
Security API analysis with the spi-calculus

Levente Buttyán Ta Vinh Thong
 buttyan@crysys.hu thong@crysys.hu

Laboratory of Cryptography and Systems Security
Department of Telecommunications

Budapest University of Technology and Economics

Abstract: API level vulnerabilities of hardware security modules represent a serious
threat, thus, discovering and patching security holes in APIs are important. In this
paper, we argue and illustrate that the application of formal verification methods is
a promising approach for API analysis. In particular, we propose an API verification
method based on process algebra. The proposed method seems to be extremely well-
suited for API analysis as it allows for the straightforward modelling of the API, the
precise definition of the security requirements, and the rigorous verification of the
security properties offered by the API.

1. Introduction
Hardware Security Modules (HSM) are indispensable in many applications, such as ATM1
networks, public key infrastructures, electronic ticketing in public transportation, electronic
payment systems, and electronic commerce, in general. A HSM is a hardware device
(including the firmware and software components) which has some tamper resistance
properties, and it is used to store cryptographic keys and to perform various security-critical
cryptographic operations (e.g., generation of digital signatures and PIN2 codes).

HSMs appeared in civilian applications starting from the late 1960s. At that time, driven by
the explosion of the number of banking card forgery attacks, IBM (the main supplier of the
computer systems of the banks) developed a system where the customer's PIN was computed
from the account number placed on the card by encrypting it using a key called the PIN
derivation key. Therefore, the protection of the PIN derivation key against both the bank
employees and outside attackers became an importnat requirement. This led to the
development of the IBM 3848 co-processor, which represenst the first generation of HSMs
that were widely used in ATM networks later. Today, the application of HSMs is expanded,
and besides the banking sector, they became widely used also in Public Key Infrastructures, in
Automated Fare Collection systems, and generaly in electronic commerce.

The primary goal of attacking a HSM is to extract the secret data stored in it. The long list of
potential attacks [2] starts with invasive attacks where the attacker physically penetartes the
HSM and gains access to its internal parts, and it continues with non-invasive side channel
attacks where the operational environment of the HSM (e.g., its timing and power
consumption) is observed or manipulated. These attacks can be very effective, but at the same
time, they often require expensive equipments. Finally, HSMs can also be attacked through
their APIs by exploiting some design weaknesses in the API's logic. Being fully software
based, this kind of attacks is much less expensive than physical and side-channel attacks, and
depending on the weaknesses that are exploited, it may have devastating effects. This means
that attacking HSMs through their APIs has a potentially high risk.

1 Automatic Teller Machine
2 Personal Identification Number

Many API attacks have been found against several widely-used, commercially available
HSMs, which otherwise provide very strong physical protection [3, 4, 5, 6, 7, 10, 11]. Thus,
discovering and patching security holes in APIs are required, ideally, still before the large-
scale deployment of the HSMs. At the same time, APIs used in practice are complex,
containing hundreds of functions, which renders their analysis difficult.

One promising approach of API analysis is to apply some formal verification method used in
software engineering [8, 9, 11, 12, 14, 16]. In this paper, we follow this approach, and
propose an API verification method based on process algebra that seems to be extremely well-
suited for the formal modelling of security APIs, the precise definition of the security
requirements, and the rigorous analysis of the provided security properties. In particular, the
here-in introduced method is based on the spi-calculus [1], which was originally designed for
analysing key exchange protocols. To the best of our knowledge, we are the first who use the
spi-calculus for analysing security APIs.

In the rest of the paper, we first introduce API attacks against the Visa Security Modul in
Section 2 for illustration and motivation purposes. Similar attacks also work against other
HSMs. The subtlety of these attacks motivate the formal API analysis method introduced in
Section 4. Our method is based on the spi-calculus, which is breifly reviewed in Section 3.

2. An API attack against the VISA Security Module
The primary function of the VISA Security Module (VSM) is to protect PINs transmitted over
the ATM networks. VISA's goal in promoting this technology was to persuade member banks
to connect their ATMs to VISA's network, so that a customer of one member bank could get
cash from an ATM operated by another member bank. VISA wanted to minimize the loss that
could be caused by dishonest or negligent employees at member banks. The goal was to
ensure that no single employee of any bank in the network can learn the clear value of any
customer's PIN. This means that PIN numbers should not simply be managed in the software
running on the mainframes of the bank. Instead, PIN numbers are managed in a physically
protected, tamper-resistant environment implemented by the VSM.

