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Abstract

In this paper, we consider the problem of resilient data aggregation in sensor networks, namely, how to aggregate sensor readings collected by
the base station when some of those sensor readings may be compromised. Note that an attacker can easily compromise the reading of a sensor
by altering the environmental parameters measured by that sensor. Wepresent a statistical framework that is designed to mitigate the effects
of the attacker on the output of the aggregation function. The main novelty of our approach compared to most prior work on resilient data
aggregation is that we take advantage of the naturally existing correlation between the readings produced by different sensors. In particular,
we show how spatial correlation can be represented in the sensor network data model, and how it can be exploited to increase the resilience of
data aggregation. The algorithms presented in this paper are flexible enough to be applied without any special assumption on the distribution
of the sensor readings or on the strategy of the attacker. The effectiveness of the algorithms is evaluated analytically considering a typical
attacker model with various parameters, and by means of simulation considering a sophisticated attacker.
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1. Introduction

Wireless sensor networks are considered as a promising tech-
nology that has a wide range of applications including envi-
ronmental monitoring for agricultural and ecological purposes,
wild life monitoring, remote patient monitoring in electronic
health care systems, building automation, and reconnaissance
applications for military purposes. Sensor networks typically
consist of a large number of sensor nodes and a few base sta-
tions. The sensor nodes measure some physical phenomena
(e.g., temperature, humidity, vibration) that are important in the
given application, and report their sensor readings to the base
stations (typically via wireless communication channels). As
both the number of the sensors and the amount of the measure-
ments that they perform can be large, in many applications, the
base stations aggregate the individual sensor readings into a
compact report. Aggregation can be useful to keep the amount
of information that need to be handled under control, and to
improve the energy-efficiency of the network. The typical ag-
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gregation functions include the average, the minimum, and the
maximum.

A potential problem is that sensor readings can be compro-
mised before they reach the base station. This can be achieved
by an attacker either by modifying the content of the data pack-
ets that carry the sensor readings, or by altering the environmen-
tal parameters around some sensors and corrupt their readings.
While the former type of attack can be detected by standard
cryptographic message authentication and integrity protection
techniques, the latter type of attack cannot be detected, nor pre-
vented, by cryptographic means. In addition, the latter type of
attack is relatively easy to carry out: Firstly, an attackercan
easily approach a sensor node, as sensor networks typicallyas-
sumed to operate in an unattended manner. Secondly, corrupting
the measurement of a nearby sensor does not require sophisti-
cated mechanisms, but in most of the cases, everyday tools can
be used effectively (e.g., a lighter, a pocket lamp, or a glass of
water can be used to corrupt temperature, light, and humidity
measurements, respectively). Unfortunately, many usefulag-
gregation functions (including those mentioned above) aresen-
sitive to even a single compromised sensor reading, meaning
that their output can be arbitrarily modified by appropriately
modifying a single sensor reading. Depending on the nature of
the application, this may have fatal consequences.
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The goal of resilient data aggregation is to alleviate the prob-
lem described above. More specifically, resilient data aggrega-
tion schemes try to minimize the effect of an environment alter-
ing attacker on the output of the aggregation function. However,
the related solutions often make the simplifying assumption
that the sensor nodes produceindependentand identically dis-
tributed measurements. In reality, however, the measurements
made by the sensors always have some kind of relationship
among them. This relationship can be either temporal corre-
lation (i.e., when the nodes’ sensing results show regularity
in time), or spatial correlation (i.e., when the nodes’ physical
proximity is the basis of the relationship).

Contrary to several prior work on resilient data aggregation
in sensor networks, in this paper, we assume that the sensor
readings arecorrelated. In particular, we will focus on spatially
correlated measurements. The rationale is that, in most of the
sensor network applications, one needs to have a densely de-
ployed network in order to satisfy the sensing coverage and ra-
dio connectivity requirements. Consequently, sensors in prox-
imity will measure spatially correlated values of the same phe-
nomenon where the degree of correlation increases as the in-
ternode distance decreases.

Spatial correlation can be exploited to cross-check the sensor
readings, testing whether there is an (environment altering) at-
tack or not. This naturally existing characteristic of the sample
produced by the sensor network helps in improving the attack
detection algorithms proposed so far in this context. Further-
more, considering correlation is a significant step towardshav-
ing a more realistic data model of sensor networks in general.

Hereinafter, we introduce our sensor network model that is
able to handle spatial correlation, and we also introduce a novel
resilient data aggregation scheme developed for sensor net-
works that exploits the spatial correlation of the sensor readings.
Moreover, we study our proposed data aggregation scheme an-
alytically and by means of simulation, and show how the ef-
fectiveness of attack detection can be improved by considering
correlation. Our previously published short conference paper
[20] deals with the same problem. This paper should be viewed
as a follow-up and substantially extended version of that short
paper.

The rest of this paper is organized as follows: In Section 2,
we summarize the papers considering correlation in sensor net-
works and the papers related to resilient aggregation. In Sec-
tion 3, we present our sensor network model. In Section 4, we
introduce our novel correlation-based resilient data aggregation
approach, and we evaluate its efficiency. Then, in Section 5,
we answer some emerging questions, and finally, in Section 6,
we conclude our work and propose some interesting future re-
search topics.

2. Related Work

Even though the naturally existing phenomenon of correla-
tion is sometimes neglected in research papers consideringsen-
sor measurement data, it can be exploited in many ways. In the
following, we present the related papers in the field of data ag-

gregation, deviation detection and attack detection considering
correlation.

A research paper that aims at data aggregation considering
correlation is [30], the authors of which propose an aggrega-
tor node election mechanism that aims at load balancing too.
According to this mechanism, the network is partitioned into
equally sized sectors, wherein the aggregator nodes – that are
selected considering the correlation – collect the data from their
children in case an event occurs. In [29], correlation is exploited
in in-network aggregation. The highly correlated nodes areas-
sumed to have similar measurement results, therefore, onlyone
of them is sufficient to fulfill the sensing task. Relying on this
assumption, the proposed solution reduces the number of trans-
missions and provides approximate results to aggregate queries
by utilizing the spatial correlation of sensor data.

There are papers that aim at detecting anomalies (outliers,
deviations) in the system usually by exploiting the phenomenon
of correlation, but not in the context of sensor networks. In[14],
the authors propose a method to detect anomalous network con-
ditions with the help of PCA (Principal Component Analysis),
while in [17], one can read about an outlier detection scheme
that uses approximate computations in order to accelerate the
operation, and detects outliers with the help of the so called
’multi-granularity deviation factor’. While these papers are not
designed for sensor networks, there is a related solution for
sensor networks as well [16], in which the authors deal with
the problem of identification of deviating values in streaming
data. Regrettably, this latter paper assumes a special network
topology with a powerful backbone, and applies kernel density
estimators, thus restricting itself to i.i.d. samples.

These papers do not consider attacks, only anomalies (or
outliers, deviations). The main difference between the twocon-
cepts is that anomalies are random events, while attacks are
controlled events that aim at disturbing some functionalities of
the sensor network. The problem of defending such attacks in
sensor networks is obviously important, hence, there are more
and more papers discussing countermeasures.

An example of such papers is [22], in which the authors pro-
pose a method to reduce the effect of unauthorized data inserted
by sybil and compromised nodes. The paper exploits correla-
tion using a modified, sliding-window t-test that will pointout
the nodes that are suspected to be captured or sybil nodes, and
these nodes have to authenticate themselves in this case. Ifa
node fails to authenticate itself, its message will be dropped and
the malfunctioning will be reported to the base station. Another
related paper is [28], in which one can read about an en-route
filtering method against injected false messages using multiple
MACs (Message Authentication Codes). The main idea here is
that the sensor nodes have disjoint sets of cryptographic keys,
and the nodes that sense the same event can attach multiple
MACs calculated by each of them to the message. Thus, if an
attacker wants to forge a message, it has to forge several MACs
as well, but this forged message will be detected during its
route to the base station as the forwarding nodes can check the
validity of the MACs with some probability. Regrettably, nei-
ther [22] nor [28] propose resilient solutions: these solutions
are not applicable against an outsider attacker who alters the
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measured parameters of the environment in order to have the
sensors perform falsified measurements. This kind of attackre-
sults in messages that are cryptographically sound but false in
content. This is a serious security threat in the sensor networks,
as already mentioned in Section 1.

