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Abstract

In this paper, we propose a new model of resilient
data aggregation in sensor networks, where the aggre-
gator analyzes the received sensor readings and tries
to detect unexpected deviations before the aggregation
function is called. In this model, the adversary does not
only want to cause maximal distortion in the output of
the aggregation function, but it also wants to remain
undetected. The advantage of this approach is that in
order to remain undetected, the adversary cannot dis-
tort the output arbitrarily, but rather the distortion is
usually upper bounded, even for aggregation functions
that were considered to be insecure earlier (e.g., the av-
erage). We illustrate this through an example in this
paper.

1. Introduction

The problem of resilient data aggregation is to per-
form data aggregation in the presence of an adversary
that can modify the input to the aggregation function.
In fact, there are two ways in which the input can be
modified. Firstly, the messages that carry the data
from the sensors to the place of aggregation (usually
the base station) can be modified in transit. This can
be detected by cryptographic techniques, and resilient
data aggregation is not concerned with this problem.
Secondly, the adversary may compromise some sensors
in the network and affect their readings (e.g., it can in-
crease the temperature around a temperature sensor).
This latter kind of attack cannot be prevented, nei-
ther detected, by cryptographic mechanisms. Resilient
aggregation is concerned with this problem.

The term resilient aggregation has been coined by
David Wagner in his SASN 2004 paper [5]. In that pa-

per, Wagner investigates the following question: Which
aggregation functions can be securely and meaningfully
computed in the presence of a few compromised sen-
sors? The rather bad news of Wagner’s paper is that
some of the very useful and widely used aggregation
functions, such as the average, the minimum, and the
maximum, are inherently insecure, which means that
an adversary can cause arbitrary distortion in the ag-
gregated value by modifying only a small number of
sensor readings. Wagner proposes to use the median
instead of the average, which is a more robust aggre-
gation function. He also proposes trimming as a mech-
anism that can help to achieve resilience.

Apart from the idea of trimming, Wagner assumes
that the data is fed into the aggregation function im-
mediately, without prior analysis. In this paper, we
relax this assumption. More precisely, we propose a
novel data aggregation model, where the aggregator
analyzes the input data before aggregation, and tries
to detect unexpected deviations in the received sen-
sor readings. (In fact, trimming is a special case of
this more general idea.) In our model, the adversary
does not only want to cause maximal distortion in the
output of the aggregation function, but it also wants
to remain undetected. We show that in this case, the
distortion caused by the adversary can usually be up-
per bounded, even for aggregation functions that were
considered to be insecure by Wagner in [5] (e.g., the
average). This result has high practical importance,
since these functions are commonly used in practice.

We must emphasize that attack detection is possible
only if the detector has some a priori knowledge about
the system. For instance, an unusually high value can
be detected only if one knows what the “usual value”
should be. We note, however, that assuming some a
priori knowledge is reasonable in most of the practical
applications. It might be known, for instance, that the



distribution of the observed random variable belongs to
a particular family of distributions, even if the actual
parameters of the distribution are not known. Our
general idea is, therefore, to take advantage of this a
priori knowledge by letting the detector check if the
received data is consistent with it. Clearly, the actual
algorithm to be used for checking consistency depends
on the nature of the knowledge available; we present a
detailed example later in the paper.

The rest of the paper is organized as follows: In
Section 2, we introduce our model of data aggregation
with attack detection. Then, in Section 3, we study the
properties of the model through a specific example. In
Section 4, we report on some related works. Finally, in
Section 5, we conclude the paper.

2. Model

Our model of data aggregation with attack detec-
tion is illustrated in Figure 1. We assume that there
are n sensors, which perform some measurement and
send their readings to a base station. The base sta-
tion aggregates the received data; the objective of this
aggregation is to estimate the value of an unknown pa-
rameter θ. We represent the reading of the i-th sensor
by a random variable Xi, whose distribution is a func-
tion of θ. For instance, θ may be the average tempera-
ture, and Xi’s distribution may be N (θ, 1), the Gauss
distribution with mean θ and variance 1. We assume
that Xi (i = 1, 2, . . . , n) are identically distributed and
independent. X̄ = (X1, X2, . . . , Xn) is the vector that
contains the readings of all sensors.
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Figure 1. Model of data aggregation with at-
tack detection

The adversary is allowed to modify the sensor read-
ings before they are submitted to the aggregation func-
tion. This is modelled by a function A, which inputs
the original sensor readings X̄ and outputs the modi-
fied vector X̄ ′.

The aggregation procedure S has two steps. First,
input X̄ ′ is analyzed in order to detect attacks. This
is modelled by a function D, which outputs 1 if an

attack is detected, and 0 otherwise. We assume that
if an attack is detected, then X̄ ′ is thrown away. If
no attack is detected, then the processing continues
with executing the aggregation function G on input
X̄ ′, which outputs the aggregated value Θ̂. Formally,
the operation of S is described as follows:

S(X̄ ′) =
{

G(X̄ ′) = Θ̂ if D(X̄ ′) = 0
⊥ if D(X̄ ′) = 1

(1)

where ⊥ is a special symbol that means that an attack
was detected.

