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Abstract—The Internet of Things is quickly developing and
it enables exciting new applications, but at the same time, it
also brings new security risks. In particular, embedded IoT
devices may be subject to malware infection, undermining
the trustworthiness of IoT systems. Malware detection on IoT
devices is challenging due to their resource constraints, and
antivirus tools developed for desktop PCs and servers are not
directly applicable for them. In an earlier paper, we proposed a
lightweight antivirus solution for IoT devices, called SIMBIoTA.
In this paper, we propose SIMBIoTA++, an improvement on
SIMBIoTA in terms of resource requirements. We also present
a graph theory and measurement-based argument for selecting
an appropriate similarity threshold, which is a key parameter in
both SIMBIoTA and SIMBIoTA++.

Index Terms—Internet of Things, malware detection, similarity
hashing, graph theory, dominating set algorithm

I. INTRODUCTION

In recent years, millions of embedded devices have been
connected to the Internet, and this transformed it to the Internet
of Things, or IoT for short. On the one hand, IoT tech-
nologies drive new applications in many domains, enabling,
for instance, the development of smart homes, smart cities,
smart factories, precision agriculture, intelligent transportation
systems, and personalized healthcare. On the other hand, IoT
also creates new security risks, mainly because embedded
IoT devices have not always been designed with security in
mind, and therefore, they are notoriously easy to compromise,
leading to untrustworthy IoT systems and representing danger
to the Internet infrastructure as a whole. A specific problem,
falling into the scope of our work, is that IoT devices are
subject to infection by malware, by which attackers can take
remote control over them, and build large IoT botnets that
can be used for attacking any Internet-based service that our
society relies on. Probably, the best known example for this
phenomenon is the Mirai botnet [1] that consisted of hundreds
of thousands of infected IoT devices, such as web cameras and
WiFi routers, and that was used to launch a massive distributed
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denial-of-service attack on multiple Internet-based services in
20161. But, of course, the IoT threat landscape contains many
other malware families as well, such as Gafgyt, Tsunami, and
DnsAmp [2].

As a response to the threat, researchers have started to work
on malware detection solutions suitable for IoT systems [3]–
[6]. The main challenges in this new domain are the scarcity
of resources of embedded IoT devices and their architec-
tural heterogeneity that render traditional antivirus products,
developed for desktop computers and mobile devices, not
immediately applicable in IoT systems. One popular approach
is to outsource malware detection into the cloud [7]. This
essentially means that IoT devices submit new files that they
encounter to a cloud-based malware detection service, where
they are inspected and their fate is decided. This approach has
obvious advantages: the burden of computation is removed
from the resource-constrained IoT devices and all kinds of
malware detection methods can easily be introduced, including
new techniques, such as those based on machine learning [8].
But cloud-based malware detection also has disadvantages:
IoT devices must be able to reach the malware detection
service at any time, submitting files has communication cost,
and detection is delayed. In some application domains, such
as real-time cyber-physical systems, these disadvantages may
not be tolerable, and there is a need for performing malware
detection on the IoT devices themselves in an efficient and
effective manner.

We have recently proposed a lightweight, yet effective, mal-
ware detection approach, called SIMBIoTA, in [9]. SIMBIoTA
detects malware based on binary similarity, and it can be used
on resource-constrained IoT devices. Its operation is similar
to that of traditional signature-based antivirus solutions, but
it uses TLSH hash values of known malware instead of raw
binary signatures for detection purposes. TLSH [10] is a
similarity hash algorithm, which means that similar inputs
result in similar TLSH hash values, and SIMBIoTA takes
advantage of this feature. When using SIMBIoTA, embedded
IoT devices store only a few TLSH hash values of known
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malware, and they compare the TLSH hash value of a new
file to these stored hashes. If the TLSH hash of an unknown
file is similar to that of a known malware, the unknown
file is detected as malware. We showed in [9] that SIM-
BIoTA has lightweight storage, computation, and bandwidth
requirements, while it has remarkable detection capabilities:
according to the experiments we performed, it achieved a true
positive detection rate of around 90%, even for previously
unseen malware, and its false positive detection rate was 0%.