Some researchers already considered the problem of such
messages that cannot be filtered out using cryptographic checks,
however, usually under the assumption that the measurements
of the sensors are independent. One of the first research papers
on this topic was [26]. The author investigates the resilience of
the commonly known aggregation functions like, for example,
the average, the min/max, and the median. Not surprisingly,
most of these function are not resilient even against one com-
promised sample element (which can originate from only one
compromised node), and only the median is declared to be re-
silient. A question naturally arises: what can we do if we do not
want to calculate the median of the sample, but something else
in a secure way? In [9] the authors address the same problem
of compromised sensor readings. However, this paper shows a
method only for attack detection. In the model of [9], the at-
tacker does not only want to cause a distortion in the output
of the aggregation function, but he also wants to remain unde-
tected. This trade-off helps in upper bounding the strengthof the
attacker notably. Another paper of the same authors [8] gives a
complex answer to this question by introducing the RANBAR
algorithm. This algorithm is able to do statistical sample fil-
tering, thus, it helps to obtain a cleaned sample which can be
a basis for secure calculation of any kind of aggregates, even
those that were declared to be not resilient in [26].

In the most related paper [10], one can read about a secu-
rity solution that already assumes compromised nodes and the
defense against them with the help of correlation. The authors
employ PCA (Principal Component Analysis) in order to detect
the misbehaviour of the nodes and filter out their measurements.
According to the simulation results, the proposed methodol-
ogy overperforms conventional anomaly detection approaches.
However, the paper assumes a special network topology with
more powerful primary nodes that, at the same time, cannot
be compromised. Moreover, the a priori assumption in PCA
is that the most important components (i.e., sensors) are those
that have a high variance in their values, which is not true in
general in our case.

After having presented the related literature, in the following
sections we introduce our solution for resilient data aggrega-
tion in sensor networks. Our approach, described in detail in
Sections 3 and 4, exploits correlation to ensure the resilience
of data aggregation even in case of an attacker’s activity.

3. General Assumptions

In the next subsection, we present the set of assumptions we
made on the attacker, which together is called attacker model
in the security literature. After that, we present the data model
that we employ for the calculations throughout the paper.

3.1. Assumptions on the adversary

The adversary we consider is able to produce some kind of
”offsets” which are added to the measurements of the sensors.
These offsets are under the control of the adversary, but are
considered to be independent and identically distributed.More-
over, those are considered to be of the same kind as the sensor
readings, e.g., temperature in case of thermometer sensorsor
light in case of photometer sensors. This attack can totallydis-
tort the aggregate considering the commonly used aggregation
functions like the average or the min/max.

We do not restrict the adversary in the number of sample
elements he is able to compromise, but we assume that the
adversary’s knowledge do not extend to the distribution of the
sample produced by the sensor network, neither to the size of
the sample gathered by the base station in a given query (some
of these assumptions will be relaxed later in Section 4.2.3).
Finally, we do not consider any particular distribution forthe
attacker’s offset.

An example of such an attack is the following. Let us assume
that we have a sensor network on the vineyard that measures
some microclimate characteristics by calculating the min/max
(or the average, etc.) of the measurements of the individual
nodes [2,7,6,23]. The owner of the vineyard is assisted by the
aggregated reports in the decision making about what task is
needed to be done on the vineyard, which ensures the maximum
quality of the grapes. Obviously, a malicious outsider can easily
mislead the aggregate by approaching only one sensor node
and compromising its measurement for example by a lighter, or
by using chemicals, according to the measured characteristics.
The misleaded aggregate can encourage the owner to perform
inappropriate operations (e.g., grape harvesting in wrongtime,
inappropriate usage of chemicals, etc).

Another example can be considered in the case of bridge
monitoring sensor networks that are deployed to perma-
nently monitor the structural and seismic conditions of the
bridge [15,4]. Even one compromised measurement in the ag-
gregate of these measurements can cause false alarms for the
bridge maintainers, and what is more, suppressed alarms can
lead to disasters because of the missing maintenance.

We emphasize that the mentioned attacker does not have to
tamper with the nodes or reverse-engineer the crypthographic
keys, neither needs he to destroy the communication protocols
used in the network – he only needs physical proximity!

3.2. The data model

In our envisioned application, the base station collects a sam-
ple of measurements from the sensors and tries to aggregate
them in a secure way. Each sensor contributes to this sample
with its measurement by replying to the base station’s queryin
an encrypted message. (We note that assuming even public key
encryption in sensor networks is not far-fetched accordingto
[18]. Moreover, we note that our scheme supports distributed
in-network aggregation as well, see Section 5 for the related
discussion.) Upon reception of the messages the base station
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decrypts the messages and aggregates their information con-
tent. The aggregation is done in two steps: At first, the sample
is analyzed and a decision is made whether it is compromised
or not. After that, an aggregation step is performed depending
on the previous decision. The aggregation step is differentfor
the two outputs of the decision function, namely when an at-
tack is detected or when no attack is detected. If there is no
attack detected then usual aggregation is performed, otherwise
the final output is calculated by extrapolation based on the pre-
vious outputs (see Figure 1). This separation of cases helpsus

Det()

D = 0

D = 1

yAggregation

Extrapolation

Attack

Enhanced Data Aggregation Algorithm

Sample

y
extr

Fig. 1. Resilient aggregation scenario including the attacker and the data
processing part

to obtain a significantly smaller distortion at the output ofthe
aggregation function than having done the aggregation without
attack detection.

We assume that the sensor network data is normally dis-
tributed. The choice of the normal distribution is a common
assumption in practice when measurement data is considered.
However, we note that the algorithms we propose in the fol-
lowing sections are applicable to any kind of sampling distri-
butions; the assumption on the normal distribution is used only
in the derivation of the analytical and simulation results in this
paper.

In order to be able to measure the gain of our approach, we
model the sensor network to produce measurements that can
be represented by identically distributed random variables, but
instead of assuming the independence of these random variables
we exploit the correlation among them (in other words, we
consider dependent random variables). Therefore, our sensor
network data model consists of the following elements:
– n: number of sensor readings in the sample
– t: number of readings compromised by the attacker
– Xi: normally distributed random variable denoting theith

uncompromised reading (Xi ∼ N (µ, σ), 0 < i ≤ n)
– rXi,Xj

= r: correlation coefficient betweenXi andXj ,∀i, j,
i 6= j

– Gi: arbitrarily distributed random variable denoting the ad-
ditive offset produced by the attacker (Gi is independent of
Xi, ∀i)

– Zi = Xi + Gi: random variable denoting the compromised
sample elements (0 < i ≤ t)
As this model handles the dependence of the sensor mea-

surements, it can help us to quantify the power of correlation
in attack detection. In the next section, we will show how this
quantification can be performed.

4. Exploiting Correlation in Resilient Data Aggregation

Correlation among sample elements is a naturally existing
phenomenon. In this section, we show how this correlation can
be exploited. We start with a simplified scenario of two nodes
in Section 4.1 in order to get a first insight into the problem
and to prepare the ground for the general case. After that, we
generalize our model in Section 4.2 for arbitrary number of
nodes and attack strengths.

4.1. The two-nodes scenario

As a first step, we investigate the case when there are only
two sample elements (i.e.,n = 2), and there is at most one el-
ement that is attacked (i.e.,t ≤ 1). Our primary aim now is to
pursue attack detection on this 2-element sample with a small
error probability (both false negative and false positive). Then,
based on this decision, we are able to perform data aggregation
of the same 2-element sample with a remarkably lowered dis-
tortion, where the distortion is defined as the expected value of
the squared absolute difference between the aggregate of the
sample and the aggregate in case there is no attack. Our sec-
ondary aim is to show how correlation influences our results
calculated for the distortion.

Algorithm 1 Det(x1, x2) Attack Detection Algorithm

1: Randomly select one element from the sample{x1, x2} and
let the selected element be denoted byx′, the remaining
one byx′′

2: Calculate the(1 − α)% confidence interval forx′′ condi-
tioned onx′ according to the p.d.f.pX1|X2

(·|x′)
3: if x′′ is inside this confidence intervalthen
4: D = 0 (* no attack detected *)
5: else
6: D = 1 (* attack detected *)
7: end if

The solution we propose to fulfill our primary aim is the
Attack Detection AlgorithmDet(x1, x2) (Algorithm 1). This
algorithm randomly chooses one of the two elements from the
sample and computes the(1−α)% confidence interval for the
remaining one conditioned on the chosen one, whereα is the
false positive probability. If the remaining one is inside this
confidence interval, then the output of the algorithm is that
there is probably no attack (D = 0), otherwise the algorithm
signals that an attack is detected (D = 1).