We assume that the adversary wants to maximize
the distortion d of the aggregation function, which we
define as follows:

d = E[ |θ − Θ̂| ] = E[ |θ −G(A(X̄))| ] (2)

In addition, we assume that the adversary does not
want to be detected, or more precisely, the adversary
wants to keep the probability of successful detection of
an attack under a given value p∗:

Pr{D(X̄ ′) = 1} = Pr{D(A(X̄)) = 1} ≤ p∗ (3)

We assume that the adversary knows the detection
algorithm D (including the a priori knowledge used in
the algorithm) and the aggregation function G. We fur-
ther characterize the adversary by the number k < n of
sensors that it has compromised. This means that X̄
and X̄ ′ can differ in at most k positions. Finally, fol-
lowing [5], we may distinguish omniscient and myopic
adversaries. An omniscient adversary first observers
the readings of all n sensors, then chooses k sensors
to attack and modifies their readings. A myopic ad-
versary can only observe and modify the readings of k
sensors that are selected before the attack.

3. Attack detection using sample halving

In this section, we illustrate through an example how
attack detection can be implemented, and how useful
it can be in upper bounding the distortion achievable
by the adversary.

We consider a myopic adversary, which can observe
and modify the readings of k ¿ n sensors (selected
before the attack). The adversary attacks by adding a
constant value m > 0 to the reading of each selected
sensor. Therefore, X ′

i = Xi for the non-compromised
sensors, and X ′

i = Xi+m for the compromised ones. Of
course, it is not known which sensors are compromised.

Recall the assumption that the sensor readings Xi

(1 ≤ i ≤ n) are independent and identically dis-
tributed. We assume that nothing is known about this
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distribution except for the fact that its variance is 1.
We assume that the goal of the aggregator is to esti-
mate the mean θ, and therefore a natural choice for the
aggregation function is the average:

G(X̄ ′) =
1
n

n∑

i=1

X ′
i (4)

Then, the distortion d achieved by the adversary can
be computed as follows:

d =
k ·m

n
(5)

The attack detector uses the following algorithm.
It first computes Z1 = X ′

1 + . . . + X ′
n/2 and Z2 =

X ′
n/2+1 + . . . + X ′

n, where, for simplicity, we assume
that n is even, and then it computes W = Z1−Z2. It is
known that if there was no attack, then the distribution
of W would be N (0,

√
n), the Gauss distribution with

mean 0 and variance
√

n. Therefore, it is suspicious if
|W | is not close to 0. The attack detection algorithm
uses a threshold hα > 0 in the natural way:

D(X̄ ′) =
{

1 if |W | > hα

0 otherwise (6)

The value of hα is determined by a parameter α of the
detection algorithm that represents the probability of
false detection in the case when there is no attack (H0

hypothesis):

Pr{|W | > hα | H0} = 2− 2 · Φ(hα/
√

n) = α (7)

The relationship of hα and α is illustrated in Figure 2.
Now, we will determine the probability of detection

in the case when there is an attack (H1 hypothesis).
We use the following simple observation: in this ex-
ample, the expected value E[W ] of W is a multiple of
m, and it lies in the interval [−km, km]. Indeed, if
k1 denotes the number of compromised readings in the
first half X ′

1, . . . , X
′
n/2 of the readings, and k2 denotes

the number of compromised readings in the second half
X ′

n/2+1, . . . , Xn of the readings, where k1+k2 = k, then

E[W ] = E[X ′
1 + . . . + X ′

n/2]− E[X ′
n/2+1 + . . . + X ′

n]

= (
n

2
· θ + k1 ·m)− (

n

2
· θ + k2 ·m)

= (k1 − k2) ·m
Therefore, we can write the following for the probabil-
ity of detection in the case when there is an attack:

Pr{D(X̄ ′) = 1 | H1} = (8)
k∑

`=−k

Pr{|W | > hα | E[W ] = `m} · Pr{E[W ] = `m}
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Figure 2. The value of hα is determined by the
probability α of false detection in the case
when there is no attack, which corresponds
to the tails of the distribution N (0,

√
n)

The first factor of the terms in the above sum can be
easily computed using the fact that if E[W ] = µ, then
the distribution of W is N (µ,

√
n) (see also Figure 3

for illustration):

Pr{|W | > hα | E[W ] = µ} =
= Pr{W > hα | E[W ] = µ}+

Pr{W < −hα | E[W ] = µ}
= 1− Φ

(
hα − µ√

n

)
+ Φ

(−hα − µ√
n

)
(9)

In order to compute the second factor, we assume
that the sample is divided into two halves in a random
manner (or equivalently, that the adversary compro-
mises sensors in a random manner, and it does not
know in advance, in which halves the compromised
sensors will fall when the detection algorithm is run).
Therefore, the probability of the event E[W ] = `m is
equal to the probability that the difference between the
number of compromised sensors in the two halves is `,
when the sample is halved randomly. This can be cal-
culated using basic combinatorics:

