, becauseTp is not interested in signal-
ing a missing acknowledgement if the acknowledgement
has indeed arrived: it can increase its number of nuggets
by uploading the acknowledgement, while it cannot gain
anything by claiming it missing.
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B.3 Packet creation and final delivery

Before the packet is sent by its originator, the secu-
rity module decreases its nugget counter by the number of
nuggets specified by the originator and creates a PPH that
contains the same number of nuggets. This PPH is a spe-
cial one, because it does not have any acknowledgement
part, since there is no previous hop that would need it.

When the packet is delivered to its final destination, then
the PPH is loaded in the security module, which creates a
special PPH’ that has only an acknowledgement part. The
destination should send an empty packet with this special
PPH’ to the previous hop. If it does not send it, then the se-
curity module of the previous hop increases its fine counter
associated with the destination, and the destination will be
punished for the misbehavior later.

C. Implementing the Packet Trade Model

The Packet Trade Model can be implemented in the
same way as the Packet Purse Model. Like before, each
packet has an additional header, which we call Packet
Trade Header (PTH). The structure of the PTH is the same

as the structure of the PPH, with the only difference that
instead of the number of nuggets, it contains the price
of the packet. The same packet forwarding protocol de-
scribed before applies in the Packet Trade Model as well
with a minor modification. Now, the security module of
each forwarding terminode decreases its nugget counter by
the price in the PTH (buying) and increases the price by
one when re-computing the PTH, and increases its nugget
counter by the new price when the acknowledgement ar-
rives (selling).

V. A NALYSIS

In this section, we shortly analyze the implementation
of the Packet Purse Model described above. We show how
the implementation solves our original problems of stimu-
lation for co-operation and prevention of overloading, and
discuss its robustness and efficiency. Essentially, this anal-
ysis applies for the implementation of the Packet Trade
Model as well, since it is almost identical to the implemen-
tation of the Packet Purse Model. We will point out those
cases in which the analysis does not apply for the Packet



Trade Model.

A. Stimulation for co-operation and prevention of over-
loading

Our implementation encourages users to keep their ter-
minodes switched on and let them forward packets, be-
cause this is the only way to increase their number of
nuggets. If a terminode does not forward a packet, then
it will receive a fine later, and its number of nuggets will
be decreased. In addition, if a terminode denies packet for-
warding for a long time, then no more packet will be sent
to it.

Our implementation of the Packet Purse Model discour-
ages users to send useless traffic and overload the network
because this would decrease their number of nuggets. Our
solution ensures that the benefit each user gets from the
network does not exceed what she contributes to it.

We should note, however, that our implementation of
the Packet Trade Model does not deter users from over-
loading the network. The reason is that, contrary to the
original idea of the Packet Trade Model, our implementa-
tion does not allow a terminode to decide whether it buys
a packet or not. Instead, a terminode is forced to buy each
packet that is sent to it. This means that any terminode can
generate useless traffic and overload the network without
any consequences. In order to solve this problem, our im-
plementation must be modified to allow each terminode to
decide whether to buy a packet or not. This would provide
a sort of “back pressure” mechanism, which may ensure
that eventually nobody will buy packets from misbehaving
senders. This issue is left for further study.

B. Robustness

The implementation described above is robust and re-
sists against various attacks. Nugget forgery is prevented,
because it would require either an illegitimate increase of
the nugget counter, or the generation of fake packet purses
or acknowledgements. The former is impossible, because
the nugget counter is manipulated by the security module,
which functions correctly and its behavior cannot be al-
tered. The latter is prevented by the use of cryptographic
checksums (i.e., the Purse Authentication Code and the
Acknowledgement Authentication Code), which can be
computed correctly only by the security module. These
checksums also protect the integrity of the PPH during
transit. Furthermore, the packet purse cannot be detached
from the packet and re-used with another one, because the
calculation of the Purse Authentication Code involves the
cryptographic hash value of the content of the packet. Re-
play of the packet purse is prevented by the use of an ever

increasing counter that is placed in the purse. This solution
is preferable to the application of time-stamps, because it
does not require the security module to have an internal
clock and to run clock synchronization protocols, which
would need to be secured as well.

The originator of a packet cannot re-use the nuggets that
it has already loaded in the packet, because the security
module decreases the nugget counter when creating a PPH
for a new packet. An intermediary cannot take out more
nuggets from the packet than it deserves for the packet for-
warding, because its nugget counter can be manipulated
exclusively by its security module, which behaves cor-
rectly. Moreover, the intermediary is stimulated to forward
the packet, because its nugget counter will be increased
only if an acknowledgment arrives from the next hop, and
this is possible only if the packet has been forwarded.