A key design objective of SIMBIoTA was to keep the
amount of storage needed to store TLSH hash values on IoT
devices low. For this purpose, we proposed to compute a
dominating set of the graph of TLSH values known to the
antivirus provider, and send only the TLSH hashes in this
dominating set to the IoT devices as a sort of “signature
database” that can be used for malware detection. The size of
the dominating set, hence, determines the storage requirements
for the IoT devices, and we want to keep it small. In this paper,
we propose SIMBIoTA++, a new dominating set computation
algorithm, which improves upon the dominating set computa-
tion algorithm of SIMBIoTA: it produces smaller dominating
sets, while it preserves almost the same computation time.

In addition, we report the results of our measurement for
determining the TLSH difference threshold below which two
files can be considered similar. This threshold was set to
the specific value of 40 in SIMBIoTA, based on heuristics
and manual verification of a sampled dataset. In this paper,
we show stronger evidences than heuristics that the value
40 is indeed a good threshold. This validates the results of
SIMBIoTA and puts SIMBIoTA++ on a solid basis.

In the following, we give an overview of the operation of
SIMBIoTA and its dominating set computation algorithm in
Section II, we present the new dominating set computation
algorithm of SIMBIoTA++ and compare its performance to
that of SIMBIoTA in Section III, we present the results of
the measurement we performed for determining an appropriate
TLSH difference threshold to be used in SIMBIoTA and
SIMBIoTA++ in Section IV, and finally, we conclude the
paper in Section V.

II. SIMBIOTA

In this section, we first give a brief overview of the operation
of SIMBIoTA and we present its iterative dominating set up-
date algorithm. Then we make a few observations and present
some measurement results that suggest that SIMBIoTA’s al-
gorithm produces larger dominating sets than an algorithm
based on a well-known, greedy dominating set construction
method. At the same time, this second algorithm has a larger
computation time. These observations motivated us to look for
a better iterative dominating set update algorithm that produces
dominating sets as small as the algorithm based on the greedy
construction method, while it preserves the fast computation
time of SIMBIoTA.

A. Operation

SIMBIoTA relies on a large malware database maintained
by an antivirus service provider. This malware database is
assumed to be continuously updated with samples obtained
from a so called intelligence network, which collects malware
samples from public and private feeds, honeypot farms, and
cloud-based malware analysis platforms. The service provider
computes the TLSH hash values of the samples in its database,
and pushes a subset of these TLSH hashes to the client-side
SIMBIoTA component running on the embedded IoT devices,
where a light-weight algorithm uses them to detect malware
based on binary similarity: as said before, if the TLSH hash
of an unknown file is similar to any of the TLSH hashes
pushed to the IoT device from the service provider, then the
unknown file is detected as malware. As the database at the
service provider is continuously updated, the subset of TLSH
hashes to be pushed to the IoT devices needs to be regularly
re-computed and re-sent too. We may assume, for instance,
that IoT devices are updated with new hash values once every
week.

On the one hand, due to the resource constraints of IoT
devices, we want that the subset of TLSH hashes provided to
them by the service provider be small, and on the other hand, it
must be sufficiently large, such that it allows for the detection
of all malware samples known to the service provider, and also
potentially unknown ones. For this reason, in SIMBIoTA, the
subset of TLSH values pushed to the IoT devices is computed
as a dominating set of the similarity graph constructed from
the TLSH hash values of the samples known to the service
provider. More specifically, the vertices of this similarity graph
are the TLSH hash values of the known samples, and two
vertices are connected if the TLSH difference of the hash
values corresponding to the vertices is below a given difference
threshold. Furthermore, the dominating set D of a graph
G(V,E) is a subset of V such that every vertex of the graph
is either in D or a neighbor of a vertex in D. Hence, this
construction ensures that all known samples are similar to
those represented by the dominating set pushed to the IoT
devices.

SIMBIoTA computes a dominating set of the similarity
graph G of the known samples at the service provider in an
iterative manner by updating the current dominating set when
a new sample is added to the graph using Algorithm 1.

Essentially, when a new node u (i.e., the TLSH value of a
new sample) is added to the graph G, the set of vertices of G
is extended with u and the set of edges of G is extended with
the edges between u and all other nodes in G that represent
samples similar to u. In addition, if the new node u is already
dominated by the current dominating set D, then D is not
changed; otherwise, u is added to D.