This straightforward approach already exploits correlation by
using the conditional probability density functionpX1|X2

(·|·)
which is assumed to be known. In most of the cases this can
be a realistic assumption as the base station can perform data
gathering and can establish an estimation ofpX1|X2

(·|·) just
after the deployment of the sensor network when the probability
of being already attacked is small. We note, however, that the
knowledge ofpX1|X2

(·|·) does not imply the a priori knowledge
of the p.d.f. of the measurement data at individual sensors.For
example, a given conditional p.d.f.pX1|X2

(·|·) gives a different
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joint p.d.f. for different distributions ofX2, which then results
in different marginal distributions forX1. Consequently, we do
not assume any a priori knowledge about the expected value of
the measurement data.

The output of the Attack Detection Algorithm can be applied
in selecting the adequate way of data aggregation. If no attack
is indicated then the sample can be handled in the usual way,
e.g., its average can be calculated without the fear of obtain-
ing a highly distorted aggregate. Otherwise, equipped withthe
knowledge that the sample is compromised with high probabil-
ity, one can mitigate the effects of an attacker by handling the
sample in a special way. Usually, dropping the compromised
sample is the easiest method to apply, while extrapolating the
current aggregate from the previous (unattacked) results can
guarantee a small distortion without relying on other informa-
tion. The type of the extrapolation can be suitably chosen to
the characteristics of the data one is going to measure.

This approach is formalized in the Enhanced Data Aggrega-
tion Algorithm (Algorithm 2), where outputy is the aggregate
of the input, while the output denoted byyextr is the minimum
distortion output when we do not use outlier filtering.yextr is
usually calculated as an extrapolation based on the output of
the previous uncompromised outputs. For example,yextr can
be the output of the last run of the data aggregation algorithm
when the attack detection algorithm detected no attack; this
possesses the smallest distortion for ordinary samples.

Algorithm 2 Enhanced Data Aggregation Algorithm
1: Take both of the readings and apply the attack detection

algorithmDet(x1, x2)
2: if Det(x1, x2) indicates an attackthen
3: Output =yextr

4: else
5: Output =y

6: end if

The output of the Enhanced Data Aggregation Algorithm is
interpreted as the aggregate value of the current round. Using
the Attack Detection Algorithm and the Enhanced Data Aggre-
gation Algorithm one can notably reduce the distortion of the
aggregate compared to the case when aggregation is performed
without prior analysis.

4.1.1. Why not using standard statistical decisions instead of
Det(·, ·)?

Decision theory is a well-elaborated part of statistics. Itis
concerned with the topic of how to behave optimally under
uncertainty. The basic guideline in decision theory is minimiz-
ing the expected loss encountered after the decision. Generally
speaking, we have the same objective in this paper: we want to
minimize the distortion of the aggregation function. Thus,the
distortion can be considered as the loss in our case, while the
decision we have to make is about signalling an attack or not.
Why not using then well-known statistical decisions insteadof
inventing a new one? To answer this question we have to take
a deeper look at themodus operandiof the decision algorithms
proposed so far. The two most prevalent statistical decisions we

investigate are the Bayesian decision and the Maximum Like-
lihood decision.

Informally, the Bayesian decision is concerned with making
a decision about the state of nature based on how probable
that state is. Therefore, Bayesian decision theory plays a role
when there is somea priori information about the states we
are trying to classify. As we want to decide whether there is an
attack occurred or not, the a priori information would be in our
case the probability of facing an attack. However, our attacker
model presented in Section 3.1 does not contain any kind of
information about this probability. In other words, we do not
rely on assumptions about the attacker’s attacking frequency
or distribution in time. Therefore, the Bayesian decision that
requires information about the attacking probability cannot be
applied in our case.

The Maximum Likelihood decision seems to be more attrac-
tive in the scenario proposed in this paper. Generally, the Max-
imum Likelihood approach decides to that state of nature for
which it holds that the value of the p.d.f. for the input condi-
tioned on that state is the maximum value among all the values
of p.d.f’s conditioned on other states for the same input. The
sample received from the sensor nodes can be considered as the
mentioned input, while the states of nature are ’attack’ or ’no
attack’. The problem with this approach is that without assum-
ing a concrete distribution of the attacker’s additive offset we
cannot figure out the p.d.f. of a vector of sample elements con-
ditioned on the class ’attack’. Therefore, regrettably, the Max-
imum Likelihood decision needs too much information that is
not available in our model and thus, it is not applicable either
in our case.

4.1.2. Evaluation of the Enhanced Data Aggregation
Algorithm under a Gaussian data model

To quantify the gain in the distortion of the output of the
Enhanced Data Aggregation Algorithm, we first have to eval-
uate the error probabilities of the Attack Detection Algorithm.
These probabilities are the false positive (α) and the false neg-
ative (β) probabilities.α is the probability of signalling an at-
tack in the unattacked case, whileβ is the probability of not
signalling the attack in the attacked case. In order to be able to
defineβ, we fix α to 0.1 (i.e., we tolerate 10% of false alarms).
Moreover, for the evaluation we assume that the distribution of
Gi is the Gaussian distribution with parametersµ̃ and σ̃ (i.e.,
Gi ∼ N (µ̃, σ̃)). (We note that this assumption is only needed
for the calculations below, Algorithm 1 and Algorithm 2 do
not rely on it. We also note that a more general attacker will
be considered later and analyzed by means of simulation in
Section 4.2.3.) Here, the choice of the Gaussian distribution
simplifies the analysis and its two parameters allow us to con-
sider attacks of significantly different styles. Without loss of
generality, we further assume that the first sample element is
compromised, i.e.,Z1 = X1 + G1. As t = 1, we can set aside
the lower indices of the symbols corresponding to the attacker,
thusZ = X1 + G. Based on these, theβ error probability can
be determined by averaging the two particular false negative
error probabilities corresponding to the two cases when (i)we
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select the compromised element as the condition (i.e.,x′ = z)
or (ii) we select the uncompromised reading for the same role
(i.e., x′ = x2). The averaging is justified by the fact that both
of these events have a probability of0.5 to occur because of
the randomness of the selection. Formally,

β =
1

2
(β(1) + β(2)) (1)

where

β(1) =

∫ ∞

−∞

[

∫ b2(z)

b1(z)

pX2|Z(u|v)du
]

pZ(v)dv (2)

=

∫ ∞

−∞

∫ b2(z)

b1(z)

pX2,Z(u, v)dudv (3)

β(2) =

∫ ∞

−∞

[

∫ b2(x2)

b1(x2)

pZ|X2
(u|v)du

]

pX2
(v)dv (4)

=

∫ ∞

−∞

∫ b2(x2)

b1(x2)

pZ,X2
(u, v)dudv (5)

Theb1(z), b2(z), b1(x2) andb2(x2) integration bounds are de-
fined with the help of the previously fixed false positive prob-
ability as

∫ b1(z)

−∞
pX1|X2

(u|z)du =
α

2
(6)

∫ ∞

b2(z)

pX1|X2
(u|z)du =

α

2
(7)

∫ b1(x2)

−∞
pX1|X2

(u|x2)du =
α

2
(8)

∫ ∞

b2(x2)

pX1|X2
(u|x2)du =

α

2
(9)

respectively. Additionally, the correlation coefficient in
pX2,Z(·, ·) is calculated as

rX2,Z =
E
[

(X2 − µ)(X1 + G − µ − µ̃)
]

σ
√

σ2 + σ̃2
(10)

= rX1,X2

σ√
σ2 + σ̃2

(11)

and the correlation coefficient inpZ,X2
(·, ·) is rZ,X2

= rX2,Z .
With the help ofβ, we can analyze our Enhanced Data Ag-

gregation Algorithm from its distortion’s point of view. Asthe
most interesting aggregation function is the average because
of its vulnerability (only one compromised measurement can
totally mislead it) and its widespread usage, we consideredit
in our analysis too. To evaluate the distortion of the outputof
Algorithm 2, we have to distinguish two basic cases: the case
when an attack happens, and another one when there is no at-
tack. We introduce the following notations:
– A: indicator random variable denoting whether there is an

attack or not (0 - no attack, 1 - attack)
– Y : random variable denoting the average of the sample
– Yextr: random variable denoting the minimum distortion out-

put in case an attack is detected

– Ŷ : random variable denoting the average of the sample ele-
ments when there is no attack

