
SECTOR: Secure Tracking of Node Encounters in
Multi-hop Wireless Networks

Srdjan Čapkun1 Levente Buttyán2 Jean-Pierre Hubaux3

1,3Laboratory for Computer 2Budapest University of
Communications and Applications (LCA) Technology and Economics

Swiss Federal Institute of Department of Telecommunications
Technology Lausanne (EPFL) Magyar tudosok krt. 2

CH-1015 Lausanne, Switzerland H-1117 Budapest, Hungary
srdan.capkun@epfl.ch, jean-pierre.hubaux@epfl.ch buttyan@hit.bme.hu

ABSTRACT
In this paper we present SECTOR, a set of mechanisms
for the secure verification of the time of encounters between
nodes in multi-hop wireless networks. This information can
be used notably to prevent wormhole attacks (without re-
quiring any clock synchronization), to secure routing proto-
cols based on last encounters (with only loose clock synchro-
nization), and to control the topology of the network. SEC-
TOR is based primarily on distance-bounding techniques, on
one-way hash chains and on Merkle hash trees. We analyze
the communication, computation and storage complexity of
the proposed mechanisms and we show that, due to their ef-
ficiency and simplicity, they are compliant with the limited
resources of most mobile devices.1

Categories and Subject Descriptors
C.0 [Computer-Communication Networks]: [Security
and protection]

General Terms
Security, Positioning

Keywords
Security, Mobile Networks, Mobility, Security associations,
Positioning

1The work presented in this paper was supported (in
part) by the National Competence Center in Research
on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National
Science Foundation under grant number 5005-67322
(http://www.terminodes.org).

ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN),
October 31, 2003, Washington, USA.

1. INTRODUCTION
In multi-hop wireless networks2, keeping track of node en-
counters is a crucial function, to which the research commu-
nity has devoted very little attention so far. This function
can be used for the detection of wormhole attacks, to se-
cure routing protocols based on the history of encounters,
and for the detection of cheating attempts (e.g, in charging
mechanisms).

In this paper, we propose a set of mechanisms for the se-
cure verification of the time of encounters between nodes in
multi-hop wireless networks. Our proposal enables any node
to prove to any other node (or base station) its encounters
with other nodes before or at some specific time; we call it
SECTOR (SECure Tracking Of node encounteRs).

SECTOR can be used to prevent wormhole attacks [12,
20, 24] in ad hoc networks, without requiring any clock syn-
chronization or location information; it is therefore a valid
alternative to the other solutions already proposed to this
problem.

SECTOR can also help to secure routing protocols in
mobile ad hoc networks, which are based on the history of
encounters; we illustrate this with FRESH [10], the last-
encounter protocol that enables an efficient route discovery
for large-scale ad hoc networks.

In addition, if it is applied in a multi-hop cellular network,
SECTOR allows a base station to partially or totally recon-
struct the network topology, in real time, or at some past
time, in a secure way. This information can then, for ex-
ample, be used by the network operator for the detection
of node misbehavior; it can also help a base station to
securely position the nodes located out of its power range.
An example of the latter application is the prevention of
charging frauds in multi-hop cellular networks [2]. If charg-
ing is based on a probabilistic micro-payment scheme [17],

2By multi-hop wireless networks, we mean those networks
in which communication is partially or totally relayed by
several mobile nodes; multi-hop wireless networks include
“pure” or “autonomous” ad hoc networks, ad hoc networks
that have sporadic access to a backbone, and multi-hop cel-
lular networks

1

the proposed mechanism can help the operator to identify
inconsistencies that may correspond to fraud attempts.

A last example of application of SECTOR is to use it for
topology monitoring in mobile ad hoc networks: the se-
cure knowledge of node encounters can help detecting at-
tackers that use multiple nodes while assigning them the
same identity.

Several research efforts that have been reported propose var-
ious location verification mechanisms for mobile networks
(some of them are extremely recent). Waters and Felten [27]
propose a system for proving the location of tamper-resistant
devices, based on the exchange of RF messages. The sys-
tem uses round-trip time of flight measurements to distance-
bound the devices. A similar protocol, based both on RF
and ultrasound, is devised by Sastry, Shankar and Wag-
ner [25]. Finally, Brands and Chaum [4] have proposed a set
of efficient distance-bounding protocols that operate with bit
exchange and rely on the measurements of round-trip time
of flight.

In the area of ad hoc networks, Stajano [26] recommends the
use of location-limited channels to provide authentication in
ad hoc networks. Balfanz et al. [1] make use of location-
limited channels for location based access control. It has
to be stressed that these research efforts aim at securing
information related to location, whereas SECTOR deals with
node encounters.

When engineering SECTOR, we carefully took the limited
memory and computational resources of mobile devices into
account. Thus, the proposed mechanisms are based primar-
ily on one-way hash chains and Merkle hash trees [19]. We
discuss how public-key cryptography could be used; consid-
ering its dramatic computational cost, we show that its use
can be avoided.