Due to the limitations of its internal memory size, theVSM only stores the most important
master keys inside the module; other keys are stored outside secured under the master keys.
The key storage method of the VSM follows a hierarchical structure [3] illustrated in Figure
1, which has the advantage of efficient key sharing. However, if a key at a top layer is
compromised, every key below it in the hierarchy will be also compromised. The VSM uses
five different master keys to encrypt other keys according to their relevancy and roles. The
VSM supports nine key types to distinguish roles. As we can see, master keys are placed at
the top layer of the hierarchy, and are illustrated as circles, and the nine key/data types are
illustrated as rectangles at the lower layers. The keys that belong to a given layer and a given
type are secured with the corresponding keys at the upper layers, except the master keys.

The master key ZCMK (Zone Control Master Key) is used to encrypt ZCK (Zone Control
Key) keys. ZCKs are keys to be shared with other banking networks, used to protect the
exchange of working keys. Working Keys (WKs) are used to protect trial PINs that customers
have entered while they travel through the network on the way to the bank for verification,
and are not used for intra-bank communications. Working keys are stored outside encrypted
with the Working Master Key (WMK). Terminal Communications keys (TCKs) are for
protecting control information going to and from ATMs, compute MACs of messages

exchanged between VSMs, and are secured with the Terminal Commucation Master Key
(TCMK). The Terminal Master Key (TMK) and the PIN generation key (P) are very important
keys and are considered as keys with the same relevancy. Thus, they are both encryted under
master key MK, in other words, they are treated as the same key type. The TMK keys are
shared between ATMs and used to protect all keys sent to an ATM. The PIN generation key is
used to generate customer PINs, as we know . Finally, at the lowest layer we can find user
data that are encrypted with the operational keys according to their type, where X{ } means
that the user data is encrypted with a key of type X.

Figure 1. The key hierarchy of the VISA Security Module (VSM)

Before putting a new ATM in operation, the bank has to supply the ATM with every neces-
sary key. To do this, first, a fresh TMK key is shared with the new ATM. All other keys are
protected with this TMK during transmission to the ATM.

The generation of the key TMK is as follow: Function GenerateKeyShares of the VSM API
is called by the Host:

: " "Host VSM GenerateKeyShares→

The VSM generates a key part iTMK , and at the same time, it prints the key part to a secure
printer to which only authorized persons have access:

ec :VSM S urePrinter TMKi→

Then, it returns the key part encrypted under the master key MK to the host.

{ }: MKiVSM Host TMK→

We assume that two key parts are required to construct the TMK. The key parts TMK1 and
TMK2 printed by the secure printer are given to separate authorized couriers, who carry it to
the new ATM and load it in. After receiving both parts of the key, the new ATM computes

the TMK key with XORing the two key parts, 1 2TMK TMK TMK= ⊕ . The same TMK key is
produced at the bank with the CombineKeyShares command:

{ } { }1 2: " ", ,MK MKHost VSM CombineKeyShares TMK TMK→
{ } { }1 2: MK MKVSM Host TMK TMK TMK→ ⊕ =

There exists an API attack that exploits the Terminal Master Key generation function above.
Namely, instead of inputting { }1 MKTMK and { }2 MKTMK , the host (or a programmer at the
host) calls Combine Key Shares with inputing twice the same key token{ }1 MKTMK (or
{ }2 MKTMK).

{ } { }1 1: " ", ,MK MKHost VSM CombineKeyShares TMK TMK→
{ } { }1 1: 0MK MKVSM Host TMK TMK→ ⊕ =

Thus, the programmer can achieve that the all zero key becomes the TMK. He can then
exploit this to produce customer PINs, since the PIN derivation key (P) is protected with the
TMK key during transmission to the ATM for PIN verification. In other workds, the
programmer can now easily decrypts { }0P with the key 0, and obtains P in clear. With the
key P, he can generate the PIN of any customer.

