
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2010, Article ID 679205, 15 pages
doi:10.1155/2010/679205

Research Article

Position-Based Aggregator Node Election in
Wireless Sensor Networks

Levente Buttyán1 and Péter Schaffer2

1 Laboratory of Cryptography and Systems Security (CrySyS), Budapest University of Technology and Economics (BME),
1117 Budapest, Hungary

2 Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg (UL), 1359 Kirchberg, Luxembourg

Correspondence should be addressed to Péter Schaffer, peter.schaffer@uni.lu

Received 25 September 2008; Accepted 13 August 2009

Copyright © 2010 L. Buttyán and P. Schaffer. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We introduce PANEL a position-based aggregator node election protocol for wireless sensor networks. The novelty of PANEL with
respect to other aggregator node election protocols is that it supports asynchronous sensor network applications where the sensor
readings are fetched by the base stations after some delay. In particular, the motivation for the design of PANEL was to support
reliable and persistent data storage applications, such as TinyPEDS; see the study by Girao et al. (2007). PANEL ensures load
balancing, and it supports intra and intercluster routing allowing sensor-to-aggregator, aggregator-to-aggregator, base station-to-
aggregator, and aggregator to-base station communications. We also compare PANEL with HEED; see the study by Younis and
Fahmy (2004) in the simulation environment provided by TOSSIM, and show that, on one hand, PANEL creates more cohesive
clusters than HEED, and, on the other hand, that PANEL is more energy efficient than HEED.

1. Introduction

Wireless sensor networks consist of a multitude of tiny
sensor nodes capable for wireless communications and a few
powerful base stations. The sensor nodes usually perform
some monitoring task (e.g., measure various environmental
parameters). The base stations collect sensor readings and
forward them for further processing to a service center.

Based on how the sensor readings reach the base stations,
we can distinguish synchronous and asynchronous sensor
networks. In the synchronous case, the sensor readings
are sent to the base stations in realtime using multihop
wireless communications, where the sensor nodes coopera-
tively forward data packets on behalf of other sensor nodes
towards the base stations. In the asynchronous case, the
sensor readings are fetched by the base stations after some
delay (e.g., once every day or week). In this case, the base
stations are often mobile, and they physically approach the
sensors in order to fetch their data through a single wireless
hop. Examples of synchronous sensor network applications
include forest fire alarm systems and building automation
systems where realtime operation is indispensable. Examples
of asynchronous applications include habitat monitoring

systems and agricultural applications such as vineyard
monitoring where realtime operation is not an issue.

As sensor nodes are often severely resource constrained,
various techniques have been proposed to ensure the efficient
operation of sensor networks. One of these techniques is
called aggregation or in-network processing. The idea is that,
instead of forwarding (in case of synchronous applications)
or storing (in case of asynchronous applications) raw
sensor readings, data can be first processed, combined,
and compressed by some distinguished sensor nodes, called
aggregators.

While aggregation increases the overall efficiency of the
sensor network, the aggregator nodes themselves use more
resources than the regular sensor nodes. For this reason, it is
desirable to change the aggregators from time to time, and
thereby, to better balance the load on the sensor nodes. For
this purpose, aggregator node election protocols can be used
in the sensor network that allow dynamic reassignment of the
aggregator role.

In this paper, which is an enhanced version of our
previously published conference paper in [1], we introduce
PANEL: a position-based aggregator node election protocol
for wireless sensor networks. As its name indicates, PANEL

2 International Journal of Distributed Sensor Networks

uses the geographical position information of the nodes
to determine which of them should be the aggregators.
Like other aggregator node election protocols, PANEL also
ensures load balancing in the sense that each node is an
elected aggregator nearly equally frequently. The salient
feature of PANEL that makes it novel and different from
other aggregator node election protocols is that besides syn-
chronous applications, PANEL also supports asynchronous
applications.

In particular, the motivation for the design of PANEL
was to support TinyPEDS (Tiny Persistent Encrypted Data
Storage) [2], and other similar asynchronous sensor network
applications. In TinyPEDS, aggregator nodes collect and
aggregate sensor readings from the clusters that they are
responsible for, and then persistently store the aggregated
values (in an encrypted form). In addition, in order to
increase reliability, the aggregators replicate their stored
data at the aggregators of some selected backup clusters.
These backup aggregators (i.e., the aggregators in the backup
clusters) must be chosen in such a way that they are farther
away from the primary aggregator than a certain distance
called the disaster radius. The rationale is that if there is
a disaster in which the primary aggregator is destroyed,
its data is still available at and can be retrieved from the
backup aggregators. Being a position-based protocol, PANEL
supports TinyPEDS and applications alike by providing
assurances regarding the distance between the elected aggre-
gator nodes.

The organization of the paper is the following. In
Section 2, we report on the related work. In Section 3, we
introduce the general assumptions that we based the design
of PANEL upon. In Section 4, we describe the operation
of PANEL. In Section 5, we present our simulation-based
comparison of the performance of PANEL with that of
HEED [3]: an aggregator node election protocol well known
from the literature. In Section 6, we discuss some possible
extensions of PANEL. And finally, in Section 7, we conclude
the paper.

2. Related Work

Dividing the sensor network into clusters and using in-
network aggregation is an effective way to treat the enormous
amount of information produced by the sensor nodes.
Several papers have been published in this research area for
sensor networks; we list the related ones below.

There are some papers that give an overview of in-
network aggregation and cluster formation solutions. One of
these papers is that in [4], which discusses the main issues of
clustering in sensor networks and concludes that clustering
is a useful tool for topology management and for in-network
data aggregation. In [5], the authors detail the different data
aggregation techniques and highlight the tradeoffs between
energy efficiency, data accuracy, and latency. In [6], one can
read about a comparison of homogeneous (i.e., all of the
nodes have same hardware capability) and heterogeneous
(i.e., nodes have different hardware capabilities) sensor
networks from clustering point of view, while in [7], the

authors investigate the schemes of single-hop and multihop
communications and their impact on clustering.

The papers that propose solutions for clustering can
be classified based on their primary aim (however, most
of these papers have multiple aims). The largest group
according to this classification consists of papers that aim
at lifetime maximization of the sensor network. This group
of papers can be further divided based on the method that
they use for the clustering: it can be either probabilistic or
deterministic. In case of probabilistic solutions, the cluster
heads are elected based on some randomness, while in
case of deterministic solutions, some iterative or centralized
strategies are deployed.

The most known probabilistic cluster formation algo-
rithm is the LEACH protocol [8, 9]. In LEACH, the clustering
goes as follows: in every round, each sensor node picks a
random number, and if this random number is smaller than
a threshold, the node becomes a cluster head. Next, it adver-
tises itself with constant energy via radio communication
and waits for cluster members. The cluster members are the
noncluster head nodes, and each of them joins that cluster
head’s cluster whose advertisement was received with the
highest energy (in general, this is the nearest cluster head’s
cluster). The properties of LEACH are that it flatly balances
the energy consumption of the network; however, it uses only
one-hop communication; the remaining energy of the nodes
is not a parameter by the election (but it should be because
of the increased energy needs of a cluster head node); and
the protocol requires every node to be able to reach the base
station in one hop, which is not generally true in sensor
networks.

Other related probabilistic cluster formation solutions
can be found in [10–15]. In [10, 11], one can read about a
data gathering scheme, called PEGASIS, that forms a chain of
nodes and elects a leader node for energy-efficient collection
of the sensors’ measurements. In [12], the authors propose a
technique to build k-hop clusters, that is, where the cluster
members are at most k-hops away from the cluster head. In
[13], a LEACH-like idea is exploited considering the residual
energy of the nodes as well. In [14, 15], the problem of
unequal-energy dissipation is considered in case of equally
sized clusters. Therefore, in these latter papers, the authors
propose to form unequal size clusters: smaller ones close
to the base station and larger ones further from it, as the
cluster heads of closer-lying clusters have more load due to
the message forwarding task for further-lying clusters.

The most important probabilistic solution for our
purposes is HEED [3], which can also be considered as
the generalization of [8] and [13]. In HEED, the cluster
formation algorithm is more sophisticated; it elects the
cluster heads based on their remaining energy and on a
secondary parameter that can control the cluster density,
the load balancing, and the amount of intracluster commu-
nication. The HEED protocol seems to be a good tradeoff
between termination speed and cluster head distribution by
allowing some communication between neighboring nodes.
The simulation results of HEED show that it outperforms
LEACH in terms of network lifetime and in ratio of energy
dissipated for clustering.