• if k is odd, then Pr{E[W ] = `m} = 0 if ` is even,
and

Pr{E[W ] = `m} =

(
k

k+`
2

)
·
(

n− k
n
2 − k+`

2

)

(
n
n
2

)

(10)
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Figure 3. The distribution of W in the case
when there is an attack is N (µ,

√
n), where

µ = E[W ]. The probability of detection corre-
sponds to the tails of this distribution.

if ` is odd and −k ≤ ` ≤ k;

• if k is even, then Pr{E[W ] = `m} = 0 if ` is odd,
and

Pr{E[W ] = `m} =

(
k

k+`
2

)
·
(

n− k
n
2 − k+`

2

)

(
n
n
2

)

(11)
if ` is even and −k ≤ ` ≤ k.

Using the above formulae and expression (9), we
can calculate (8) for given values of the parameters.
Figure 4 illustrates the result of this calculation for
n = 100 and α ≈ 0.05 (which gives hα = 20). The
different curves belong to different values of k.

It is easy to see that if the adversary wants to keep
the attack detection probability below a given thresh-
old p∗, then the distortion that it can achieve is severely
limited. For instance, if p∗ = 0.3, then the distortion
cannot be larger than 0.5 even if 9 out of 100 sen-
sors are compromised. For the same value of p∗, the
maximum achievable distortion reduces to about 0.1 if
only 1 compromised sensor is used in the attack. In-
terestingly enough, the upper bound on the achievable
distortion does not depend on the value of θ (i.e., the
parameter to be estimated), which means that the rel-
ative distortion d/θ can be very small for large values
of θ.
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Figure 4. The attack detection probability as
a function of the distortion achieved by the
adversary for n = 100 and α ≈ 0.05 (which
gives hα = 20). The different curves belong
to different values of k.

3.1. Generalization

When trying to distort the distribution parameters
(mean, median, etc.), the attacker puts more weight
into one of the tails of the probability density func-
tion, which leads to an asymmetric, skewed distribu-
tion. In some sense, the sample halving technique de-
scribed above tries to detect this asymmetry. The idea
of detecting asymmetry can be generalized as follows.
It is well known that the standard characterizing pa-
rameters of a distribution are the mean (or median),
the standard deviation, the kurtosis, and the skewness.
Here, we emphasize the role of the skewness, which
measures the asymmetry of the distribution. It is rea-
sonable to assume that some empirical distribution of
the skewness in case there is no attack is available,
since normally, the system is not attacked, most of the
time. The attack detection algorithm can compare the
skewness of the sample to the expected value of the
skewness in order to decide if an attack is taking place
or not.

4. Related work

Resilient aggregation has strong connections to ro-
bust statistics as this has been pointed out in [5]. Ro-
bust statistical techniques have been used in sensor
networks for various tasks, such as localization [3] and
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calibration [1], but they have not been applied in the
context of data aggregation in sensor networks.

Wagner’s paper [5] considers the problem of resilient
data aggregation in sensor networks. However, that
paper has a different model, where the base station
“blindly” starts to compute the aggregation function
on the received data without trying to detect if an at-
tack has taken place. We attempt to detect attacks
before starting the aggregation, which allows us to use
a wider range of aggregation functions.

Finally, another set of related works [2, 4] is con-
cerned with the application of cryptographic tech-
niques, such as encryption and authentication, in or-
der to prevent that forged data are input into the ag-
gregation function. While those techniques allow the
detection of an adversary that modifies the data pack-
ets that carry the sensor readings, they cannot be used
to detect the type of adversaries considered in this pa-
per that can falsify the sensor readings before they are
placed in the data packets.

5. Conclusion and future work

In this paper, we proposed a new model of resilient
data aggregation in sensor networks, where the aggre-
gator analyzes the received sensor readings and tries
to detect unexpected deviations before the aggregation
function is called. We assumed that the adversary does
not only want to distort the output of the aggregation
function, but it also wants to remain undetected. We
showed that under this assumption, the achievable dis-
tortion is usually upper bounded, even for aggregation
functions that were considered to be insecure earlier
(e.g., the average).

We illustrated our approach through a specific ex-
ample where the attack detection algorithm splits the
received sample into two halves, and these halves are
checked against each other. We have also performed
the calculations for the case when the attack detection
algorithm uses the χ2-test to check the received sample
against a hypothetical distribution, and one parameter
of the distribution is estimated from the sample itself.
However, due to space limitations, this latter calcula-
tion has not been included in this paper.

The work presented in this paper is a work-in-
progress. We intend to further study the behavior of
our model through other examples. Another interest-
ing future direction that we intend to explore is to con-
sider redundant, or highly correlated sensor readings.
We believe that assuming correlated measurements will
further limit the capabilities of the adversary, as attack
detection becomes easier, especially if the adversary is
not aware of which sensors are correlated.
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