One-way hash chains and Merkle hash trees have already
been used to secure various aspects of routing. Hauser, Przy-
gienda and Tsudik [11] present an efficient mechanism for
the authentication of link state routing updates. Zhang [28]
improves this mechanism and presents a chained Merkle-
Witnernitz one-time signature. Hu, Perrig and Johnson [15]
propose a set of efficient security mechanisms for routing
protocols, which make use of hash chains and Merkle hash
trees. They also use hash chains to efficiently secure dis-
tance vector routing updates in SEAD [13] and to prevent
malicious changes of hop count in Ariadne [14].

The mechanisms of SECTOR differ in their complexity and
can be adapted to the security requirements as well as to
the organization of the network, such as the existence of
on-line or off-line central authorities. We will analyze the
communication, computation and storage complexity of the
proposed mechanisms and we will show that, due to their
efficiency and simplicity, they can be easily integrated in a
variety of multi-hop wireless networks.

This work has been carried out in the framework of the
Terminodes Project [16].

The organization of this paper is the following. In Section 2,

we describe the system model and the assumptions. In Sec-
tion 3, we explain the mechanisms we propose to support
the secure verification of encounters. Sections 4 and 5 con-
tain the security and performance analysis. In Section 6
we describe several potential applications. We conclude the
paper in Section 7.

2. SYSTEM MODEL AND ASSUMPTIONS
Before we describe the mechanisms, we shortly describe our
system model and the assumptions.

Our system consists of a set of mobile nodes and it may also
contain a set of (fixed) base stations. Nodes communicate
using radio transmissions. If two nodes reside within the
power range of each other, then they are considered to be
neighbors. We assume that the radio link between neighbors
is bidirectional. We do not make any specific assumptions
about the medium access control protocol used by the nodes
to access the radio channel.

The nodes may form a pure ad hoc network, an ad hoc net-
work that has sporadic access to a backbone, or a multi-hop
cellular network. In all cases, communication between dis-
tant parties may involve multiple wireless hops. We do not
make any specific assumptions about the routing protocol
used to transfer packets from their source to their destina-
tion.

Each node has a local clock, and we assume that the clocks
of the nodes are loosely synchronized. By this we mean
that the difference between the clocks of any two nodes is
typically smaller than 1 second. How loose time synchro-
nization is achieved is out of the scope of this paper. We
note however that some proposals have been developed [23].

We assume that the nodes can measure time locally with
nanosecond precision. One of our proposed protocols (MAD)
also assumes that each node is equipped with a special hard-
ware module that can temporarily take over the control of
the radio transceiver unit of the node from the CPU. We
assume that with the help of this special hardware module,
the node can receive a single bit, perform a XOR operation
on two bits, and then transmit a single bit without involv-
ing the CPU of the node. In other words, we assume that
the node can be put in a special state where it is capable
of responding to a one-bit challenge with a one-bit response
essentially immediately, without the delay imposed by the
usual way of processing messages. We assume that the bits
are correctly transmitted, meaning that there are no colli-
sions and no jamming. If collisions occur or if jamming is
detected, the protocol is terminated by the party that de-
tects it.

We do not assume that the nodes are equipped with posi-
tioning devices, nor that they can obtain their geographical
locations in any other way. We only assume that each node is
able to generate cryptographic keys, to check signatures, to
compute hash functions, and more generally, to accomplish
any task required to secure its communications (including
to agree on cryptographic protocols with other nodes).

We assume that the network operates with a central author-
ity. This authority can be on-line, meaning that the author-

2

ity operates on-line servers that can be contacted using the
network (by single hop or multi-hop communication), or off-
line, meaning that the services of the authority cannot be
reached via the network. In any case, the authority controls
the network membership and assigns a unique identity to
each node.

We assume that all network nodes either share pairwise se-
cret keys, or hold each others’ authentic public keys. This
can be achieved by manually pre-loading all keys into the
nodes in a network setup phase, however, this approach is
inflexible and can prevent the introduction of new nodes in
the network. Pairwise secret keys can also be established
by using a probabilistic key distribution scheme [3, 6], or an
on-line key distribution center and TESLA broadcast au-
thentication [14], or a key establishment scheme based on
the mobility of the nodes and mutual node encounters [8].

We observe three parties: the claimant, the certifier and the
verifier. The claimant is a node that wants to prove its en-
counter with some other node (the certifier) that happened
before, at, or after a specific time. The certifier is either a
node that certifies the time of the encounter, or a reference
point that certifies the claimant’s location at a given time.
The verifier is a node that verifies the claimant’s claim about
its encounter with the certifier.