International Journal of Distributed Sensor Networks 3

The list of papers that aim at network lifetime maximiza-
tion using a deterministic aggregator node election method is
quite extensive as well. In [16–18], one can find solutions for
the mentioned problem assuming that the sensor network
is heterogeneous; that is, there are less-energy-constrained
gateway nodes among the usual constrained sensor nodes
that can help in cluster formation and in the routing of
sensor messages. The authors of [19, 20] approach the
clustering problem from data gathering point of view, and
propose a centralized solution for near-optimal scheduling
of the message sending. In [21], the problem of lifetime
maximization is handled by balancing the load of cluster
heads and by minimizing the total distance between sensor
nodes and cluster heads. The study in [22] tackles the same
problem using fuzzy logic with the variables of energy, node
concentration, and node centrality with respect to the entire
cluster.

There are some papers that do not primarily aim at net-
work lifetime prolongation, but at quick cluster formation.
In [23], the authors consider event-driven sensor networks
with high degree of spatial-temporal correlation. The main
focus of the paper is on cross-layered design of localized
algorithms for performing quick data aggregation and quick
hierarchy formation allowing prompt response to queries. In
[24], one can read about a fast clustering algorithm suitable
for large-scale sensor networks by its property of locality,
scalability, and self-healing in case of node failures and newly
deployed nodes.

The following group of papers collects those works that
aim at enhanced network management. For example, the
objective of [25] is to show that one can efficiently compute
an asymptotically optimal clustering, even when collision
resistant packet forwarding is not ensured. The authors of
[26] propose a hierarchical clustering approach, where the
cluster heads are clustered again at the higher layer of the
hierarchy. Here, the clustering problem is defined in a graph
theoretic framework, and a distributed solution is presented
that results in size-bounded clusters. The ACE algorithm [27]
aims at forming minimally overlapping clusters with the help
of cluster migration. The algorithm ends in constant time
regardless of the size of the network and uses only local
communications between nodes.

Security is rarely considered in the cluster formation
or aggregator node election problem. An exception is the
study in [28], where the authors deal with the issue of
nonmanipulable aggregator node election. When an attacker
node is able to manipulate the aggregator election process, it
is able to influence the operation of the network, for example,
by electing itself as aggregator and maliciously filtering the
sensors’ measurements. Three independent countermeasures
are proposed against such an attacker in [28], with all of them
based on distributed random number generation. Another
exception is the paper in [29], where the author proposed a
technique for resilient cluster formation, which consists of a
neighbor validation module based on wormhole detection,
a priority-based selection of the cluster head nodes, and a
centralized detection module that aims at detecting the nodes
that have an abnormally large number of neighbors (as these
are most likely compromised).

The papers listed above are all related to the aggregator
node election problem assuming clustering. However, none
of the above methods are able to guarantee a minimum
distance between certain aggregators. However, in our
motivating application area (i.e., reliable and persistent
distributed data storage), backup aggregators must be cho-
sen in such a way that they reside farther away from
the primary aggregator than a certain disaster range. In
[30], the authors detail an approach for aggregator node
election that is able to guarantee this minimum distance;
however, the proposed solution is centralized, and thus,
its applicability is limited. On the contrary, PANEL can
guarantee a minimum distance between aggregators in a
distributed manner, because in PANEL the aggregator nodes
reside within fixed-size clusters and are elected locally
without the need of a central controller. For instance, the
minimum distance between two aggregators belonging to
nonneighboring clusters is dx, where x is the number of
clusters between the two aggregators and d is the physical size
of the cluster.

3. General Assumptions

One of the main assumptions that PANEL relies on is that
the sensor nodes are static and they are aware of their
geographical position. This is obtained either by means of
GPS or by using any of the numerous node positioning
algorithms proposed for wireless sensor networks in the
literature (see, e.g., [31, 32]). We note, however, that PANEL
does not need precise position information (see Section 6.3
for the related discussion); therefore, the inaccuracy of the
positioning mechanism does not limit the applications of
PANEL. Unlike the sensor nodes, the base stations may
not necessarily be static, but they can be mobile and their
presence can be sporadic.

We further assume that the sensor network consists of
homogeneous sensors (in terms of resources). The sensor
nodes are deployed in a bounded area, and this area is
partitioned into geographical clusters. We aim at electing
a single aggregator per cluster. The density of the network
is large enough so that the nodes within each cluster are
connected when they use maximum power for transmission.
In other words, there exists a route between any pair of
sensors of a given cluster that contains only sensors from that
cluster. This assumption on the connectivity within a cluster
is crucial to the correct operation of PANEL, and it can be
satisfied by appropriately choosing the cluster size (given the
deployment density of the network and the maximum power
range of the nodes).

Finally, we assume that time is divided into epochs,
and the nodes are synchronized such that each of them
knows when a new epoch begins. If the nodes are equipped
with GPS, then time synchronization is provided for free.
Otherwise, additional mechanisms for time synchronization
(see, e.g., [33, 34]) need to be implemented in the network in
order to support PANEL.

4 International Journal of Distributed Sensor Networks

Reference point
Sensor node
Elected aggregator

Figure 1: Illustration of the geographical clustering in PANEL.

4. Operation of PANEL

In this section, we give a detailed description of the operation
of PANEL. We start with a brief overview in order to
introduce the components of PANEL, and then we present
these components in detail in the subsequent subsections.

4.1. Overview. PANEL assumes that the sensor nodes are
deployed in a bounded area, and this area is partitioned
into geographical clusters. For simplicity, in this paper, we
assume that the deployment area is a rectangle and that the
clusters are equal-sized squares, as illustrated in Figure 1.
We emphasize, however, that the ideas behind PANEL are
general, and that PANEL could also be used for areas and
cluster forms with more complex shapes.

The clustering is determined before the deployment of
the network, and each sensor node is preloaded with the
geographical information of the cluster which it belongs to.
In our simplified case, each sensor node is preloaded with
the coordinates of the lower-left corner of its cluster, as well
as with the size d of the cluster. In addition, as we mentioned
before, each node i is aware of its own geographical position−→
P i.

At the beginning of each epoch, a reference point
−→
R j is

computed in each cluster j by every node in a completely
distributed manner. In fact, the computation of the reference
point depends only on the epoch number, and it can be
executed by every node independently and locally. Once the
reference point is computed, the nodes in the cluster elect the
node that is the closest to the reference point as the aggregator
for the given epoch (see Figure 1 for illustration).

The aggregator node election procedure needs commu-
nications within the cluster. PANEL takes advantage of these
communications and uses them to establish routing tables
for intra-cluster routing. In particular, at the end of the
aggregator node election procedure, the nodes also learn
the next hop towards the aggregator elected for the current
epoch.

PANEL also includes a position-based routing protocol
that is used in intercluster communications. As the nodes
are aware of their geographical position, this seems to
be a natural choice that does not result in additional
overhead. The position-based routing protocol is used for
routing messages from a distant base station or from a
distant aggregator towards the reference point of a given
cluster. Once the message enters the cluster, it is routed
further towards the aggregator using the intra-cluster routing
protocol based on the routing tables established during
the aggregator node election procedure. Any position-based
routing protocol can be integrated with PANEL; currently,
we are using the Greedy Perimeter Stateless Routing (GPSR)
protocol [35].

PANEL can also support reliable persistent data stor-
age applications such as TinyPEDS [2]. Reliability can be
achieved by replicating the data aggregated by the aggregator
nodes at other aggregator nodes. For this purpose, the
aggregator nodes need to be able to communicate with
each other. The routing protocols of PANEL can support
this by routing the messages containing the replicated data
using PANEL’s position-based intercluster routing protocol
towards the reference point of the selected backup cluster,
and then switching to the intra-cluster routing protocol of
PANEL to deliver the data to the aggregator of that cluster.

Finally, we want to point out that in PANEL, the reference
points of the clusters are recomputed and the aggregator
election procedure is reexecuted in each epoch. This ensures
load balancing in the sense that each node of the cluster can
become aggregator with nearly equal probability. In addition,
the nodes can accumulate information that they receive in
the different epochs and use that for routing and intrusion
detection purposes (see Section 6.1 for more details).