B. Observations

The iterative dominating set update algorithm of SIMBIoTA
is very efficient, but it extends the current dominating set
in each iteration too carelessly. To demonstrate this, let us
consider a well-known greedy algorithm for computing a



Algorithm 1 SIMBIoTA dominating set update algorithm
Input: current graph G, a dominating set D of G, a new node

u to be added to G
Output: new graph G′ (i.e., G extended with u), a dominating

set D′ of G′

1: let G′ be G extended with u
2: if u is dominated by D then
3: let D′ be D
4: else
5: let D′ be D ∪ {u}
6: end if
7: return G′, D′

dominating set2 presented as Algorithm 2. This algorithm
starts with an empty set D, which is then extended step-by-
step, by always adding the node with the largest number of
neighbors not yet dominated by D. The algorithm stops when
all nodes of G become dominated by D.

Algorithm 2 Greedy dominating set computing algorithm
Input: graph G(V,E)
Output: a dominating set D of G

1: let D be ∅
2: while there exist nodes in G not dominated by D do
3: choose a node v from V \ D with the largest number

of neighbors not yet dominated by D
4: let D be D ∪ {v}
5: end while
6: return D

Algorithm 2 could be used by the antivirus service provider
to re-compute the dominating set of the similarity graph G of
the known malware samples when a new node u (i.e., a TLSH
hash of a new sample) is added to G, as shown in Algorithm 3.

Algorithm 3 Global dominating set update algorithm
Input: current graph G, a new node u to be added to G
Output: new graph G′ (i.e., G extended with u), a dominating

set D′ of G′

1: let G′ be G extended with u
2: call Algorithm 2 on G′ to compute D′

3: return G′, D′

We call Algorithm 3 “global”, because it always considers
the entire graph G′, hence global information, when computing
D′, in contrast to Algorithm 1, which computes D′ by looking
at only D. One may expect that using global information
results in better performance in terms of the size of the
computed dominating set, whereas running the computation

2We note that finding the smallest dominating set of a graph G is known
to be an NP-complete problem. Hence, we are interested in efficient heuristic
algorithms that find small, although maybe not the smallest, dominating sets.
The greedy algorithm that we consider in this paper is known to compute an
ln(∆ + 2)-approximation of the optimal dominating set of G, where ∆ is
the maximal degree of G [11].

on the entire graph should be much slower. These intuitive
expectations are confirmed by our measurements.

We performed all measurement using the same, publicly
available3 data set that we used for the evaluation of SIM-
BIoTA. This data set consists of 29,209 malicious ARM
samples and 18,715 malicious MIPS samples with metadata,
such as the dates the samples were first seen in the wild
(i.e., submitted to VirusTotal4). We also followed the same
experiment design as used for SIMBIoTA in [9]. The timeline
of the experiment is between January 1st, 2018 and September
15th, 2019, divided into weeks. The malware samples are
organized into weekly batches based on the date they were
first seen, and each weekly batch is further divided into two
groups. The first group, which contains 10% of that weekly
batch’s samples and is called the intelligence part, is made
available to the antivirus service provider for processing (i.e.,
including in its similarity graph of the known samples). The
second group, called the wilderness part, contains 90% of that
weekly samples, and it is assumed to exist only in the wild and
is never revealed to the service provider. (The wilderness parts
of the weekly batches are used to evaluate the true positive
rate of the detection algorithms, presented later).

Fig. 1. Average size of the dominating set computed on each week by
Algorithm 1 (SIMBIoTA) and Algorithm 3 (Global)

Figures 1 and 2 show a comparison between the dominating
set sizes and the running times, respectively, of Algorithms 1
and 3. As it can be seen in the figures, Algorithm 3 (Global)
produces smaller dominating sets than Algorithm 1 (SIM-
BIoTA), but its running time becomes much larger as the size
of the graph at the antivirus service provider increases. Consid-
ering these results, one may ask the following question: Can
we design a dominating set update algorithm that produces
as small dominating sets as Algortihm 3 does, while running
as fast as Algorithm 1 runs? Our affirmative answer to this
question is SIMBIoTA++.