There is an another attack that uses the EncryptCommsKey function of the API, which inputs
a clear TCK key and returns the encrypted version under the master key TCMK. This key
token is stored in an external storage.

: " ",Host VSM EncryptCommsKey TCK→
{ }: TCMKVSM Host TCK→

As mentioned above, every key, including the TCK key, must be transferred to a new ATM.
The transmission of the key TCK is also protected with the mastrer key TMK: { }TMKTCK . The
function TranslateCommsKeytoTMK ensures the generation of this key token:

{ } { }: " ", ,
TCMK MK

Host VSM TranslateCommsKeytoTMK TCK TMK→
{ }: TMKVSM Host TCK→

The attack exploits that TMK and P are treated as having the same type. The malicious
programmer calls EncryptCommsKey, but instead of inputting TCK, he inputs the customer's
account number PAN:

: " ",Host VSM EncryptCommsKey PAN→
{ }: TCMKVSM Host PAN→

Next, he calls TranslateCommsKeytoTMK, but instead of inputting { }

TCMK
TCK , he inputs the

resulted key token { }TCMKPAN of the previous step. Besides this, he inputs { }MKP instead of
{ }MKTMK .

{ } { }: " ", ,TCMK MKHost VSM TranslateCommsKeytoTMK PAN P→

{ }: = PVSM Host PAN PIN→

The returned value is the account number PAN encrypted under the PIN derivation key, which
is exactly the PIN number of the account holder.

3. Overview of the spi-calculus
In this section, we give a brief overview of the spi-calculus [1], an extension of the π -
calculus [13] with cryptographic primitives. Similarly to the π -calculus, the spi-calculus can
be seen as a programming language. Hence, the spi-calculus seems to be well-suited for
modeling security APIs.

Syntax of the spi-calculus
In the spi-calculus, communication channels are represented with names. We assumme an
infinite set of names. In addition, we assume an infinite set of variables that is important at
initialization. Let x, y, and z range over variables, and let m, n, and c range over names. We
distinguish terms and processes. Terms (messages, channel identification, keys, etc.) represent
data, while processes describe behaviour. A term can be an atom, such as a constant or a
variable, or it can be a complex term.

The set of terms is defined by the following grammar:

, , ::

 (,)

 0

L M N terms

n name

M N pair

zero

=

{ }1 2

 ()

 , , ...,

 k N

suc M successor

x variable

M M M shared - key encryption

As we can see, a term can be a name, a pair of terms, a constant zero, the successor of a given
term, or a variable. We emphasize the term { }1 2, , ..., NkM M M , which represents shared-key
encryption, where N represents the key, and 1 2, , ..., kM M M terms represent the fields of the
plaintext message.

The set of processes is defined by the following grammar:

()
1 2

1 2

, , ::

 , , , . (0)

 , , , . (0)

 |

k

k

P R Q process

M N N N P ouput k

M x x x P input k

P Q

=

≥

≥

K

K

()

[]

 ()

 !

parallel composition

vn P restriction

P replication

M is N P

()
()

 0

 ,

 0 : :

match

nil process

let x y M in P pair splitting

case M of P suc x Q integer case

=

{ }1 2 , , , (0)k Ncase L of x x x in P shared - key decryption k ≥K

The above constructions of the spi-calculus have the following intuitive meanings:

• Output : Here, the term M represents a channel. This process is ready to output terms

1 2, , ..., kN N N on channel M. If a reaction step (see below) can occur, then terms

1 2, , ..., kN N N are sent on channel M and then process P runs.

• Input : This process is the pair of the ouput process. In a reaction step, an output

process sends terms 1 2, , ..., kN N N as a message on channel M, and an input process
inputs these terms from the same channel, and then process 1 1 2 2/ , / , , /k kP N x N x N x K
runs, where /N x represents the binding of variable x to term N. More precisely,
variables are substituted with the inputted terms in process P.

• Composition (P|Q): This conctruction represents the parallel execution of processes P

and Q. They can interact with each other via channels known to both, or they can
interact with the outside world independently of each other.