4.2. Reference Point Computation. In PANEL, the aggregator
election begins with the computation of a reference point−→
R j in each cluster j. The input of this computation is the
current epoch number e, which is assumed to be known
by every sensor. The computation itself consists in calling a
pseudorandom function H that maps e to a relative position−→
Q inside the cluster. Formally, H(e) = −→

Q , where
−→
Q ∈

(−δd,d + δd) × (−δd,d + δd), d is the size of the cluster,
and δ < 0.5 is a parameter which we will explain below. The

reference point of cluster j is determined as
−→
R j =

−→
O j +

−→
Q ,

where
−→
O j is the position of the lower-left corner of cluster j.

The pseudorandom function H can easily be imple-
mented with a cryptographic hash function. Moreover, the
pseudorandomness ofH means that the outputs produced by
H for the consecutive epoch numbers look as a sequence of
random positions. This ensures the load balancing property
of PANEL.

Note that the above computation can be executed by
every sensor independently and locally. In addition, the
reference points of every past (and future) epoch can also
be computed easily by anybody. This property is useful in
applications where the sensor network provides persistent
storage services by requiring the aggregator nodes of the
different epochs to store the aggregated values that they

International Journal of Distributed Sensor Networks 5

Figure 2: The Voronoi cells of the nodes in a cluster.

compute. In these applications, when looking for some data
of a past epoch in a given cluster, one needs to send a
query to the aggregator of that epoch. This requires the
recomputation of the reference point of the given cluster in
the given epoch.

Let us now explain why parameter δ is needed in the
reference point computation, and how its value can be
determined. Recall that in PANEL, the node that is the
closest to the reference point of a given cluster is elected as
aggregator for that cluster for the given epoch. Assuming
that the nodes are deployed uniformly at random, and that
the position of the reference point in each epoch is also
selected uniformly at random, the probability that a given
node becomes aggregator is determined by the size of the
Voronoi cell of the node, and the size of the area within which
the reference point is selected. For load balancing purposes,
we would like that each node becomes aggregator with nearly
the same probability, thus, we would like that the Voronoi
cells of the nodes have approximately the same size.

Let us consider Figure 2 for illustration of the Voronoi
cells of the nodes in a cluster. We can observe a “border
effect” in this figure, namely, the size of the Voronoi cells
of the nodes close to the edge of the cluster is larger than
that of the nodes in the middle. One way to cancel this
border effect out is to deploy the sensor nodes not at random,
but following a given structure. This structure has to ensure
that the sizes of the Voronoi cells of the different nodes are
equal. For example, the ideal deployment position for node
i(i ≤ n) in one dimension in [0, t] is at ((2i − 1) · t)/2n,
where n is the number of nodes. However, deploying the
nodes by hand is often impossible (e.g., in many military
applications); therefore, we set aside this solution. Even if we
assume that the node deployment is fixed, we can effectively
mitigate this border effect by adjusting the size of the area
within which the reference point is selected, as with this, we
can adjust the size of the Voronoi cells of the nodes on the
edge of the cluster. Parameter δ expresses the magnitude of
this adjusting operation in percent of the original cluster size
d. For example, δ = −0.1 means that on each side of the
cluster the bounds are contracted by 10%.

It is not easy to determine an appropriate value for δ
analytically due to the complexity of the computation of the

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1

δ (%)

250
150

50

Sid
e len

gt
h

of clu
ste

r (m
)0

0.4

0.8

1.2

1.6

2

S 1
/S

2

Figure 3: Determining the value of parameter δ by simulations.

size of the Voronoi cells. Therefore, we propose to determine
its value by simulations. In Figure 3, on the z axis, we have
the ratio between the average size S1 of the bounded Voronoi
cells (i.e., the cells close to the center of the cluster) and the
average size S2 of the unbounded Voronoi cells (i.e., the cells
on the edge of the cluster) as a function of parameter δ and
the cluster size given by the side length. The plane at z = 1
corresponds to the optimum, where the average sizes of the
cells of the two types are equal. The intersection of this plane
and the surface obtained by simulations is projected to the
z = 0 plane. This projected curve gives the optimal value of
parameter δ for different cluster sizes assuming that there are
10 nodes in the cluster. As one can see, the optimal value is
usually between −0.12 and −0.07.

4.3. Aggregator Election Procedure. Once the reference points
are computed, the nodes start the aggregator node election
procedure. Each node i sets a timer, the expiration time of

which is proportional to the distance D(
−→
P i,
−→
R j) between

the node’s position
−→
P i and the reference point

−→
R j of

its cluster. When this timer expires, the node broadcasts
a message with maximum power in which it announces
itself as the aggregator unless the node heard such an
announcement from another node before its timer expired.
The announcement message has the following format:

[
type | epoch | id | pos

]
(1)

where “type” is announcement, “epoch” is the current epoch
number, and “id” and “pos” are the identifier and the
position of the originator of the announcement, respectively.

When a node hears an announcement, it verifies whether
the originator of the announcement is closer to the reference
point than the node known to be the closest so far (which
can be the node itself if it has not heard any announcements
yet). If so, then the node records the originator of the
announcement as the candidate aggregator, and rebroadcasts
the announcement. Moreover, if the node still has its timer
active, then it cancels it. Otherwise, the node silently discards
the announcement. Announcements that belong to other
clusters are also discarded in order to limit the propagation
of an announcement within the cluster that it is concerned
with.

6 International Journal of Distributed Sensor Networks

Input:

identifier idself and position
−→
P self of the node executing the algorithm

parameters
−→
O self and d of the cluster of the node executing the algorithm

current reference point
−→
R self of the cluster and epoch number enow

running time T of the algorithm
Output:

identifier idaggr and position
−→
P aggr of the elected aggregator node

set idaggr = idself;

set
−→
P aggr =

−→
P self;

set timer t0 = T ;

set timer t1 = f (D(
−→
P self,

−→
R self));

while timer t0 is still active do
wait until timer t1 fires or an announcement m is received;
case timer t1 fired:

broadcast [announcement | enow | idself |
−→
P self] with max power;

case an announcement m = [announcement | e | id | −→P] is received:
if the pair (e, id) has been seen before then drop m;

else if e /= enowor
−→
P /∈ square (

−→
O self,d)then drop m;

else if D(
−→
P ,
−→
R self) > D(

−→
P aggr,

−→
R self)then drop m;

else
set idaggr = id;

set
−→
P aggr =

−→
P ;

if timer t1 is still active then cancel timer t1;
rebroadcast m with max power;

end while

output idaggr,
−→
P aggr

Algorithm 1: The pseudocode of the aggregator election procedure of PANEL.

As the node that is the closest to the reference point sends
its announcement first, there is a high chance that this will be
the single announcement that is flooded inside the cluster.
This means that in most cases, each node rebroadcasts a
single message during the aggregator election procedure.
In some cases, however, depending on the topology of the
network, it may happen that more than one nodes send
their announcements. In those cases, only the announcement
originated by the node that is the closest to the reference
point will “survive”, meaning that only that announcement
will be received and recorded by every node in the cluster.

After some predefined time T , the aggregator node elec-
tion phase is closed, and each node considers the recorded
candidate aggregator as the aggregator for the current epoch.
The value of T depends on the time needed for a flooded
message to cover the largest possible distance within the
cluster. This ensures that at the end of the aggregator election
phase, each node must have received the announcement of
the future aggregator.

The pseudocode of the aggregator election algorithm is
given in Algorithm 1.

4.4. Routing. Strictly speaking, routing is not an integral
part of aggregator node election protocols. Nevertheless, in
PANEL, we make recommendations for the routing protocols

that fit best PANEL’s design assumptions and operating
principles. In particular, in PANEL, we envision two kinds of
routing components: an intra-cluster routing protocol and
an intercluster routing protocol.

The intra-cluster routing protocol is used to route a
message to the aggregator of a given cluster if that message
is already inside the cluster. This concerns, on one hand, the
messages that contain the measurements of the sensors in the
cluster. On the other hand, the intra-cluster routing protocol
is also used to route messages from a distant source to the
current aggregator or to any of the past aggregators of the
cluster once those messages have reached the cluster. These
messages include queries originating from a distant base
station and backup messages originating from aggregators of
distant clusters.