Considering the first reading to be compromised (without loss
of generality), the distortion in the first case can be expressed as

d(Y |A = 1) = E
[

|Y − Ŷ |2
∣

∣A = 1
]

= (12)

= E
[

|Y − Ŷ |2
∣

∣A = 1,D = 1
]

· (1 − β) (13)

+ E
[

|Y − Ŷ |2
∣

∣A = 1,D = 0
]

· β (14)

= E|Yextr − Ŷ |2 · (1 − β) +
1

4

(

µ̃2 + σ̃2
)

· β (15)

While in the second case the distortion can be formalized as

d(Y |A = 0) = E
[

|Y − Ŷ |2
∣

∣A = 0
]

= (16)

= E
[

|Y − Ŷ |2
∣

∣A = 0,D = 1
]

· α (17)

+ E
[

|Y − Ŷ |2
∣

∣A = 0,D = 0
]

· (1 − α) (18)

= E|Yextr − Ŷ |2 · α (19)

To show how much gain our Enhanced Data Aggregation
Algorithm induces compared to a scenario where no attack
detection is employed, we definedimp as the improvement in
the distortion in case of an attack as follows:

dimp = d(Y |A = 1,D = 0) − d(Y |A = 1) (20)

=
1

4

(

µ̃2 + σ̃2
)

−
[

E|Yextr − Ŷ |2 · (1 − β) +
1

4

(

µ̃2 + σ̃2
)

β
]

∼= 1

4

(

µ̃2 + σ̃2
)

· (1 − β) (21)

where we assume thatE|Yextr − Ŷ |2 is close to zero. In Fig-
ure 2, one can see a plot ofdimp where the different curves
belong to different correlation coefficients. The horizontal axis
corresponds to the expected value of the attacker’s distribution
(i.e., µ̃). For the calculations we chooseµ = 0, σ = 1, andσ̃ =
1. We note that the choice of̃σ in the range[0.5, 1.5] does not
alter the results significantly. In the figure, the steeply ascend-
ing lines show that the improvement in the distortion grows
with a growing difference betweenµ andµ̃. The fact the curve
of r = 0.5 runs near to the curve ofr = 0.95 clearly indi-
cates that our approach considerably exploits even correlations
of moderate power.

As a second comparison, we show how much influence the
correlation has on the distortion. In Figure 3, one can see the
distortion d(Y |A = 1) for different values of the correlation
coefficientr. The horizontal axis represents the expected value
of the attacker’s distribution (i.e.,̃µ). The corresponding values
for the calculations areµ = 0, σ = 1, and σ̃ = 1. Here
again, assuming thatE|Yextr − Ŷ |2 is close to zero, we can
characterize the distortion as

d(Y |A = 1) ∼= 1

4

(

µ̃2 + σ̃2
)

· β (22)

In Figure 3, the difference in the form of the curves for the
dependent cases (r > 0) and the independent case (r = 0)
shows that considering correlation helps in maintaining a very
moderate distortion in the aggregate in case of an attack. When
the sample elements are independent, the distortion causedby
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Fig. 3. Distortion caused by the adversary for different values of the correlation
coefficientr

the adversary grows steeply with̃µ, while in the dependent
cases the effects of an attack are strictly upper bounded, even
when the correlation is moderate.

To understand the behaviour of Algorithm 1 more deeply,
we compared it to the already detailed Maximum Likelihood
decision. As mentioned in Section 4.1.1, the Maximum Likeli-
hood decision is not applicable in our data and attacker model,
however, its importance in decision theory lead us to compare
its efficiency to the efficiency of Algorithm 1 in a significantly
restricted model. The restriction is the following: we assume
that the attacker’s distribution isa priori known. We emphasize
that this assumption is required for the Maximum Likelihood
decision to be able to operate, and it should not be confused
with the assumption about the normality made only in order
to perform the analysis of our approach; the Attack Detection
Algorithm does not need to know the attacker’s distribution
while the Maximum Likelihood decision needs. For the sake
of simplicity, we assume that the attacker’s distribution is the
Gaussian distribution with known expected value and variance.

The Maximum Likelihood decision is the following. Let us
take the joint p.d.f. of the sample in case there is no attack (i.e.,
pX1,X2

) and divide it with the joint p.d.f. corresponding to the

attacked case (i.e.,pX1,Z or pZ,X2
). An attack is signalled if

this quotient is smaller thanT . More formally,D = 1 if

pX1,X2
(xxx)

1
2pX1,Z(xxx) + 1

2pZ,X2
(xxx)

< T (23)

whereT can be obtained with the help of the false positive
probabilityα. Therefore,T can be determined using that

α =

∫

R
pX1,X2

(xxx)dxxx (24)

whereR is defined as

R =
{

xxx : pX1,X2
(xxx) < T

(

1

2
pX1,Z(xxx) +

1

2
pZ,X2

(xxx)

)

}

(25)

After having the Maximum Likelihood decision described,
we have to evaluate its probability of missed detection. This
can be formalized as

β = 1 −
(1

2

∫

R
pX1,Z(xxx) +

1

2

∫

R

1

2
pZ,X2

(xxx)
)

(26)

To be able to observe the effect of the Maximum Likelihood de-
cision on the distortion, we have put it in the Enhanced Data Ag-
gregation Algorithm in place ofDet(·, ·). Using the new values
of β, the improvement in the distortion of the Enhanced Data
Aggregation Algorithm can be calculated using Equation (21).

Figure 4 shows the results of the comparison of the Attack
Detection Algorithm and the Maximum Likelihood decision,
both as a building block in the Enhanced Data Aggregation Al-
gorithm. The corresponding values for the calculations areµ =
0, σ = 1, σ̃ = 1. As one can see from Figure 4, the improve-
ment in the distortion implied by the Maximum Likelihood de-
cision is higher than for the Attack Detection Algorithm in case
of low correlation, however, the difference becomes very small
if the correlation is higher. This difference is based on thefact
that the Maximum Likelihood decision takes advantage of the
knowledge of the distribution of the attacker’s offset. There-
fore, in this comparison, where this distribution is assumed to
be known to the Maximum Likelihood decision algorithm, this
latter can perform better than the Attack Detection Algorithm.
However, if the correlation is higher, the Attack DetectionAl-
gorithm performs as well as Maximum Likelihood decision,
even without relying on this extended knowledge. Nevertheless,
we emphasize again that the Maximum Likelihood approach is
only applicable if one knows the distribution of the attacker’s
offset, while the Attack Detection Algorithm does not need this
knowledge.

Figure 2, 3 and 4 clearly show that correlation has a sig-
nificant influence on the attack detection capabilities of Algo-
rithm 1 and therefore on the distortion that the attacker is able
to cause in the output of Algorithm 2. Compared to the inde-
pendent case (i.e., whenr = 0), considering the naturally exist-
ing correlation between the sample elements results in smaller
distortion and allows the base station to make nearly as precise
decisions as for example the Maximum Likelihood approach
which needs more knowledge about the attacker in order to be
able to operate. In other words, the attacker’s abilities are more
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Fig. 4. Comparison of Maximum Likelihood decision and the Attack Detection Algorithm

restricted when the base station maintains a correlation-based
data model.

Using the preliminary data model consisting of only two
nodes from which one is possibly attacked we are able to quan-
tify the ”strength” of correlation. The results justify oursuspi-
cion: exploiting correlation can help in developing data aggre-
gation algorithms for sensor networks that are more powerful
from the resilience point of view than algorithms not consider-
ing correlation. Now that the importance of correlation is clar-
ified, we can go further by enabling our algorithms to elabo-
rate on data sets that are containing more than two elements.
In Section 4.2 we will show how this generalization can be
performed.