• Restriction ()vn P : The process P creates a new local name n . This name cannot

appear in other processes unless it has been sent explicitly during some
communications. With this construction, we can model the generation of a new secret
key.

• Replication (!) P : This construction represents an infinite number of copies of process

P running in parallel.

• Match []() M is N P : This process behaves as P provided that terms N and M are the
same; otherwise it is stuck, meaning that it does nothing.

• Nil process ()0 : The nil process does nothing.

• Pair splitting ()(,) let x y M in P= : If (),M N L= holds, then process [][]/ /P N x L y

will execute, otherwise the process will stuck.

• Integer case () (0 : :)case M of P suc x Q : This process behaves as P if term M is 0, and
as []/Q N x if ()M suc N= . Otherwise, the process is stuck.

• Shared-key decryption: Process case L of {x1, x2, ..., xk}N in P attempts to decrypt the

term L with the key N. If L is a ciphertext of the form { }1 2, , ..., k NM M M , then the
process will behave as P[M1/x1, ..., Mk/xk]. Otherwise, the process is stuck.

As usual, there are some important assumptions made about cryptography and messages:

• The only way to decrypt an encrypted packet is to know the corresponding key.
• An encrypted packet does not reveal the key that was used to encrypt it.
• There is sufficient redundancy in messages so that the decryption algorithm can detect

whether a ciphertext was encrypted with the expected key.
• The attacker cannot find out or generate any secret data of the protocol.

Modeling secrecy property in the spi-calculus
In the spi-calculus the attacker is an arbitrary R process about which we assume only that at
the beginning it does not have any secret data. The attacker process runs in parallel with the
process that models the system, and they can interact (communicate) via public channels. The
attacker attempts to obtain some secret data using only the information that he gets during the
interaction.

Secrecy, which is a basic security property in the spi-calculus, is based on the
indistinguishability of processes. Namely, the system P keeps data M secret, if for arbitrary
data M’, the attacker process R cannot distinguish P(M) and P(M’).

A formal definition of indistinguishability in the spi-calculus is given by using the notion of
testing equivalence. To make this clear, first we introduce some additional notions:

• Free and bound variables: Variable x is bound in process P if process P contains
an input subprocess ()m x (for arbitrary m). Variable x is free in process P if process
P does not contain an input subprocess ()m x . Let ()fv P denote the set of free variables
in P.

• Closed term/process : We say that a term or process is closed if it has no free

variables. In the spi-calculus, we assumed that the attacker process is closed.

• Reaction step: A reaction step arises from the interaction of an input process ().m x Q
and an output process .m M P . During the interaction the output process sends term
M via channel m , while the input process receives it on channel m , and binds variable
x to the received term. Then process Q runs with this term. Formally,

[]. | (). | /m M P m x Q P Q M x→

• Barb exhibiting: Exhibiting a barb means that a process uses a given channel to send

or receive messages. Barb exhibition is denoted by ↓ . Exhibiting a barb is entirely
independent from the content of the output or input messages. Barb exhibition is
defined by the two axioms:

• Barb In – If a process immediately uses channel m to receive data, then it

exhibits the barb m , namely, ().m x P m↓ .
• Barb Out – If a process immediately uses channel m to send data, then it

exhibits the barb m , namely, .m M P m↓ .

• Convergence: Convergence intuitívely means that a process does not definitely use a

given channel immediately, but only after some reaction steps. Convergence is
denoted by ⇓ , and there are two related axioms:

• If a process exhibits a barb β , then it will converge to β .
• If a process P transforms to process Q that exhibits barb β , then process P

will converge to barb β .

Next, after introducing the required notions, we give a formal definition of testing
equivalence.

Definition (Testing equivalence): A test is a pair (,)R β , where R is an arbitrary closed
process and β is a barb (m or m). Testing equivalence holds between P and Q, written as
P ≈ Q, if and only if P ⊆ Q and Q ⊆ P holds, where P ⊆ Q holds if and only if (P|R)⇓β
implies (Q|R)⇓β for any test (R, β).

Intuitively, P ≈ Q means that the behaviors of the processes P and Q are indistinguishable for
any external observer R. More precisely, P and Q may have different internal structure, but a
third process R cannot distinguish running in parallel with P from running in parallel with Q.