The intra-cluster routing protocol has a stronger con-
nection to the operational details of PANEL, therefore, we
specify it explicitly. However, we note that this specification
serves as an example only; other kinds of routing protocols
can also be integrated with PANEL.

The intra-cluster routing protocol of PANEL can take
advantage of the fact that the nodes within the cluster
communicate during the aggregator election procedure. In
particular, announcement messages containing the identifier
and the position information of their sources are flooded in
the cluster. This can be used to set up backward pointers

International Journal of Distributed Sensor Networks 7

towards the sources of the announcement messages in the
routing tables of the nodes. More specifically, in PANEL,
every node that hears an announcement records the identi-
fier and the position of the originator of the announcement
as destination, it records the identifier of the node from
which it received the first copy of the announcement as the
next hop towards the recorded destination, and it computes
and records the power level needed to transmit to this next
hop node. The identifier of the next hop is obtained from the
lower-layer (e.g., MAC) header of the message encapsulating
the announcement. The computation of the required power
level relies on the fact that the nodes transmit announcement
messages with maximum power, and the receiving nodes
can measure the power level with which they receive those
messages.

Given the above information in the routing tables, and
the identifier of the destination in the messages that are
routed with the intra-cluster routing protocol, routing is
quite straightforward. Each node in the cluster that receives
such a message forwards it to the next hop associated to the
message’s destination in the routing table of the forwarding
node with the corresponding power level. If no matching
entry is found in the routing table, then the message is
dropped. The positions of the destinations stored in the
routing table are not used by the intra-cluster routing
protocol; they are recorded to support the interoperation of
the intercluster and the intra-cluster routing protocol, as we
will explain later.

An important observation is that the aggregator elec-
tion procedure described in Section 4.3 ensures that the
announcement message of the future aggregator node of the
current epoch is flooded in the entire cluster, and thus, every
node in the cluster creates a routing entry (or updates an
existing one) with the future aggregator as the destination.
This means that later in the current epoch, every node in
the cluster can forward messages towards this aggregator.
Moreover, routing table entries are kept beyond the duration
of the epoch in order to support the routing of queries that
are destined to aggregators of past epochs.

The intercluster routing protocol is used to route mes-
sages to and from a distant cluster. These messages can be
queries from and responses to a distant base station, as
well as backup messages destined to distant aggregators that
contain replicated data. We recommend to use a position-
based routing protocol as the intercluster routing protocol
for the following two reasons. First, PANEL already makes
the assumption that the nodes are aware of their positions,
and therefore, this position information can naturally be
reused for routing purposes. Second, intercluster routing
is concerned with messages that need to be routed (i) to
the aggregator of a distant cluster or (ii) to a distant base
station. Regarding case (i), in PANEL, the identifier of the
aggregator node is not known explicitly outside the cluster,
but, instead, one knows only the reference point to which
the aggregator happens to be the closest node. Regarding
case (ii), the query messages can contain the geographical
position of the base station to which the responses should
be sent back. Thus, in all cases, messages need to be routed
towards a geographical position, and hence, position-based

routing seems to fit best for intercluster routing in PANEL.
Apart from being a position-based routing protocol, we do
not restrict the choice for intercluster routing in PANEL.

The intercluster routing protocol is used together with
the intra-cluster routing protocol in the following way. First
of all note that messages from distant sources are always
destined either to the current aggregator of a cluster or to
one of the aggregators in the past. In particular, backup
messages containing replicated data of another cluster are
destined to the current aggregator of the backup cluster,
whereas queries from the base station are usually destined
to an aggregator in the past. Note also that, as we mentioned
above, every node has routing table entries for the current
and the past aggregators of its cluster. The interworking of
the intercluster and intra-cluster routing protocols is based
on these important observations.

Messages from distant sources do not contain the
identifier of the targeted aggregator, but instead they contain
the reference point to which the targeted aggregator is the
closest node. When such a message reaches the target cluster,
the first node that receives it looks into its routing table,
and determines the identifier of the targeted aggregator by
searching for the entry whose destination position is the
closest to the reference point specified in the message. Once
the identifier of the destination is determined, the intra-
cluster routing protocol can be used to deliver the message.
Once again, the correctness of this approach is based on the
fact that every node in the cluster has an entry in its routing
table for the current and all past aggregators of the cluster,
and messages from distant sources are always destined to one
of these aggregators.

5. Simulation Results

In this section, we study the aggregator node election
and cluster formation capabilities of PANEL by means of
simulations. Moreover, we compare the energy consumption
of a network using PANEL as the aggregator node election
protocol to the energy consumption of the same network
when the aggregator election protocol is HEED [3]. We
have chosen HEED as the algorithm to compare PANEL to
as HEED is a probabilistic approach as well; moreover, it
aims at energy efficiency too and it considers intra-cluster
routing already, not just aggregator node election. HEED
outperforms LEACH [8, 9] in terms of network lifetime and
in ratio of energy dissipated for clustering, therefore, it is a
better benchmark than LEACH. Finally, HEED is a widely
known and well-understood aggregator election approach
that is frequently referenced in the corresponding literature.

For the simulations, we have implemented both PANEL
and HEED in NesC for TinyOS 2 [36] (i.e., the implemen-
tations are ready to run on real sensor nodes), and the
simulations are made with the help of TOSSIM [37], the
de-facto TinyOS simulator. The simulations focus on the
aggregator node election phase of PANEL, as it is the main
part of the protocol. As for the energy measurements, we
based our solution on PowerTOSSIM 2. PowerTOSSIM 2 is
the power measurement extension for TinyOS 2; however,

8 International Journal of Distributed Sensor Networks

it is still experimental and can be downloaded only from
the official TinyOS 2 contrib repository [38]. As HEED
needs energy information in runtime for the aggregator
node election, we extracted the corresponding equations
from the code of PowerTOSSIM 2 and integrated them
into the code of HEED (and PANEL as well, to maintain
equivalence in testing setup). In this way, each sensor node
measures its own energy consumption. Note that this small
computation consumes very limited energy and hence it
does not influence the results significantly. We note that
PowerTOSSIM 2 supports only mica2 nodes [39] which
use the Chipcon CC1000 [40] radio transceiver and the
ATmega128L [41] microcontroller.

The simulation settings are the following. We assume
that time is divided into epochs, and each epoch consists in
an aggregator node election phase and five measuring/data
transmission phases, called rounds. In the aggregator node
election phase, the nodes select the cluster head in each
cluster, while in the rounds, the cluster member nodes send
measurement information to the cluster head. Both the
aggregator node election phase and the rounds have at most
10 seconds to finish. We ran the simulations for 100 epochs
(i.e., for 6000 seconds). The tested topologies are the same for
PANEL and HEED. We considered 40 uniformly randomly
placed nodes in a square-shaped field consisting in 4 equal
shaped clusters, where the node density is controlled through
the size of the field: the highest density is realized in the
smallest field of 50× 50 m2, while the smallest density is
realized in the largest field of 500 × 500 m2. We simulated
20 different topologies for each of the different densities. In
case of HEED, the value of parameter pmin is set to 5 · 10−4,
and the cost model is AMRP (see [3]) with the modification
that it does not depend on the total number of nodes in the
cluster, but only on the number of nodes that are in reachable
distance with radio communication. In case of PANEL, δ is
set to 0, as this choice corresponds to the worst case (i.e., no
border effect mitigation).

The first question we analyze is the consistence of
aggregator node election in case of PANEL and HEED. We
call the aggregator election consistent if only one cluster
head (i.e., aggregator node) is elected in each cluster. This
consistence is the optimal case; however, due to message
losses, interferences and possible lack of connectivity, this
ideal case rarely happens (see the related discussion in
Section 6.2). Nevertheless, the closer the number of cluster
heads is to the number of clusters, the more consistent is
the aggregator election. In Figure 4, one can see the average
number of cluster heads as a function of the field size (i.e.,
node density). The horizontal axis corresponds to the side
length of the field (as the field is assumed to be square shaped,
both sides of the field are of the same length), while the
vertical axis corresponds to the average number of cluster
heads. The solid curve corresponds to PANEL, while the
dashed curve corresponds to HEED. The measurements are
made only on the indicated field sizes (see the ticks on the
horizontal axis), the lines connecting the points are only to
emphasize the characteristics of the changes when heading
to lower node densities. The presented measurements are
averages of 20 different topologies for each field size, and

Optimum

50045040035030025020015010050

Side length of field (m)

PANEL
HEED

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

n
u

m
be

r
of

cl
u

st
er

h
ea

ds

Figure 4: Average number of cluster heads as a function of the field
size.