4.2. Generalization using Sample Halving

Usually, sensor networks are imagined to contain a high num-
ber of sensor nodes, and in our simplified case the number of
nodes is strictly related to the sample size. Thus, in this subsec-
tion we propose a generalized approach for attack detectionand
resilient aggregation in sensor networks that is able to handle
a sample of arbitrary size. That means that in this subsection
we consider samples for which
– n ≥ 2
– t ≥ 1, i.e., the attacker’s strength is also considered to be

arbitrary
As the Attack Detection Algorithm and the Enhanced Data

Aggregation Algorithm are efficient considering a small sam-
ple, it is a natural idea to reuse them in this general case. In
the first step, one has to shrink a sample ofn elements into
a sample of two elements which can be achieved, for exam-
ple, by halving the sample into two partitions and compressing
the partitions into one element each. The halving is done in a
random way, i.e., each element has a 50% chance to get into
the first partition and the same holds for the second partition
too. The compression can be done for the two partitions inde-
pendently from each other by e.g. averaging the halves. In our
case, the partitions do not need to have equal size but for sim-
plicity we require this property now. With this sample halving

approach we are able to reduce the general problem (i.e.,n ≥
2) to a special case (i.e.,n = 2) where we can apply our pre-
viously introduced Attack Detection Algorithm and Enhanced
Data Aggregation Algorithm.

A sketch of the sample halving approach can be seen in Fig-
ure 5, in which a sample with six elements is represented by
circles, where the white circles correspond to ordinary elements
and the black circle corresponds to an element that is compro-
mised by the adversary. The sample halving approach divides
the sample into two partitions in a random way and compresses
the two partitions independently from each other to obtain a
sample of size two. As the first partition contains a compro-
mised element its compressed counterpart is also considered as
compromised, but since the averaging blurs the effect of thead-
versary the circle of the resultant value is grey instead of black.

x 2

x 3 x 5

x 6

x 4z

x h x 2,1

Fig. 5. A sketch of the sample halving approach

To be able to use the Attack Detection AlgorithmDet(·, ·)
and the Enhanced Data Aggregation Algorithm presented in
Section 4.1, we have to obtain the conditional p.d.f. of the aver-
age of the first partition conditioned on the average of the sec-
ond partition, as instead ofpX1|X2

(·|·) we needp
X1|X2

(·|·) in
Algorithm 1 to evaluate the corresponding confidence interval
in the general case. Again, this can be obtained by performing
measurements just after the deployment of the sensor network
when the probability of being already attacked is small. We
note that the knowledge ofp

X1|X2
(·|·) does not assume any-
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thing about the knowledge of the sampling distribution of the
measured parameter of the sensor network.

With this modified assumption we can reduce the problem
of resilient data aggregation on an arbitrary-sized sampleto the
already solved problem of data aggregation on a sample of size
two. Therefore, we are now able to perform attack detection
and resilient aggregation on a sample without restriction on
its size or the number of compromised elements. In the next
subsection, we formally evaluate the sample halving approach.

4.2.1. Evaluation of the generalized algorithm under a
Gaussian data model

The quantification of the gain introduced by the Enhanced
Data Aggregation Algorithm in the case of samples of arbi-
trary size is similar to the evaluation of the case of 2-element
samples in Section 4.1.2. However, even if some of the formu-
las look similar, the reason of their usage can be very different
compared to the previous case. Moreover, the increased num-
ber of possibly compromised elements renders the analysis a
bit more difficult.

Firstly, we introduce the notations needed:
– X: normally distributed random vector denoting the original

sample (X ∼ Nn(µµµ,Σ))
– Xh: arbitrarily distributed random vector denoting the sam-

ple in case of an attack (Xh ∼ Nn(µµµh,Σh))
– X: normally distributed random vector produced by averag-

ing the halves ofX in the unattacked case (X ∼ N2(µµµ,Σ))
– Xh: random vector produced by averaging the halves ofXh

in case of an attack (Xh ∼ N2(µµµh,Σh))
– r

X1,X2
: correlation coefficient between the elements ofX

The sampleX in the unattacked case has a multivariate nor-
mal distribution with mean (expected value) vector

µ = (µ, . . . , µ)T (27)

and with covariance matrix

Σ =

















σ2 rσ2 . . . rσ2

rσ2 σ2 . . . rσ2

...
...

.. .
...

rσ2 rσ2 . . . σ2

















(28)

In case an attack happens, the mean vector and the covariance
matrix of the compromised sampleXh are respectively (without
loss of generality)

µµµh = µ + µµµ∆ (29)

and

Σh = Σ + Σ∆ (30)

whereµµµ∆ is a column vector the firstt elements of which are
µ̃’s, andΣ∆ is a n × n matrix containing only zero elements
except from its first diagonal where the firstt elements arẽσ2.

The averaging transformation of the partitions can be de-
scribed by matrixM which is a2×n matrix with the following
entries:

M =





2
n

. . . 2
n

0 . . . 0

0 . . . 0 2
n

. . . 2
n



 (31)

In this generalized case again, the first step is to formalize
the false negative probabilityβ as

β(t1,t2) =
1

2
(β(1) + β(2)) (32)

where the(t1, t2) superscript means that the first half of the
sample containst1 compromised elements, while the second
half containst2 compromised elements (t = t1 + t2). β(t1,t2) is
the average of two particular error probabilities corresponding
to the cases of the different condition choice (see Algorithm 1).
These particular error probabilities can be defined as

β(1) =

∫ ∞

−∞

∫ b2(xh,1)

b1(xh,1)

p
Xh,2,Xh,1

(u, v)dudv (33)

β(2) =

∫ ∞

−∞

∫ b2(xh,2)

b1(xh,2)

p
Xh,1,Xh,2

(u, v)dudv (34)

similarly to the definitions in Section 4.1.2. The related distri-
butions can be defined with the help of matrix multiplications
Mµµµh and theMΣhM

T which result respectively in

µµµh =





µ + 2
n
t1µ̃

µ + 2
n
t2µ̃



 (35)

and

Σh =





Σh,11 rσ2

rσ2 Σh,22



 (36)

where

Σh,11 =

(

2

n

)2

t1σ̃
2 +

2

n
σ2 +

(

1 − 2

n

)

rσ2 (37)

Σh,22 =

(

2

n

)2

t2σ̃
2 +

2

n
σ2 +

(

1 − 2

n

)

rσ2 (38)

Based on these, the distribution ofXh,1 is

Xh,1 ∼ N
(

µµµh,1,

√

Σh,11

)

(39)

and the distribution ofXh,2 is

Xh,2 ∼ N
(

µµµh,2,

√

Σh,22

)

(40)

Furthermore, the integration limits in Equations (33) and (34)
are implicitly defined as
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∫ b1(xh,1)

−∞
p

X1|X2
(u|xh,1)du =

α

2
(41)

∫ ∞

b2(xh,1)

p
X1|X2

(u|xh,1)du =
α

2
(42)

∫ b1(xh,2)

−∞
p

X1|X2
(u|xh,2)du =

α

2
(43)

∫ ∞

b2(xh,2)

p
X1|X2

(u|xh,2)du =
α

2
(44)

Finally, the corresponding correlation coefficients in Equa-
tions (33) and (34) are defined as

r
Xh,2,Xh,1

=
E
[

(Xh,2 −µµµh,2)(Xh,1 −µµµh,1)
]

√

Σh,22

√

Σh,11

(45)

= r
X1,X2

Σ11
√

Σh,11

√

Σh,22

(46)

andr
Xh,1,Xh,2

= r
Xh,2,Xh,1

.
The main difference in the evaluation of then ≥ 2 case

compared to then = 2 case stems from the random halving of
the sample. Along with the increased number of compromised
elements, the halving of the sample randomizes the number of
compromised elements in the two halves. As a matter of fact,
this kind of random selection is related to the hypergeometric
distribution, which describes the probability that in a sample of
n distinctive objectsj objects are compromised. Therefore, the
final error probabilityβ can be defined based on the particular
probabilities in Equation (32) as

β =

t
∑

j=0

P (t1 = j)β(j,t−j) (47)

where

P (t1 = j) =

(

t
j

)(

n−t
n
2
−j

)

(

n
n
2

) (48)

is the hypergeometric distribution with parametersn, t, and n
2 .