4. Modeling security APIs in the spi-calculus
Although the spi-calculus is designed for modelling key exchange protocols, we argue that it
is also well-suited for modeling the interaction with a HSM via its API. This is because the
interaction can be thought of as a set of two-party protocols, each describing an exchange of
messages between the HSM and the user. We can model the entire API as the parallel
composition of the replication of the processes that represent individual API function calls.
We show an example in this section.

For this purpose, we first define a simplified security API. We assume that the security
module has a master key, denoted by MK , which is stored inside the module. In addition, we
distinguish two types of keys: data encryption keys (denoted by iK), and key encryption keys
(denoted by jKEK), to which we link the type indicator constants DataKey and KEKKey ,
respectively. Key tokens that contain a data encryption key iK will carry a type indicator
DataKey . Similarly, key tokens containing key encryption keys jKEK will carry KEKKey as a
type indicator. We also tag encrypted data with the type indicator TData . In addition, we
assume that the modul does not store iK and jKEK inside, instead it exports them in

encrypted forms { }, MKiDataKey K and { },
MKjKEKKey KEK under the master key MK.

Our example API consist of four functions:

• data-encryption: This function inputs some data Data and some key token
{ }, MKiDataKey K . Then, it decrypts { }, MKiDataKey K with the internally stored master
key MK , and checks its type. If the type is DataKey , then it uses iK to encrypt Data.
Finally, it outputs the cipher { }, Ki

TData Data .

• data-decryption: This function inputs some encrypted data { }, Ki

TData Data and

some key token { }, MKiDataKey K . Then, it decrypts { }, MKiDataKey K with the internally
stored master key MK , and checks its type. If the type is DataKey then it uses iK to
decrypt the cipher { }, Ki

TData Data . Finally, it checks if the type is TData , and if so,

then it outputs Data.

• data-key export: This function takes two key tokens, { }, MKiDataKey K and

{ },
MKjKEKKey KEK as inputs. It decrypts both of them with the master key, and

checks their types. If the types are DataKey and KEKKey respectively, then it
encrypts (), iDataKey K with jKEK . It then outputs the key token { },

jKEKiDataKey K .

This token will be sent to another modul that may import key iK .

• data-key import: This function takes two key tokens, { },
jKEKiDataKey K and

{ },
MKjKEKKey KEK as inputs. It first decrypts { },

MKjKEKKey KEK with the master key

MK , and checks its type. Then it decrypts { },
jKEKiDataKey K with jKEK , and checks

its type. Finally, if the types are correct, it encrypts (), iDataKey K with the master
key, and outputs the key token { }, MKiDataKey K .

We can model the API defined above with the spi-calculus as follow: Let ENCMODULE ,

DECMODULE , EXPMODULE , IMPMODULE denote the data-encryption, data-decryption, data-key
export and data-key import processes. Each process receives data (e.g., input arguments) via
channels. The names exp p, , ,enc imdecc c c c denote the communication channels through which

the processes can receive data. Moreover, we define a channel userc through which the
processes output data to the environment. The formal definition of these processes is the
following:

{ }
{ }

0 0

1. ()

(,). ,

,

ENC

ienc data token token typeK K typeKMK

user Data Kx i

MODULE MK

c x x case x of x x in x is DataKey

c TData x< >

@

{ }
{ }

1 2 2 1

2. ()

(,). , ,

,

DEC

idec token token token typeK K tokenMK

typeData Data typeK typeData
Ki

user Data

x

MODULE MK

c x x case x of x x x

of x x in x is DataKey x is TData

c x< >

@

{ }
{ }

{ }

exp 3 4 3 4

3. ()

(,). , ,

,

,

EXP

i

i

token token token typeK K tokenMK

typeKEK KEK typeK typeKEK

user K
KEK

MK

x

MODULE MK

c x x case x of x x x

of x x in x is DataKey x is KEKKey

c DataKey x< >

@

{ }
{ }

{ }

5 6 6 5

4. ()

(,). , ,

,

,

IMP

i

i

imp token token token typeKEK KEK tokenMK

typeK K typeK typeKEK
KEK

user K MK

x

MODULE MK

c x x case x of x x x

of x x in x is DataKey x is KEKKey

c DataKey x< >

@

Then, the API can be represented as the parallel composition of the replication of the above
processes with an initial output of some key tokens. These key tokens are stored outside of the
HSM, and thus, they are available to everyone (including the attacker).