100 epochs are simulated on each topology. (This way of
visualization will be the same in the upcoming figures as
well.)

As one can see, PANEL ensures a more consistent
aggregator node election than HEED. The line corresponding
to the optimum is at y = 4 (as we have 4 clusters), and
PANEL approaches it quite well, while in case of HEED, the
average number of cluster heads goes over 7 for lower node
densities. We note that for very high node densities (i.e., field
sizes of 50 × 50 m2 and 100 × 100 m2) HEED performs
slightly better than PANEL, but for average and low node
densities, the results of PANEL are much better than the
results of HEED. The reason for this outcome lies in the very
nature of the algorithms: PANEL can better propagate the
cluster head advertisements since these messages always get
rebroadcast as a node receives and accepts them. However, in
case of HEED, the advertisements are not rebroadcast (i.e.,
only one broadcast is sent by the advertiser node that all the
other nodes have to receive), so there is a higher chance for
a node to miss such a message and declare itself as a cluster
head, thus raising the average number of cluster heads.

The time spent for electing the cluster head is another
important question. The less time an algorithm needs for
cluster head election, the more time it has for other purposes.
We define the cluster head election time as the length of the
time interval beginning with the new epoch start, and ending
when all the nodes have a finalized view about which node is
the cluster head (and which node is the next hop towards
this cluster head). In Figure 5, one can see the average cluster
head election time (vertical axis) as a function of the field
size (horizontal axis). The solid curve corresponds to PANEL,
while the dashed curve corresponds to HEED.

The results of Figure 5 are not surprising. Both PANEL
and HEED have 10 seconds according to the simulation setup
for cluster head election in each epoch, and in HEED, this
time is consumed as the finalization of the links is only

International Journal of Distributed Sensor Networks 9

50045040035030025020015010050

Side length of field (m)

PANEL
HEED

0

2

4

6

8

10

12

14

C
om

pl
et

io
n

ti
m

e
of

ag
gr

eg
at

or
n

od
e

el
ec

ti
on

(s
)

Figure 5: Average cluster head election time as a function of the
field size.

performed after some number of advertisement iterations is
already performed. The required number of such iterations
in HEED is controlled by pmin, however, we have chosen
pmin for five times higher than in the examples in [3] in
order to lower the number of required iterations (i.e., from
15 to 12). Further lowering the number of iterations could
possibly distort the cluster head election process in HEED
as its correct operation—especially its energy balancing
property—relies on the fact that higher remaining energy
nodes have less (approx. 6) iterations to perform than lower
remaining energy nodes, and thus, the latter nodes are able
join to the clusters established by the former nodes. However,
in PANEL, the 10 seconds time window for cluster head
election is not fully consumed: PANEL needs less than 6
seconds for electing the cluster head (and for establishing
the multi-hop route for each node towards this cluster head).
The reason for this is that, in the optimal case, all the nodes
have to send one broadcast message and extract the required
information from the received messages, thus, the cluster
head election can end without further iterations.

Having seen that the number of cluster heads is usually
not optimal on average (see Figure 4), it is very important
to detail the impact of this result on the number of nodes
in the partitioned clusters (i.e., subclusters). As we have
40 nodes deployed on the field and 4 clusters, the optimal
number of nodes in a cluster is 10. However, as the nodes
are randomly deployed, it often happens that there are fewer
than 10 nodes in some clusters (and more than 10 in the
others), but this does not influence our average expectation.
In Figure 6, one can see the histogram of the number of
nodes in the subclusters as a function of the field size. The
x-axes corresponds to the field size, the y-axes corresponds
to the number of nodes in the subcluster, while the z-axes
corresponds to the number of occurrences.

Figure 6 clearly shows that while HEED produces a
significant amount of clusters with few nodes (i.e., the
rearmost bars are high), PANEL usually produces clusters
of near optimal number of nodes (i.e., the bars near to the

y = 10 axis are relatively high). This again emphasizes a
good feature of PANEL: even if the number of cluster heads
gets above the optimal value, the number of nodes in a
subcluster remains high. On the opposite, HEED produces a
high amount of clusters with very few nodes, thus subdivides
the network into small parts that are hard to maintain. For
the sake of better comparison, we show three sections of
Figure 6 in Figure 7.

In Figure 7, the horizontal axes correspond to the
number of nodes in the subclusters, while the vertical axes
correspond to the number of occurrences. The solid curve
corresponds to PANEL, while the dashed curve corresponds
to HEED, and the three subfigures correspond to different
field sizes, namely 50 × 50 m2, 250 × 250 m2 and 500 ×
500 m2, respectively. The tendency of the behaviour of the
two algorithms is clear: while HEED behaves very well
in terms of distribution of the number of nodes in the
subclusters for high node densities, it produces many clusters
with few nodes as the node density goes lower. On the
contrary, PANEL behaves quite well in the same comparison
even for small node densities. The reason for this difference
stems from the fact that in HEED, the cost model can retain
nodes from joining to a common cluster head when the
node density is small, as further lying cluster heads have
higher costs than closer-lying ones. Another component
of the problem is the high average number of cluster
heads (see Figure 4): HEED elects more cluster heads on
average, which also leads to network partitioning. As the
connectivity becomes weaker (i.e., for lower node densities,
larger fields), this behaviour becomes more emphasized,
however, in PANEL, the number of clusters with few nodes
stays low even for low node densities.

All the same, cluster head election makes no sense
without an application that employs the newly elected cluster
heads. This justifies our simulation scenarios that comprise
not just cluster head election, but data message sending
as well. Instead of measuring just the energy spent for
cluster head election, in Figure 8(a), we show the total
average energy consumed by PANEL and HEED. Here again,
the horizontal axis corresponds to the field size, while the
vertical axis corresponds to the average energy consumption.
The solid curve corresponds to PANEL, while the dashed
curve corresponds to HEED. The whiskers show the 95%
confidence interval of the corresponding values.

As one can see, PANEL consumes less energy in total than
HEED, independently from the node density. Moreover, the
whiskers in Figure 8(a) show that the energy consumption
of PANEL can be forecasted more precisely than the energy
consumption of HEED, as the 95% confidence intervals of
the energy consumption of PANEL are more narrow than
that of HEED. This property is confirmed by Figure 8(b),
which shows that the standard deviation of the average
energy consumption is much higher in case of HEED than
in case of PANEL. (The whiskers in Figure 8(b) correspond
to the 95% confidence interval of the standard deviation of
the energy consumption.) We emphasize that the number
of rounds (i.e., the amount of data message sending) highly
influences our results: the rounds are where PANEL is more
energy efficient than HEED, thus, increasing the number of

10 International Journal of Distributed Sensor Networks

PANEL

17
15

13
11

9
7

5
3

1

Number of nodes in the subcluster450
350

250
150

50

Side length of field (m)

0

1000

2000

3000

N
u

m
be

r
of

oc
cu

rr
en

ce
s

(a)

HEED

17
15

13
11

9
7

5
3

1

Number of nodes in the subcluster450
350

250
150

50

Side length of field (m)

0

1000

2000

3000

N
u

m
be

r
of

oc
cu

rr
en

ce
s

(b)

Figure 6: Histogram of the number of nodes in the subclusters.

50 × 50 m2 field

1715131197531

Number of nodes in the subcluster

PANEL
HEED

0

500

1000

1500

2000

2500

3000

N
u

m
be

r
of

oc
cu

rr
en

ce
s

(a)

250 × 250 m2 field

1715131197531

Number of nodes in the subcluster

PANEL
HEED

0

500

1000

1500

2000

2500

3000

N
u

m
be

r
of

oc
cu

rr
en

ce
s

(b)

500 × 500 m2 field

1715131197531

Number of nodes in the subcluster

PANEL
HEED

0

500

1000

1500

2000

2500

3000

N
u

m
be

r
of

oc
cu

rr
en

ce
s

(c)

Figure 7: Histogram of the number of nodes in the subclusters for field sizes of 50 × 50 m2, 250 × 250 m2 and 500 × 500 m2.

rounds beyond 5 would result in even better performance
of PANEL with respect to HEED. The number of rounds
depends on the actual application, however, we believe that
having 10, 20, 50 or more rounds can be the general case. In
these energy simulations we tried to show how PANEL and
HEED works in worst case situations, and we conclude that
PANEL is more energy efficient that HEED in our scenarios,
independently from the node density.