To show the gain of our Enhanced Data Aggregation Algo-
rithm compared to a scenario where no attack detection is em-
ployed we definedimp as the improvement in the distortion in
case of an attack just like in Section 4.1.2 as follows:

dimp = d(Y |A = 1,D = 0) − d(Y |A = 1) (49)

∼= 1

n2

(

µ̃2 + σ̃2
)

· (1 − β) (50)

where we still assume thatE|Yextr − Ŷ |2 is close to zero. In
Figure 6, one can see a plot of values of the redefineddimp

function for different correlation coefficients represented by the
different lines. The subfigures correspond to different attack
strengths, i.e., to different number of compromised nodes.The
horizontal axes correspond to the expected valueµ̃ of the at-
tacker’s distribution, while the vertical axes correspondto the
improvement in the distortiondimp defined in Equation (49).

σ̃ is considered to be 1, but its value in the range[0.5, 1.5]
does not affect the results significantly. The two sequencesfor
even and odd number of compromised nodes are clearly rec-
ognizable. In the odd sequence the correlation seems to be a
dominating factor, while in the even sequence the law of large
numbers improves the attack detection capabilities and thus the
value ofdimp for less correlated samples.

Secondly, we show how much influence the correlation
has on the distortion. In Figure 7, one can see the distortion
d(Y |A = 1) for different values of the correlation coefficient
r. The subfigures correspond to different attack strengths, i.e.,
to different number of compromised nodes. The horizontal
axes correspond to the expected valueµ̃ of the attacker’s dis-
tribution. Here again, assuming thatE|Yextr − Ŷ |2 is close to
zero, we can characterize the distortion as

d(Y |A = 1) ∼= 1

n2

(

µ̃2 + σ̃2
)

· β (51)

The calculations presented in Figures 6 and 7 are performed
with n = 10 (i.e., with a 10-nodes network or with a 10-nodes
cluster). This small value ofn helps in giving an overview of
the most probable cases considering the number of nodes an at-
tacker is able to compromise. Moreover, for a smaller sample,
the effect of correlation is easier to trace because the compres-
sion in the first step of the sample halving approach does not
influence the distortion as much as for larger samples. How-
ever, we note that the sample halving approach is not restricted
in the value ofn.

The message of Figures 6 and 7 is manifold. Firstly, the fig-
ures clearly show the effect of the compression step (i.e., halv-
ing and aggregating the halves). The random halving of the
sample results in different behaviour of the distortion in case
the attacker compromises even or odd number of elements. The
subfigures corresponding tot = 1, t = 3 and t = 5 can be
considered as one sequence, while the remaining ones as an-
other sequence. In both figures, the odd sequence consists in
three nearly coinciding subfigures on which only the dotted line
changes. This indicates that having smaller correlation does not
always mean weak resilience in aggregation. However, not con-
sidering correlation cannot outperform the correlated case if the
correlation coefficient is high enough. The even sequence in
the same figures emphasizes the effect of the law of large num-
bers. Namely, having an uncorrelated (and thus in the Gaus-
sian case independent) sample can be a better base for attack
detection than a correlated sample. The explanation for this is
that an independent sample is able to narrow very quickly by
the means of its standard deviation because of the averaging,
while a correlated sample has always a bigger standard devia-
tion. Therefore, the confidence interval calculated based on an
independent sample can be very small which then facilitates
the detection of outlier elements. The different nature of the
odd and even sequences has combinatorial roots. Having even
number of compromised elements frequently results in such a
halving where exactly the half of the compromised elements
are in the first half and the others in the second half. In this
case, however, the attack detection capabilities are weak,as the
numerical difference between the two sample halves is small.
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Fig. 6. The improvement in the distortion considering the sample halving approach withn = 10 nodes and with different values ofr
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Fig. 7. Distortion caused by the adversary for different values of the correlation coefficientr with n = 10 nodes and with̃σ = 1

This then introduces a higher distortion and thus a smaller value
for dimp. In case of odd compromised elements the halving is
always ”unfair”, one of the halves always possesses more com-
promised elements than the other, and therefore there is always
a remarkable difference between the halves, which implies bet-
ter attack detection capabilities.

4.2.2. Evaluation with non-constant correlation coefficient
Until now, we have assumed that the correlation coefficient

r has the same value for all pairs of readings. In reality, every
pair of readings has a specific correlation value which depends
on the distance of the nodes that produced the readings, and on
some physical properties of the environment in which the nodes
are deployed. Several models have been proposed so far for the
calculation of the value of the correlation coefficient based on
these parameters, e.g., the Spherical, the Power Exponential,
the Rational Quadratic and the Matérn correlation models [3].
The most widely used correlation model in the literature on
spatial statistics is the Power Exponential model [13,27] with
several applications [21,25,24,1,19,5], therefore we applied it
as well.

Assuming non-constant correlation coefficients the covari-
ance matrix in Equation (28) will take the following form

Σ =

















σ2 r12σ
2 . . . r1nσ2

r21σ
2 σ2 . . . r2nσ2

...
...

.. .
...

rn1σ
2 rn2σ

2 . . . σ2

















(52)

whererij = rji. rij can be calculated using the Power Expo-
nential correlation model as

rij(dij) = exp
(

−
(dij

θ1

)θ2
)

(53)

wheredij is the Euclidean distance between nodei and nodej ,
θ1 controls the relation betweendij andrij with usual values
of different integer powers of 10 (i.e., 10,102, . . . ,106), and it
depends onθ2 whether the model is exponential (θ2 = 1) or
squared exponential (θ2 = 2). For the analysis we have chosen
θ1 = 10 andθ2 = 1 as in [24,1].

To evaluate the distortion caused by an attacker in the out-
put of the Enhanced Data Aggregation Algorithm in the case
of non-constant correlation, one can formulate the probability
density function of the correlation coefficientrij considering
uniformly randomly placed sensor nodes as
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prij
(x) = (54)

=































































































2πθ2

1

θ2x
(− ln(x))

2

θ2
−1 − 8θ3

1

θ2x
(− ln(x))

3

θ2
−1+

+
2θ4

1

θ2x
(− ln(x))

4

θ2
−1 ififif x ∈ (exp(−( 1

θ1

)θ2), 1)

4θ2

1

θ2x
(− ln(x))

2

θ2
−1

[

arcsin

(

2−θ2

1
(− ln(x))

2

θ2

θ2

1
(− ln(x))

2

θ2

)

+

+2

√

θ2
1(− ln(x))

2

θ2 − 1 − 1

]

− 2θ4

1

θ2x
(− ln(x))

4

θ2
−1

ififif x ∈ (exp(−(
√

2
θ1

)θ2), exp(−( 1
θ1

)θ2))

0 ififif x 6∈ (exp(−(
√

2
θ1

)θ2), 1)

Taking a sample from this distribution (using uniformly ran-
dom sampling) and applying it to Equation (52) gives a realis-
tic covariance matrix for a realization of the random node de-
ployment. Then, calculating the conditional p.d.f.p

X1|X2
(·|·)

using this updated covariance matrix and performing the anal-
ysis presented in Section 4.2.1 gives the distortion in thisgiven
realization.

The conditional p.d.f.p
X1|X2

(·|·) can be easily described

with the help ofµµµ = Mµµµ andΣ = MΣM
T (see [11]). The

correlation coefficient applied inp
X1|X2

(·|·) can be defined as

r
X1,X2

=
Σ12

√

Σ11

√

Σ22

(55)

The joint probability density functionsp
Xh,1,Xh,2

(·, ·) and
p

Xh,2,Xh,1
(·, ·) can be defined in the same way as in Sec-

tion 4.2.1.
Repeating the above calculations along with the sampling

of prij
multiple times gives the same result as having multiple

sensor networks with different uniformly random deployment.
Calculating the average distortion of the repetitions can help
us in exposing the characteristic features of this scenariowhen
the correlation coefficient is not constant.

The results of this analysis are very interesting. After per-
forming the repeated sampling and distortion calculation for
t = 1, . . . , 5 (20 times for each value), the resulting curves are
nearly the same as the curves on Figure 6 and 7 whenr = 0.95.
As it would be difficult to distinguish the two kind of curves
in a figure, we show a comparison table consisting of numer-
ical values for the two curves fort = 2 (see Table 1). The
t = 2 choice is confirmed by the fact that the differences are
the largest in that case.