III. SIMBIOTA++

In this section, we present SIMBIoTA++, an improved
dominating set update algorithm, and its comparison – in

3https://github.com/CrySyS/cube-maliot-2021
4https://www.virustotal.com



Fig. 2. Running time (in milliseconds) of Algorithm 1 (SIMBIoTA) and
Algorithm 3 (Global) on each week

terms of dominating set size produced, running time, and true
positive detection rate – to SIMBIoTA and the global update
algorithm introduced in the previous section.

A. A new dominating set update algorithm

Our design of the dominating set update algorithm of
SIMBIoTA++ is based on the observation that in case of
SIMBIoTA, if a node becomes part of the dominating set, then
it remains part of it forever, whereas this is not the case for
the global algorithm that always recomputes the dominating
set from scratch. When adding a new node u to the graph
G, our new algorithm may remove a node from the current
dominating set D, if it can be replaced by another node
such that, with this replacement, G extended with u would
be dominated. The algorithm is presented in more details as
Algorithm 4.

As in case of SIMBIoTA, if the new node u is already
dominated by the current dominating set D, then D is not
changed (lines 2–4). Otherwise, we check for every node w
in D, if it can be replaced by another node w′, such that
w′ would dominate all the nodes Fw that may become non-
dominated by the removal of w from D, as well as the new
node u (lines 7–9). If such a node w′ can indeed be found,
then we replace w by w′ in D (line 10) and stop (line 11).
If such a node w′ cannot be found, we simply add u to D
(line 14). Note that it is sufficient to look for w′ among the
neighbors of u in G′, because w′ must dominate u as it is not
dominated by D itself, and hence by D \ {w} neither.

B. Evaluation

We compared the performance of Algorithm 4 to the pre-
viously discussed algorithms using the exact same experiment
setup and methodology as before. The results can be seen in
Figures 3, 4, and 5.

As it can be clearly seen, our new dominating set update
algorithm produces dominating sets with sizes close to those
produced by the global algorithm, while at the same time, its
running times are extremely close to those of SIMBIoTA. In
other words, SIMBIoTA++ represents the best of both worlds
that we had before: it produces small dominating sets like an

Algorithm 4 SIMBIoTA++ dominating set update algorithm
Input: current graph G, a dominating set D of G, a new node

u to be added to G
Output: new graph G′ (i.e., G extended with u), a dominating

set D′ of G′

1: let G′ be G extended with u
2: if u is dominated by D then
3: let D′ be D
4: return G′, D′

5: else
6: let Nu be the set of neighbors of u in G′

7: for every node w in D do
8: let Fw be the set of nodes in G′ that would not be

dominated if we removed w from D
9: if there exists a node w′ in Fw ∩Nu that dominates

all nodes in Fw then
10: let D′ be D ∪ {w′} \ {w}
11: return G′, D′

12: end if
13: end for
14: let D′ be D ∪ {u}
15: return G′, D′

16: end if

Fig. 3. Average size of the dominating set computed on each week by Algo-
rithm 1 (SIMBIoTA), Algorithm 3 (Global), and Algorithm 4 (SIMBIoTA++)

Fig. 4. Running time (in milliseconds) of Algorithm 1 (SIMBIoTA), Algo-
rithm 3 (Global), and Algorithm 4 (SIMBIoTA++) on each week



algorithm that always takes the entire graph into account in
the computation, but it has a much shorter running time, close
to the simple update algorithm of SIMBIoTA. In addition, the
true positive malware detection rates in case of using any of
these algorithms to produce the dominating set are very close
to each other, as shown in Figure 5. We also measured the false
positive detection rate and obtained 0% just like in the case
of SIMBIoTA. All these results clearly show the superiority
of SIMBIoTA++ over SIMBIoTA.

Fig. 5. Averge true positive detection rate on each week when the dominating
set is computed by Algorithm 1 (SIMBIoTA), Algorithm 3 (Global), and
Algorithm 4 (SIMBIoTA++)

IV. SIMILARITY THRESHOLD SELECTION

Both SIMBIoTA and SIMBIoTA++ relies on computing
a dominating set on the similarity graph that represents the
malware samples known to the antivirus service provider and
their similarity at the binary level (see Subsection II-A for
more details). In [9] and in this paper, we used the similarity
threshold value 40 to construct the similarity graphs. However,
the selection of this value was based on heuristics and manual
verification in [9], whereas now we show that the value 40 is
indeed a reasonable threshold in a more trustworthy manner.