6. Extensions of PANEL

We complete the description of PANEL in this section by
discussing three possible extensions related to its operation:
the security of PANEL, the problem of disconnected clusters,
and the required accuracy of the node’s position information.

6.1. Security. There are several ways how an adversary
can spoil the operation of PANEL. In the following, we
detail these attacks and propose countermeasures against
them. We assume that the attacker is able to capture and

reverse-engineer one or more nodes, thus, the attacker is
able to control these nodes and has knowledge about all
the information stored in these nodes (e.g., secret keys,
measurement data, etc.).

The most straightforward type of attack aims at dis-
torting the aggregate at the cluster head. To achieve this,
an attacker can either (i) modify the environment of the
attacked sensor node, or (ii) capture the sensor node and
alter the measured values as desired. Altering the measured
parameter of the environment in the first attack means, for
example, lighting a match near to a temperature sensor or
flashing with a flashlight near to a photometer sensor; these
outsider attacks can totally falsify the measurement result of
the sensor node. Capturing a sensor node in the second case
requires more knowledge from the adversary, but he can gain
full control over the sensor node. Both of these attacks can be
circumvented using a statistical sample filtering approach at
the cluster head (like, e.g., [42]). (We note that cryptography
cannot help here as these attacks cannot be detected with
cryptographic tools.)

International Journal of Distributed Sensor Networks 11

50045040035030025020015010050

Side length of field (m)

PANEL
HEED

20

25

30

35

40

45
A

ve
ra

ge
en

er
gy

co
n

su
m

pt
io

n
(J

)

(a) Total average energy consumption as a function of the field size

50045040035030025020015010050

Side length of field (m)

PANEL
HEED

0

5

10

15

20

25

St
an

da
rd

de
vi

at
io

n
of

th
e

en
er

gy
co

n
su

m
pt

io
n

(J
)

(b) Standard deviation of the total average energy consumption as a
function of the field size

Figure 8: Total energy consumption comparison of PANEL and HEED.

In order to achieve his goal (i.e., to distort the aggregate),
the adversary can also (iii) force the captured node to alter
the data field of a forwarded message that comes from
another node, or (iv) send false measurement data in the
name of other nodes to the cluster head. In case of (iii),
the captured node must be on the routing path that one or
more of the nodes use to send their measurements to the
cluster head. As these messages are not protected, a captured
node that is a forwarder can modify the content of these
messages. In case of (iv), the captured node tries to confuse
the cluster head by sending messages in the name of other
nodes; when the cluster head later receives the valid messages
from the well-behaving nodes it cannot determine which
of the received messages are valid. While both of the latter
attacks can be handled more or less with the previously
mentioned technique, a more appropriate tool against these
attacks is cryptographic integrity protection (in case of (iii)),
or authentication (in case of (iv)). For these, the nodes need,
for example, a public-private key pair and they have to sign
their messages using the private key, moreover, they have to
attach their public key to the message after it was signed.
(We note that assuming public-key cryptography in sensor
networks is not far fetched according to [43].) This, on one
hand, prevents a captured node to alter the measurement
data in the messages as the captured node cannot regenerate
the signature on the message after the modification. On the
other hand, a captured node cannot send messages in the
name of other nodes as, again, the captured node cannot
generate a valid signature, because it does not know the
private key of other nodes. However, it could be possible that
an attacker invents public-private key pairs and generates
cryptographically sound messages. We anticipate that this
attack is handled by using the extensions proposed later in
this section (i.e., identifier signing by the base station).

Signing and thus authenticating the messages also helps
in the case when the attacker aims at interfering with the
cluster head election process. In this attack, the attacker tries
to send an advertisement message in the name of a node that
would not become aggregator based on the position of the
reference point. The nodes that hear this fake advertisement
message would rebroadcast it until a node detects that its
own position is closer to the reference point than the position
in the advertisement. After this, the latter node would
rebroadcast its own advertisement and the whole cluster
would know which node is the real cluster head. However,
the numerous message broadcasts consumes a high amount
of energy, and thus, this attack should not be underestimated.
Signing not just the data messages but the advertisement
messages as well protects against this attack as, in this case,
an attacker cannot send a valid advertisement message in the
name of other nodes as it does not know the other nodes’
private key. A node that receives an advertisement message
that is not correctly signed can easily drop it and further wait
for a valid advertisement.

A typical attack against aggregator node election pro-
tocols is to manipulate the execution in such a way that
the nodes controlled by the adversary become aggregators
more frequently than they should. In this way, the adversary
can collect information from the network easier, as nodes
send their sensor readings to the aggregators. In PANEL,
such an attack can be perpetrated using fake information in
the announcement message in the aggregator node election
phase by a captured node that uses (i) its correct identifier,
but fake position information, or (ii) a fake identifier along
with fake position information. Moreover, (iii) the adversary
can deploy new nodes at desired positions. In the first
case, the captured node only alters its position information
and reports its correct identifier very close to the current

12 International Journal of Distributed Sensor Networks

reference point in each epoch. In the second case, the
captured node invents a new identifier along with a position
very close to the current reference point and reports this pair
in the announcement. In the third case, however, the attacker
does not have to capture a node, he only has to deploy a
new one close to the reference point (the attacker can do
this as he can calculate the position of the reference point
in advance).

PANEL can be easily extended with security measures to
prevent even these misdeeds. First of all, the base station can
use public-key cryptography and sign the nodes’ identifier
with its private key, and load the corresponding public key on
the sensors before deployment. Using this signed identifier,
a node that receives an announcement message can check
whether it contains a valid identifier or not using the public
key of the base station, but no one except the base station
is able to generate new identifiers. With this technique,
one can detect the cases (ii) and (iii), therefore, the only
remaining way to attack the aggregator node election phase
is case (i). One can thwart attack (i) by allowing the nodes
to keep in their routing tables the position information of
the other nodes from which they have already heard an
announcement. This information can be kept in the routing
tables even beyond the duration of an epoch. Therefore, the
nodes can detect if a captured or corrupted node tries to
report itself at different positions in different epochs. If the
above attack is detected, the detector node can flood an alarm
message in the cluster including the cheating node’s identifier
and the proof for the cheating, that is, the two advertisement
messages with the same identifier and different position
information, both signed by the cheating node. In case of
reception of such an alarm message the nodes can check
the proof of the cheating and exclude the related identifier
from further cooperation. We note that it is important that
all the nodes exclude the cheating node in order to maintain
a consistent view of the cluster. Without this requirement,
some nodes could elect the cheating node later as aggregator,
while some nodes could not, and this could result in cluster
fractioning.

Another straightforward attack against the data collec-
tion part of PANEL is the selective message dropping attack.
A captured forwarder node can selectively drop the messages
that it receives instead of forwarding them. With this attack,
however, the attacker can only slightly mislead the aggregate.
For example, if the aggregator function is the average, the
median, or the min/max, then the gain of the attacker is that
the final aggregate is based on fewer measurements than in
the unattacked case, which usually does not influence the
result significantly (assuming that the number of dropped
messages is not high). Moreover, each dropped measurement
alters the aggregation result, but in case of the average and
the median, the attacker does not know in advance whether
a dropped measurement results in increasing or in decreasing
the aggregate, and therefore, the strength of this kind of
attack is limited as well. We believe that the very nature
of sensor networks, namely that they are distributed and
comprise of a high number of nodes, is enough to mitigate
this type of attack.

In summary, to enhance the security of PANEL, we
propose to use (i) node identifiers that are signed by the
base station in order to prevent the acceptance of forged
identifiers, (ii) digital signatures in order to authenticate
the senders and protect the integrity of the messages, (iii)
the technique of remembering the nodes’ identifier and
position in order to prevent the captured nodes from
virtually changing their position, and (iv) a sample filtering
techniques like those in [42] in order to mitigate attacks
aiming at injecting false measurements.