Our solution requires each hop to send an acknowledge-
ment for the packet it received. Terminodes, however, may
be reluctant to send acknowledgements, because sending
consumes energy and it does not have any direct advan-
tages. This problem is related to fair exchange [6], [7] (in
our case, packets for acknowledgements), and it is usually
solved with the involvement of a trusted third party (TTP).
We cannot, however, assume the existence of TTPs in ter-
minode networks. The problem of fair exchange without a
TTP is analyzed in [8], where it is calledunenforced safe
exchange. The author proves that isolated unenforced safe
exchange is not possible if the last step of the exchange has
some costs. A proposed solution is that one should not con-
sider only a single isolated exchange, but one should also
take into account possible future exchanges, where the be-
havior of the parties in the future exchanges may depend
on the result of the current exchange. If misbehavior in
the present can be punished in the future, then unenforced
safe exchange becomes possible. In our implementation,
we used these ideas in two ways to stimulate terminodes
to send acknowledgments. First, we reduced the cost of
sending an acknowledgement by piggy backing it to a nor-
mal packet that the terminode sends anyway (except for
the destination of a packet). Second, we introduced fines,
in order to punish misbehaving terminodes. Moreover, the
fine is sent in the purse together with the nuggets, which
enforces the terminode who wants the nuggets to upload
the fine as well to the security module, which will decrease
the nugget counter according to the received fine.

We should note that exchanges without TTP can never
achieve the same level of fairness as those with TTP.
The existence of different levels of fairness is discussed
in [9], where the authors relate the different levels to
different equilibrium concepts in game theory. Accord-



ing to these results, our implementation achieves Nash-
equilibrium fairness, which essentially means that a mis-
behaving party may cause some damage to a correctly be-
having one, but it also loses something or at least cannot
gain anything (apart from malicious joy) with the misbe-
havior.

C. Efficiency

At first sight, our solution may seem a bit heavy to im-
plement. However, the overhead generated by it is small
when compared to all the functions that are required to ac-
complish packet forwarding. In particular, the calculation
and verification of the Packet Purse and the Packet Trade
Headers require only cryptographic hash function compu-
tations, which can be done very efficiently [10]. Public key
cryptographic operations are used only rarely (in the hello
protocol). Moreover, most of the processing load will be
supported by the security module; to some extent, it can be
accomplished in parallel with the processing performed by
the main processor of the terminode.

Another issue is the length of the Packet Purse Header.
Assuming that the identifiers of the security modules are
8 byte long, the sending and receiving counters are 6 byte
long, the Purse and the Acknowledgement Authentication
Codes are 20 byte long, and the nuggets and the fine are
both represented on 2 bytes, we get that the Packet Purse
Header is 80 byte long. We cannot further assess whether
this is acceptable or too much, because of the lack of infor-
mation about the length of other headers and the average
length of the packets.

Efficiency can be improved by using the Packet Purse
Header and all the related mechanisms only in a small frac-
tion of packets. Then the majority of the packets would not
carry an additional header and would be processed without
any call to the security module. This means, however, that
the terminodes would not be rewarded for the forwarding
of each packet, and we would have to ensure that they for-
ward those packets as well from which they cannot expect
any nuggets. This issue is left for future work.

VI. CONCLUSION

In this paper, we addressed the problem of service avail-
ability in terminode networks (mobile ad-hoc WANs). We
have presented a secure mechanism to stimulate end users
to keep their terminodes turned on, to refrain from over-
loading the network, and to thwart tampering aimed at con-
verting the device into a “selfish” one.

Although, in this paper, we presented our ideas in the
context of the Terminodes Project, we believe that our re-
sults are more widely applicable, and can be combined

with current routing protocols for ad-hoc networks.
This work was motivated by the experience of cellular

networks, which has proven that as soon as mobile stations
are under the control of end users, there is a strong temp-
tation to alter their behavior in one way or another. There-
fore, all facets of security have to be carefully analyzed and
implemented. We are currently working on the integration
of the proposed solution with other security functions, such
as confidentiality and integrity protection of communica-
tions.

Finally, we believe that introducing a kind of virtual cur-
rency can serve several other purposes in mobile ad-hoc
WANs. First, it can be used to remunerate not only com-
munication services, as described in this paper, but also
information services. Second, it can be used as a way to
pay for the usage of backbones or satellite links, when a
terminode has to communicate with a very distant party.
In this case, the virtual currency will have to be converted
in some way into “hard” currency.
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