This small difference between thedimp values of the two
cases clearly shows, on the one hand, that one is able to model
the pairwise correlation among the sample elements with a
fixed correlation coefficient in the long run. This, on the other
hand, reinforces our previous results: even though we used
a simplified scheme in which we considered the correlation
coefficient to be constant (with two describing values of 0.95
and 0.5, and the value of 0 for the independent case), our results
are still highly relevant when we consider the more realistic

dimp for r = 0.95 dimp for rij

0.0046 0.0048

0.0115 0.0122

0.0342 0.0345

0.0700 0.0716

0.1192 0.1199

0.1823 0.1852

0.2595 0.2741

0.3508 0.3587
Table 1
Numerical values of ther = 0.95 curve (in Figure 6) compared with the
dimp values in case the correlation coefficient is not constant

scenario of distance-dependent correlation coefficients among
the sample elements. Moreover, as the curves forr = 0 and
r = 0.95 are significantly different (for both thedimp and
the d(Y |A = 1) metrics), the latter results also indicate that
assuming correlation is a must in order to establish a realistic
sensor network data model.

4.2.3. Evaluation assuming a sophisticated attacker
The attacker we considered until now was a simplified one:

he added offsets to some of the sensor readings, where the off-
sets were independent and identically distributed random vari-
ables. For the performance evaluation, we categorized the off-
sets as elements coming from a normal distribution the param-
eters (i.e., the expected value and the standard deviation)of
which are under the control of the attacker. In this section,we
investigate the case of a more sophisticated attacker. Namely,
we assume that the attacker knows the Enhanced Data Aggre-
gation Algorithm in detail, including the Attack DetectionAl-
gorithm Det(·, ·). Moreover, the attacker also knows the size
of the sample that the base station gathers in a given query, and
he can arbitrarily modify the observed sample elements.

Therefore, this sophisticated attacker is able to choose the
best attack in the long run after estimating the unobserved (un-
known) elements of the sample. This can be done as follows. At
first, the attacker analyzes the observed sample part and gives
an estimation on the remaining elements (the attacker is able to
do this since he knows the size of the gathered sample). This
estimation can be of any kind, for the simulations below we
used the method to replace every unknown element with the
average of the observed elements. Then, the attacker is ableto
investigate all the possible halvings and calculate the distortion
for them for each possible value of the offset parameter, which
parameter is under the control of the adversary. We note that
the attacker is not restricted to compromise all the observed
measurements, but he is able to choose the number of measure-
ments to compromise in the range[1, t], wheret is the number
of observed elements in this case.

After calculating the individual distortions for all casesof
the halving and all combinations of the compromised measure-
ments, the attacker selects those measurements to compromise,
the modification of which leads to the highest distortion on
average. As the attacker cannot influence the sample halving
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procedure, the highest distortion on average is calculatedby
averaging the individual distortions over the different halvings
(all the halvings have equal probability inDet(·, ·), which is
1
2t ) and taking the maximum of the resulting vector.

We simulate the sophisticated attacker assuming that the orig-
inal sample is normally distributed (with parametersµ = 0,
σ = 1 andn = 10) and correlated. The correlation of the sam-
ple is modelled with the Power Exponential correlation model
with parametersθ1 = 10 andθ2 = 1 as in [24,1]. We perform
simulations for two different attacker behaviours. The first be-
haviour is when the attacker perturbs some of the sample ele-
ments with an offset, while the second behaviour describes the
case when the attacker replaces some of the sample elements
with a common maximum. As the resulting figures for the two
behaviours are quite similar, we only detail the results consid-
ering the first behaviour in Figure 8.

Figure 8 shows a simulation result (i.e., not an analytical
calculation like all the figures until now). The horizontal axes
correspond to the offset value chosen by the attacker, whilethe
vertical axes correspond to the distortion in the aggregate. The
five subfigures correspond to different number of observed sen-
sor measurements. As the original samples are drawn randomly
for the simulations, the curves in the subfigures are somewhat
irregular.

In the first three subfigures (i.e., up to 30% compromised
nodes), the highly correlated measurements imply smaller dis-
tortion than the independent measurements (similarly to the
t = 1 and t = 2 subfigures in Figure 7). The last two subfig-
ures, however, show that the effect of a powerful attacker, who
can compromise the measurement of a high number of nodes,
is better eliminable when the sensor readings are independent
(similarly to thet = 4 subfigure in Figure 7). All the same, low
correlations (liker = 0.5) usually weaken the capabilities of
the proposed solution. In a realistic attack scenario (i.e., where
the attacker is only able to compromise the measurement of a
small number of sensor nodes) the distortion of the Enhanced
Data Aggregation Algorithm can grow up to2.5σ for less cor-
related and independent samples, while it usually stays below
1.2σ for highly correlated samples and forα = 0.1.

As one can see, the subfigures corresponding tot = 2 and
t = 3 show similarities, and the same happens in the case of
subfigures corresponding tot = 4 and t = 5. In general, the
attacker cannot reach a significantly higher distortion by com-
promising2k + 1 sensor readings compared to the case when
compromising only2k sensor readings (maybe except fork =
1, r = 0). The reason for this property is, on the one hand, that
the attacker is able to choose the number of measurements he is
going to compromise. For example, it is possible for an attacker
to observe three sample elements but compromise only two of
them. On the other hand, the random halving step inDet(·, ·)
has a high influence on the result, as even numbered compro-
mised elements can be halved in a way that both halves contain
the same number of compromised elements, which weakens
the attack detection capabilities, while odd numbered elements
cannot be halved in such a ”fair” way, which result in better
attack detection capabilities.

The results for the distortion caused by a sophisticated at-

tacker can be summarized as these are highly related to the
analytical results in Section 4.2.1 considering the form and the
position of the related curves, however, a sophisticated attacker
can achieve a higher distortion than the previously considered
simplified attacker. Nevertheless, we note that the sophisticated
attacker is still not an optimal attacker, and thus, the results
presented in this section do not correspond to the worst case.

After having presented the results of our sample halving ap-
proach, having illustrated the impact of correlation on resilient
aggregation, having verified our results considering realistic
correlation coefficient distribution scenarios and a sophisticated
attacker as well, in the next section, we present some possible
extensions to the work presented.

5. Discussion

Does this approach allow in-network processing?The con-
cept of performing the aggregation at the base station allows
us to get rid of some typical ”networking” problems (like
e.g., routing, lost messages, etc.) and to concentrate on the
novel statistical framework presented. However, our scheme
can support in-network aggregation as well. There are two
straightforward ways to perform in-network aggregation in
our case: Firstly, aggregator nodes chosen among the sensor
nodes can aggregate the measurements of the sensors in their
clusters. Algorithm 1 and 2 are both very energy-efficient as
they do not require additional communication, thus, they can
run even on resource-constrained sensor nodes. After the ag-
gregation, the aggregator nodes send the result to the base
station, and the base station can average them without fur-
ther investigation, as the analysis has been already done by
the aggregator nodes. The drawback of this way of process-
ing is that the aggregator nodes have to decrypt the messages
of their corresponding clusters as our algorithms need raw
data as their input.

Secondly, considering again that the algorithms run on the
base station and that the Attack Detection Algorithm only
needs two averages in order to make its decision, the ag-
gregator nodes only have to sort the measurements into two
groups randomly, sum up these groups, and send only the
sums to the base station. Upon reception of the sums the base
station is able to calculate the averages by, again, sortingthe
received sums into two groups randomly, summing them up,
and dividing the two sums by the total number of measure-
ments they are based upon. Having the final averages, the
base station is now able to perform the Enhanced Data Ag-
gregation Algorithm. This latter approach has the advantage
that the messages do not have to be decrypted by the ag-
gregator nodes while they perform the summation. The tool
that allows to sum up encrypted data is called ’homomorphic
encryption’ (see [12]). Moreover, both approaches fulfill the
requirement of having the minimum number of messages
transmitted (wireless transmission consumes a plenty of en-
ergy), as aggregation invokes compression of the data too.
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Fig. 8. Distortion caused by a sophisticated adversary for different values of the correlation coefficientr

How to relax the knowledge about the conditional p.d.f.?
In the previous sections, we assumed that the conditional
p.d.f. pX1|X2

(·|·) (or p
X1|X2

(·|·)) is known to the Attack
Detection Algorithm. In the following, we will show how
our algorithm behaves in case this conditional p.d.f. is not
precisely known. Let us assume that the Attack Detection Al-
gorithm knows onlŷpX1|X2

(x|y) = pX1|X2
(x|y) + ∆(x|y),

where
∫∞
−∞ |∆(x|y)|dx < δ for any given y. Moreover,

sincepX1|X2
(·|·) and p̂X1|X2

(·|·) are both probability den-
sity functions,

∫∞
−∞ ∆(x|y)dx = 0 for anyy. The imprecise

knowledge implies a wider confidence interval in Algo-
rithm 1 with upper and lower boundŝb1(·) and b̂2(·) (see
Equations (6)–(9)).