6.2. Disconnected Clusters. A crucial assumption of PANEL is
that the nodes within a cluster form a connected subnetwork.
If this assumption is not satisfied, and the subnetwork within
a cluster is partitioned, then some nodes will not hear the
announcement of the node closest to the reference point, and
they will elect another node as aggregator. More specifically,
in this case, as many aggregators are elected in the cluster as
many partitions the subnetwork has.

Connectivity within every cluster can be ensured by
appropriately choosing the cluster size given the node density
of the network. The smaller the clusters are, the more likely
is that the subnetworks of the clusters will be connected
given a particular node cardinality. We observe, however, that
the node density may decrease during the lifetime of the
network because some nodes may exhaust their batteries and
die. One solution would be to introduce new nodes in the
network in order to keep the node density constant. Another
solution is to extend the area in which an announcement
is flooded beyond the borders of the corresponding cluster.
For instance, the announcement can also be flooded in the
neighboring clusters. This would increase the probability
that each node in the corresponding cluster receives the
announcement even if the subnetwork within that cluster
is partitioned, because those partitions may be connected
through the neighboring clusters. The downside of this
approach is the increased energy consumption of the nodes.

This latter approach is acceptable, if the nodes in
the neighboring clusters are ready to route even the data
messages of the disconnected clusters towards the affected
cluster head. However, assuming that the queries from the
base station are usually interested in aggregates of the past,
the following solution can be more energy efficient. During
the aggregator node election phase, we do extend the area
in which an announcement is flooded, and we tolerate that
multiple cluster heads are elected. These cluster heads collect
the measurements of the sensors, and send the aggregated
measurements to a backup cluster head as usual, also
including their position information into the message. The
backup cluster head can detect that multiple cluster heads
were elected in a cluster when it receives multiple backups
originated from the same cluster. This, on the one hand, can
be reported to the base station by the backup cluster head,
and, on the other hand, the subaggregates can be aggregated
in one message by the backup cluster head again, and sent
back to the originator cluster heads using solely position-
based routing in order to recover the consistency inside the
cluster.

International Journal of Distributed Sensor Networks 13

This latter solution is efficient in terms of communi-
cation overhead, but sometimes it is not applicable. For
example, in case of the average, it works fine, as the average of
the averages of two subsamples is equal to the average of the
sample consisting in the two subsamples. However, in case of
the median, it does not work. Therefore, for such aggregation
functions that need the whole sample to produce the correct
output, we propose to use the following method. At first, we
again require the aggregator nodes to include their position
information in the backup messages. Then, as the backup
cluster head detects the malfunctioning as already detailed,
it chooses a “final aggregator” (i.e., a node among the cluster
heads of the partitioned cluster that will finally perform the
aggregation), and it informs the originator nodes about the
disconnectivity and about the identity of the final aggregator.
The packet sent to the originator nodes has to contain the
identifier and position information of the final aggregator,
while the packet sent to the final aggregator has to contain
the identifier and position information of all the originators.
All of these packages have to be sent using solely position-
based routing. When the originator nodes receive such a
packet, they send all of the collected measurements (i.e., not
just the aggregates, but all of the measurements of all of the
nodes in the subcluster in the epoch) to the final aggregator
using position-based routing, which can then produce a
proper aggregate based on the received sample. Finally, the
final aggregator sends back the produced aggregate to the
originator nodes using solely position-based routing. At
the reception of this latter packet, the originators replace
their previous aggregate with the received one. With this
technique, even the partitioned subnetworks will have a
consistent picture of their cluster, independently from the
applied aggregator function. Moreover, queries will receive
correct answers independently from the queried cluster head.

6.3. Virtual Coordinates. The operation of PANEL relies on
the assumption that the nodes are aware of their geographic
positions. This means that some positioning mechanism
needs to be implemented in the network in order to
support PANEL. Note, however, that the aggregator node
election procedure itself does not require accurate position
information; indeed, the same procedure would work along
with the intra-cluster routing with virtual positions invented
by the nodes themselves once and forever at the beginning of
the operation of the network.

After all, interpreting the output of the pseudorandom
function H as the position of a reference point is also an
arbitrary choice; it could also be mapped to the identifier
space, and the protocol could elect the node whose identifier
is the closest to the “reference identifier” as the aggregator for
the current epoch.

Besides the aggregator node election procedure, another
component of PANEL, the intercluster routing protocol also
uses the position information of the nodes. Therefore, the
required accuracy of the position information is determined
by the position-based intercluster routing protocol used in
PANEL. Note, however, that one may consider replacing
the position-based intercluster routing protocol with a

nonposition-based protocol in order to further decrease the
dependency of PANEL on the accuracy of the positioning
mechanism.

7. Conclusion

We described PANEL: a position-based aggregator node
election protocol for wireless sensor networks. The novelty
of PANEL with respect to other aggregator node election
protocols is that it supports asynchronous sensor network
applications where the sensor readings are fetched by the base
stations after some delay. In particular, the motivation for the
design of PANEL was to support reliable and persistent data
storage applications, such as TinyPEDS.

PANEL uses the position information of the nodes to
determine which of them should become aggregator. PANEL
ensures load balancing, meaning that each node has nearly
the same chance to become aggregator, and it supports
intra and intercluster routing allowing sensor-to-aggregator,
aggregator-to-aggregator, base station-to-aggregator, and
aggregator-to-base station communications.

Besides describing the operation of PANEL, we also eval-
uated its efficiency by means of simulations. In particular, we
compared the cluster formation capabilities and the energy
consumption of PANEL to those of HEED: an aggregator
node election protocol well-known from the literature. Our
results show that PANEL behaves better than HEED in both
comparisons.

Acknowledgments

The work described in this paper is based on results of the IST
FP6 STREP UbiSec&Sens (http://www.ist-ubisecsens.org/).
UbiSec&Sens receives research funding from the European
Community’s Sixth Framework Programme. Apart from
this, the European Commission has no responsibility for the
content of this paper. The information in this document is
provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.
The presented work has also been partially supported by
the Hungarian Scientific Research Fund (contract number
T046664). The first author has been partially supported
by the Hungarian Academy of Sciences through the Bolyai
Research Fellowship. The second author has been partially
supported by Ericsson through the HSN Lab. Last, but not
least, the authors are thankful for Gergely Ács and Attila
Faddi for their help and support on this work. This work was
done while the second author was with BME.

References

[1] L. Buttyán and P. Schaffer, “PANEL: position-based aggregator
node election in wireless sensor networks,” in Proceedings of
the 4th IEEE Internatonal Conference on Mobile Adhoc and
Sensor Systems (MASS ’07), pp. 1–9, Pisa, Italy, October 2007.

14 International Journal of Distributed Sensor Networks

[2] J. Girao, D. Westhoff, E. Mykletun, and T. Araki, “TinyPEDS:
tiny persistent encrypted data storage in asynchronous wire-
less sensor networks,” Ad Hoc Networks, vol. 5, no. 7, pp. 1073–
1089, 2007.

[3] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc
sensor networks: a hybrid, energy-efficient approach,” in
Proceedings of the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’04), pp.
629–640, Hong Kong, March 2004.

[4] O. Younis, M. Krunz, and S. Ramasubramanian, “Node
clustering in wireless sensor networks: recent developments
and deployment challenges,” IEEE Network, vol. 20, no. 3, pp.
20–25, 2006.

[5] R. Rajagopalan and P. K. Varshney, “Data-aggregation tech-
niques in sensor networks: a survey,” IEEE Communications
Surveys & Tutorials, vol. 8, no. 4, pp. 48–63, 2006.

[6] V. Mhatre and C. Rosenberg, “Homogeneous vs heteroge-
neous clustered sensor networks: a comparative study,” in Pro-
ceedings of IEEE International Conference on Communications
(ICC ’04), pp. 3646–3651, Paris, France, June 2004.

[7] V. Mhatre and C. Rosenberg, “Design guidelines for wireless
sensor networks: communication, clustering and aggrega-
tion,” Ad Hoc Networks, vol. 2, no. 1, pp. 45–63, 2004.