In order to gain some intuition, in Figures 6 and 7,
we visualized the similarity graphs of 2000 ARM and 2000
MIPS malware samples, respectively, chosen randomly from
our dataset, using the Gephi5 graph visualization tool. We
used TLSH difference 40 as the similarity threshold. We also
colored the nodes of the graphs based on the malware labels
obtained from VirusTotal and processed by the AVClass6 tool.
As it can be seen in the figures, the nodes of the graphs appear
to be clustered, and the clusters resulting from the similarity
relationship match pretty well the coloring representing the
malware labels.

Now let us consider the effect of changing the similarity
threshold. A lower value would mean that fewer pairs of
nodes would be connected in the graph, as a smaller TLSH
difference would be required between any two samples to be
deemed similar. At extremely low (i.e., close to 0) similarity

5https://gephi.org
6https://github.com/malicialab/avclass

Fig. 6. Similarity graph of 2000 randomly chosen ARM malware samples
with TLSH difference threshold 40

Fig. 7. Similarity graph of 2000 randomly chosen MIPS malware samples
with TLSH difference threshold 40

threshold values, the graph would “fall apart” to disjoint nodes,
and it would not exhibit any level of clusteredness at all.
In contrast, increasing the similarity threshold value would
result in more and more edges in the graph. For very high
values (e.g., close to and above 100) even non-similar samples
would be considered similar, and eventually, the graph would
become an almost fully connected click. Such a graph does
not exhibit any clusteredness either. Hence, we may expect
that if we can somehow measure the level of clusteredness,
then we can observe a maximum between the two extremes
of TLSH difference 0 and 100.

Fortunately, there exist graph metrics that can be used to
characterize the clusteredness of a graph [12]. A well-known
such metric is the clustering coefficient of the graph, which is
defined as follows. For unweighted graphs, the clustering of a
node u is defined as the fraction of possible triangles through



node u that exist:

cu =
2T (u)

deg(u)(deg(u)− 1)
(1)

where T (u) is the number of existing triangles through node
u and deg(u) is the degree of u. The clustering coefficient of
a graph G(V,E) is then defined as the average clustering of
its nodes:

C =
1

|V |
∑
v∈V

cv (2)

Using this definition, we measured the clustering coefficient
of the similarity graphs resulting from our dataset when using
different similarity thresholds. The result is plotted in Figure 8.
It can be clearly seen that the curve representing the clustering
coefficient as a function of the similarity threshold has a
maximum around the threshold value 40. This clearly shows
that TLSH difference 40 is indeed a meaningful choice for the
similarity threshold.

Fig. 8. Clustering coefficient as a function of the similarity threshold.

V. CONCLUSION

In this paper, we presented SIMBIoTA++, an improvement
on SIMBIoTA, which is a lightweight antivirus solution de-
signed for resource-constrained IoT devices. Both SIMBIoTA
and SIMBIoTA++ relies on measuring similarity between
binary files for malware detection. They both use TLSH, which
is a similarity hash function, and TLSH difference, which is a
similarity metric computed from TLSH hash values. To detect
malware, IoT devices are provided with a set of TLSH hash
values of known malware, and they compare the TLSH hash
of a new file to these hashes. An unknown file is detected as
malware if its TLSH hash is similar to any of the pre-loaded
TLSH hashes of known malware.

The size of the set of the TLSH hashes pushed to the
IoT devices determines their storage requirements, therefore,
keeping that size small is important. The set of TLSH hashes
to be pushed to the IoT devices is actually computed as a
dominating set of a similarity graph representing all malware
known to an antivirus service provider. The improvement
we proposed in this paper is a new dominating set update

algorithm that results in smaller sets of TLSH hash values to
be pushed to the IoT devices than in the case of SIMBIoTA,
while the computation time remains almost the same.

In addition, we reported on a measurement experiment that
proved that the TLSH difference threshold of 40, which we
used as a similarity threshold when constructing the similarity
graphs in case of both SIMBIoTA and SIMBIoTA++, is
indeed a meaningful threshold value, because it maximizes
the clustering coefficient of the similarity graph of the malware
samples.
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