As
∫∞
−∞ ∆(x|y)dx = 0, ∆ has positive and negative do-

mains as well. Moreover, the integral of the positive domains
is equal to the integral of the absolute value of the nega-
tive domains. The worst case happens (i.e.,|b̂i(·) − bi(·)|
is the largest) when the positive domains are smaller than
b̂1(·) or greater than̂b2(·), while all the negative domains
are between̂b1(·) and b̂2(·). Equally weakening both sides
of the confidence interval means putting the same ”weight”
below b̂1(·) and abovêb2(·). Instead of Equations (6)–(9),
this would imply

∫ b̂1(z)

−∞
pX1|X2

(u|z)du =
α

2
− δ

4
(56)

∫ ∞

b̂2(z)

pX1|X2
(u|z)du =

α

2
− δ

4
(57)

and two similar equations withx2 instead of z. Using
these formulas one can calculate the new confidence inter-
val boundsb̂1(·) and b̂2(·), and with those one is able to
evaluate the effect of the imprecise knowledge of the condi-
tional p.d.f. on the distortion just like in Section 4.1.2. (We
note, however, that Equations (56) and (57) implicitly upper
boundδ by 2α.)

Figure 9 shows the results of this evaluation forδ = 0.1
andn = 2. As expected, the imprecise knowledge of the con-
ditional p.d.f. usually implies weaker attack detection capa-
bilities, however, these calculations belong to the worst case
(i.e., for a specially constructed∆). The interesting news of
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Fig. 9. The effects of the imprecise knowledge of the p.d.f. onthe distortion

the figure is that shifting the bounds of the confidence in-
terval does not necessarily results in a higher distortion for
correlated measurements. Especially, forr = 0.95 the attack
detection capabilities become better forµ̃ ≥ 1.5, which em-
phasizes again the important role of correlation. Generally
speaking, the lack of precise information about the condi-
tional p.d.f. does not alter our previous results significantly
when assuming a moderateδ, while it can also be beneficial
for higher correlation strength.

What is the optimal attack against the proposed scheme?
An optimal attacker is defined as an attacker who can reach
the highest possible distortion at the output of the aggrega-
tion function. We already presented two kind of attackers:
a simplified one in Section 4.1.2 in order to carry out the
analysis, and a sophisticated one in Section 4.2.3 in order
to demonstrate the capabilities of the proposed scheme in
a more general setting. However, none of these attackers
are optimal attackers, as both contain some restrictions con-
sidering the way how they perform the attack. More work
needs to be done for identifying the optimal attack against
the algorithms presented in this paper, and for evaluating the
performance of those algorithms when they face the optimal
attacker.
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6. Conclusion and Future Work

In this paper, we were concerned with a serious threat against
sensor networks that consists in altering the measured parame-
ters of the environment around the sensor nodes. We proposed
a resilient data aggregation framework, called CORA, that mit-
igates this problem. The novelty of CORA is that it takes ad-
vantage of the naturally existing correlation between the sen-
sor readings reported to the base station; in particular, correla-
tion is exploited to increase the probability of attack detection,
which in turn, is used to decrease the distortion caused by an
attack at the output of the aggregation function. We emphasize
that the operation of CORA does not depend on any particular
assumptions on the distribution of the sensor readings nor on
the distribution of the measurement offset introduced by the at-
tacker. We evaluated the effectiveness of CORA both formally
and by means of simulation by characterizing its false positive
and false negative probabilities along with the final distortion
in the aggregate. The results show that CORA can significantly
decrease the distortion and that the level of improvement of-
fered by CORA increases as the correlation increases consid-
ering typical attacks (i.e., when the number of compromised
measurements is low).

During the development of our resilient data aggregation
scheme, we identified some interesting future research direc-
tions. One of them is to consider the case when the conditional
p.d.f. used for attack detection can become outdated (e.g.,the
temperature changes when heading from winter to spring, there-
fore different temperature values has to be labelled as outlier
than before). The effect of this could probably be modelled
with a similar approach to what was presented in Section 5, but
with a time-dependent uncertainty. Searching for the optimal
attacker is very important as well, as already mentioned in the
previous section. Furthermore, we intend to work on improving
the framework presented to be applicable in sample filtering,
i.e., instead of dropping the compromised sample one could fil-
ter out the compromised elements. We believe that with sample
filtering we will be able to further reduce the distortion of the
aggregate considering any kind of attacks.

7. Acknowledgements

The work described in this paper is based on results of
the IST FP6 STREP UbiSec&Sens (www.ist-ubisecsens.org).
UbiSec&Sens receives research funding from the European
Community’s Sixth Framework Programme. Apart from this,
the European Commission has no responsibility for the content
of this paper. The information in this document is provided as
is and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the in-
formation at its sole risk and liability. The second author has
been partially supported by the HSN Lab.

References

[1] I. F. Akyildiz, M. C. Vuran, O. B. Akan, On exploiting spatial and
temporal correlation in sensors networks, in: Proceedings of the 2nd
Workshop on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), 2004.

[2] T. Arampatzis, J. Lygeros, S. Manesis, A survey of applications of
wireless sensors and wireless sensor networks, in: Proceedings of the
13th Mediterranean Conference on Control and Automation, 2005.

[3] J. O. Berger, V. D. Oliveira, B. Sansó, Objective Bayesian analysis of
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[21] G. L. Sẗuber, Principles of mobile communication (2nd ed.), Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

[22] S. Tanachaiwiwat, A. Helmy, Correlation analysis for alleviating effects
of inserted data in wireless sensor networks, in: Proceedings of Mobile
and Ubiquitous Systems: Networking and Services, 2005.

[23] Pickberry Vineyard, https://www.accenture.com/global/services/accentu
re technologylabs/r and i/pickberry.htm.

15



[24] M. C. Vuran, O. B. Akan, I. F. Akyildiz, Spatio-temporal correlation:
theory and applications for wireless sensor networks, Elsevier Computer
Networks 45 (3) (2004) 245–259.

[25] M. C. Vuran, I. F. Akyildiz, Spatial correlation-basedcollaborative
medium access control in wireless sensor networks, IEEE/ACM
Transactions on Networking (TON) 14 (2) (2006) 316–329.

[26] D. Wagner, Resilient aggregation in sensor networks, in: Proceedings of
the 2nd ACM Workshop on Security of Ad hoc and Sensor Networks
(SASN), 2004.

[27] R. O. Weber, P. Talkner, Some remarks on spatial correlation function
models, Monthly Weather Review 121 (9) (1993) 2611–2617.

[28] F. Ye, H. Luo, S. Lu, L. Zhang, Statistical en-route filtering of injected
false data in sensor networks, IEEE Journal on Selected Areas in
Communications 23 (4) (2005) 839–850.

[29] S. Yoon, C. Shahabi, Exploiting spatial correlation towards an energy
efficient clustered aggregation technique (CAG), in: Proceedings of the
IEEE International Conference on Communications (ICC), 2005.

[30] Y. Zhu, R. Vedantham, S. Park, R. Sivakumar, A scalable correlation
aware aggregation strategy for wireless sensor networks, in: Proceedings
of the First International Conference on Wireless Internet(WICON),
2005.

Levente Buttyán received the M.Sc.
degree in Computer Science from the
Budapest University of Technology and
Economics (BME) in 1995, and the Ph.D.
degree from the Swiss Federal Insti-
tute of Technology, Lausanne (EPFL)
in 2002. In 2003, he joined the Depart-
ment of Telecommunications at BME,
where he currently holds a position as

Associate Professor and works in the Laboratory of Cryp-
tography and Systems Security (CrySyS). His research inter-
ests are in the design and analysis of security protocols for
wired and wireless networks, including wireless sensor net-
works and ad hoc networks. More information is available at
http://www.hit.bme.hu/∼buttyan/
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