[8] W. R. Heinzelman, A. Chandrakasan, and H. Balakrish-
nan, “Energy-efficient communication protocol for wireless
microsensor networks,” in Proceedings of the 33rd Annual
Hawaii International Conference on System Siences (HICSS
’00), January 2000.

[9] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
“An application-specific protocol architecture for wireless
microsensor networks,” IEEE Transactions on Wireless Com-
munications, vol. 1, no. 4, pp. 660–670, 2002.

[10] S. Lindsey and C. S. Raghavendra, “PEGASIS: power-efficient
gathering in sensor information systems,” in Proceedings of the
IEEE Aerospace Conference, vol. 3, pp. 1125–1130, 2002.

[11] S. Lindsey, C. Raghavendra, and K. M. Sivalingam, “Data gath-
ering algorithms in sensor networks using energy metrics,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 9, pp. 924–935, 2002.

[12] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hier-
archical clustering algorithm for wireless sensor networks,” in
Proceedings of the 22nd Annual Joint Conference on the IEEE
Computer and Communications Societies (INFOCOM ’03), pp.
1713–1723, San Francisco, Calif, USA, April 2003.

[13] M. Ye, C. F. Li, G. H. Chen, and J. Wu, “EECS: an energy
efficient clustering scheme in wireless sensor networks,”
in Proceedings of the 24th IEEE International Performance
Computing and Communications Conference (IPCCC ’05), pp.
535–540, Phoenix, Ariz, USA, April 2005.

[14] S. Soro and W. B. Heinzelman, “Prolonging the lifetime of
wireless sensor networks via unequal clustering,” in Proceed-
ings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’05), pp. 1–8, Denver, Colo,
USA, April 2005.

[15] C. Li, M. Ye, G. Chen, and J. Wu, “An energy-efficient
unequal clustering mechanism for wireless sensor networks,”
in Proceedings of the 2nd IEEE International Conference on
Mobile Ad-Hoc and Sensor Systems (MASS ’05), pp. 597–604,
Washington, DC, USA, November 2005.

[16] G. Gupta, “Load-balanced clustering of wireless sensor
networks,” in Proceedings of IEEE International Conference
on Communications (ICC ’03), pp. 1848–1852, Anchorage,
Alaska, USA, May 2003.

[17] G. Gupta and M. Younis, “Performance evaluation of load-
balanced clustering in wireless sensor networks,” in Proceed-
ings of the 10th International Conference on Telecommunica-
tions (ICT ’03), 2003.

[18] M. Younis, M. Youssef, and K. Arisha, “Energy-aware manage-
ment for cluster-based sensor networks,” Computer Networks,
vol. 43, no. 5, pp. 649–668, 2003.

[19] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “An efficient
clustering-based heuristic for data gathering and aggregation
in sensor networks,” in Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC ’03), vol.
3, pp. 1525–3511, New Orleans, La, USA, March 2003.

[20] K. Kalpakis, K. Dasgupta, and P. Namjosh, “Efficient algo-
rithms for maximum lifetime data gathering and aggregation
in wireless sensor networks,” Computer Networks, vol. 42, no.
6, pp. 697–716, 2003.

[21] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh, “Optimal
energy aware clustering in sensor networks,” Sensors, vol. 2, no.
7, pp. 258–269, 2002.

[22] I. Gupta, D. Riordan, and S. Sampalli, “Cluster-head election
using fuzzy logic for wireless sensor networks,” in Proceedings
of the 3rd Annual Communication Networks and Services
Research Conference, pp. 255–260, Halifa, Canada, May 2005.

[23] P. Popovski, F. H. P. Fitzek, H. Yomo, T. K. Madsen, and R.
Prasad, “MAC-layer approach for cluster-based aggregation in
sensor networks,” in Proceedings of the International Workshop
on Wireless Ad-Hoc Networks (IWWAN ’04), pp. 89–93, Oulu,
Finland, June 2004.

[24] M. Demirbas, A. Arora, and V. Mittal, “FLOC: a fast local
clustering service for wireless sensor networks,” in Proceedings
of Workshop on Dependability Issues in Wireless Ad Hoc
Networks and Sensor Networks (DIWANS ’04), 2004.

[25] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Initializing
newly deployed ad hoc and sensor networks,” in Proceedings
of the Annual International Conference on Mobile Computing
and Networking (MOBICOM ’04), pp. 260–274, Philadelphia,
Pa, USA, 2004.

[26] S. Banerjee and S. Khuller, “A clustering scheme for hierar-
chical conrol in multi-hop wireless networks,” in Proceedings
of the 20th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM ’01), Anchorage,
Alaska, USA, April 2001.

[27] H. Chan and A. Perrig, “ACE: an emergent algorithm for
highly uniform cluster formation,” in Proceedings of the 1st
European Workshop on Sensor Networks, pp. 154–171, Berlin,
Germany, January 2004.

[28] M. Sirivianos, D. Westhoff, F. Armknecht, and J. Girao, “Non-
manipulable aggregator node election protocols for wireless
sensor networks,” in Proceedings of the 5th International
Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt ’07), pp. 1–10, Limassol,
Cyprus, April 2007.

[29] D. Liu, “Resilient cluster formation for sensor networks,” in
Proceedings of the 27th International Conference on Distributed
Computing Systems (ICDCS ’07), p. 40, Toronto, Canada, June
2007.

[30] J. N. Al-Karaki, R. Ul-Mustafa, and A. E. Kamal, “Data
aggregation in wireless sensor networks—exact and approx-
imate algorithms,” in Proceedings of the Workshop on High
Perfomance Switching and Routing (HPSR ’04), pp. 241–245,
Phoenix, Ariz, USA, April 2004.

[31] M. Maróti, B. Kusy, G. Balogh, et al., “Radio interferometric
geolocation,” in Proceedings of the ACM Workshop on Security

International Journal of Distributed Sensor Networks 15

of Ad Hoc and Sensor Networks (SENSYS ’05), pp. 1–12, San
Diego, Calif, USA, November 2005.

[32] S. Čapkun, M. Hamdi, and J.-P. Hubaux, “GPS-free position-
ing in mobile ad hoc networks,” Cluster Computing, vol. 5, no.
2, pp. 157–167, 2002.

[33] S. Ganeriwal, S. Capkun, C.-C. Han, and M. B. Srivastava,
“Secure time synchronization service for sensor networks,” in
Proceedings of the ACM Workshop on Wireless Security (WiSe
’05), pp. 97–106, Cologne, Germany, September 2005.

[34] K. Sun, P. Ning, C. Wang, A. Liu, and Y. Zhou, “TinySeRSync:
secure and resilient time synchronization in wireless sensor
networks,” in Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS ’06), pp. 264–
277, Alexandria, Va, USA, November 2006.

[35] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless
routing for wireless networks,” in Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking
(MOBICOM ’00), pp. 243–254, New York, NY, USA, 2000.

[36] “TinyOS 2,” http://www.tinyos.net/tinyos-2.x/doc/.
[37] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate

and scalable simulation of entire TinyOS applications,” in
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03), pp. 126–137, Los
Angeles, Calif, USA, November 2003.

[38] TinyOS Alliance, “PowerTOSSIM for TinyOS 2.x,” http://
tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x-contrib/cedt/

[39] XBow Corporation, “Mica2 Datasheet,”
https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/
DataSheets/mica2.pdf.

[40] Chipcon Corporation, “CC1000 Datasheet,”
http://www.chipcon.com/files/CC1000 Data Sheet 2 2.pdf.

[41] ATMEL Corporation, “ATmega128L Datasheet,”
http://www.datasheetcatalog.com/datasheets pdf/A/T/M/E/
ATMEGA128L.shtml.

[42] L. Buttyán, P. Schaffer, and I. Vajda, “RANBAR: RANSAC-
based resilient aggregation in sensor networks,” in Proceedings
of the 4th ACM Workshop on Security of Ad Hoc and
Sensor Networks (SASN ’06), pp. 83–90, Alexandria, Va, USA,
October 2006.

[43] K. Piotrowski, P. Langendoerfer, and S. Peter, “How public
key cryptography influences wireless sensor node lifetime,” in
Proceedings of the 4th ACM Workshop on Security of Ad Hoc
and Sensor Networks (SASN ’06), pp. 169–176, Alexandria, Va,
USA, October 2006.