{ } { }
()

(,)

, , , .
()

! () | ! () | ! () | ! ()ENC DEC EXP IMP

API

user

i j

i jMK MK

Sys K KEK

c DataKey K KEKKey KEK
vMK

MODULE MK MODULE MK MODULE MK MODULE MK

< >

@

It is possible to prove formally that this simplified API never leaks out keys in clear. In the
formal proof we have to prove the following testing equivalences: SysAPI(Ki, KEKj) ≈
SysAPI(Ki’, KEKj) and SysAPI(Ki, KEKj) ≈ SysAPI(Ki, KEKj’), for every Ki, Ki’, KEKj, KEKj’. The
proof of this is based on induction. We assume that at first, the attacker process R does not has
any key, that is, the system is in safe state. Then, we prove that if the system is in safe state, it
will remain in safe state after any reaction step between process R and the system. This means
that the attacker cannot extract any key from the system via its API. We omit further details of
the proof here due to space limitations; the interested reader, however, can find the entire
proof in [15].

5. Conclusion
API attacks on hardware secutiy modules represent a serious risk. In this paper, we proposed a
formal method for analysing security APIs. This method enables us to prove that an external
attacker cannot extract any key from the modul via its API (given that indeed this is the case).
A failed proof does not directly gives us an attack scenario, however, it often reveals the weak
points of the API. The proposed method is based on the spi-calculus, which was originally
designed for analysing key exchange protocols. In this paper, we showed that it can also be
successfully used to analyise security APIs. Our experience shows that the spi-calculus is
well-suited for this kind of analysis.

Acknowledgements
The work presented in this paper has been supported by the SeVeCom Project that receives
funding from the European Commission withint the context of the 6th Framework
Programme.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the Spi calculus. Technical

Report SRC RR 149, Digital Equipment Corporation, Systems Research Center, January 1998.
[2] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic processors – a survey .

Technical Report UCAM-CL-TR-641, University of Cambridge, Computer Laboratory, August
2005.

[3] M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of the CHES 2001
Workshop. Springer LNCS 2162, 2001.

[4] M. Bond. Understanding security APIs. PhD thesis, University of Cambridge, 2004.
[5] M. Bond and R. Anderson. API level attacks on embedded systems. IEEE Computer Magazine,

October 2001.
[6] M. Bond and J. Clulow. Encrypted? Randomised? Compromised? (when cryptographically

secured data is not secure). In Proceedings of the Workshop on Cryptographic Algortihms and
their Uses, 2004.

[7] M. Bond and P. Zielinski. Decimalisation table attacks for PIN cracking. Technical Report
UCAM-CL-TR-560, University of Cambridge, Computer Laboratory, January 2003.

[8] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19, July 2001.

[9] J. Clulow. The design and analysis of cryptographic APIs. MSc thesis, University of Natal,
South Africa, 2003.

[10] J. Clulow. On the security of PKCS#11. In Proceedings of the CHES 2003 Workshop. Springer
LNCS 2779, 2003.

[11] V. Ganapathy, S. A. Seshia, S. Jha, T. W. Reps, and R. E. Bryant. Automatic discovery of API-
level vulnerabilities. In Proceedings of the ACM/IEEE Conference on Software Engineering
(ICSE), 2005.

[12] A. H. Lin. Automated analysis of security APIs. MSc Thesis, Massachusetts Institute of
Technology, May 2005.

[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and II. Information
and Computation, September 1992.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an efficient SAT
solver. In Proceedings of the 38th Design Automation Conference (DAC), June 2001.

[15] Ta Vinh Thong. Security API analysis with the Spi calculus. Student Scientific Conference
(TDK), Budapest University of Technology and Economics, November 2007.

[16] P. Youn. The analysis of cryptographic APIs using the theorem prover otter. MSc Thesis,
Massachusetts Institute of Technology, May 2004.