We observe the following scenario: two nodes u and v find
themselves in each others’ power range and want to certify
their encounter. In this scenario, both nodes play the role
of both the certifier and the claimant: node u is a certifier
for node v and node v is a certifier for node u. There are
several ways in which u and v can convince the verifier that
they have indeed met. First, one of the nodes (e.g., u) sends
through an authentic channel a message to the verifier that
it has met v. To believe that u and v have indeed met, the
verifier needs to trust u, otherwise, u can cheat. Second,
both nodes u and v can send messages to the verifier stating
that the encounter took place. When the verifier receives
both messages, it can believe that u and v met, unless they
colluded. The third approach is that during their encounter,
the nodes exchange proofs of their encounter. In this case,
each node can separately, and at any later time, prove to
the verifier that it encountered the other node.

We follow the third approach, as it is the most appropriate
for systems with frequent node encounter certifications, in
which the nodes need to be able to prove their encounters
individually to any other node. We note that the first two
approaches might be convenient for systems in which com-
munication between the nodes can always be guaranteed,
and in which only a small fraction of encounters are verified
(otherwise it would incur a large communication overhead).

We observe two verification scenarios, any-to-any and any-
to-one. In the any-to-any scenario, all nodes in the network
can perform the role of the claimant, the verifier and the
certifier. More precisely, we enable each node to efficiently
prove to any other node that it encountered some third node
before, at or after a certain time. In the any-to-one scenario,
all the nodes in the network can perform the role of the
claimant and the certifier, but only a single node (or a sub-
set of nodes) performs encounter verification. The any-to-

any scenario corresponds to pure ad hoc networks, whereas
the any-to-one scenario is more appropriate for multi-hop
cellular networks where base stations naturally perform en-
counter verifications (e.g., for charging purposes).

3. MECHANISMS FOR ENCOUNTER
VERIFICATION

In the following subsections, we describe the mechanisms of
SECTOR; they differ both in the guarantees that they offer
and in communication, computation and storage complexity.
We describe first the mechanisms that bound node distance,
then the mechanisms that guarantee encounter freshness and
finally, the mechanisms that guarantee the time of node en-
counters.

3.1 Mutual Authentication with
Distance-Bounding (MAD)

In this section, we propose a protocol for the mutual authen-
tication of nodes with distance bounding that we call MAD.
The MAD protocol enables the nodes to determine their mu-
tual distance at the time of encounter. The MAD protocol
is thus an important mechanism for secure encounter certifi-
cation, as it prevents false encounter certification caused by
wormhole or mafia fraud attacks [9].

The notion of distance-bounding protocols was first intro-
duced by Brands and Chaum [4]. They proposed a technique
that enables a party to determine a practical upper bound on
its physical distance to another party. The main idea of the
technique is simple but very powerful: it is based on the fact
that light travels with a finite speed, and with current tech-
nology it is easy to measure (local) timings with nanosecond
precision. The proposed distance-bounding technique essen-
tially consists in a series of rapid bit exchanges between the
parties. Each bit sent by the first party is considered to be
a challenge for which the other party is required to send a
one bit response immediately. By (locally) measuring the
time between sending out the challenges and receiving the
responses, the first party can compute an upper-bound on
the distance to the other party.

Here, we slightly modify the distance-bounding protocol pro-
posed by Brands and Chaum so that it better fits our re-
quirements. First, our protocol allows both parties to mea-
sure the distance to the other party simultaneously. Second,
we avoid the use of digital signatures. Since our distance-
bounding protocol will be run frequently (each time nodes
encounter), the use of standard digital signatures in each
run of the protocol would result in an unacceptable over-
head. Instead, we base authentication on symmetric key
primitives. More precisely, we assume that each pair of par-
ties share a symmetric key, that the nodes established before
running the distance-bounding protocol between them. This
key is used to generate message authentication codes (MAC)
in order to prove the authenticity of the messages exchanged
in the distance-bounding protocol. We will denote the MAC
function controlled by the symmetric key k by mack.

Let u and v denote the two parties in the protocol, and let
their shared key be kuv. The protocol works as follows (see
also Figure 1):

3

u v
— initialization phase —

generate random numbers r ∈ {0, 1}�, r′ ∈ {0, 1}�′ generate random numbers s ∈ {0, 1}�, s′ ∈ {0, 1}�′

compute commitment cu = H(r|r′) compute commitment cv = H(s|s′)
cu−→
cv←−

— distance-bounding phase —
the bits of r are r1, r2, . . . , r� the bits of s are s1, s2, . . . , s�

α1 = r1
α1−→
β1←− β1 = s1 ⊕ α1

· · ·
αi = ri ⊕ βi−1

αi−→ measure delay between βi−1 and αi

measure delay between αi and βi
βi←− βi = si ⊕ αi

· · ·
α� = r� ⊕ β�−1

α�−→ measure delay between β�−1 and α�

measure delay between α� and β�
β�←− β� = s� ⊕ α�

— authentication phase —

si = αi ⊕ βi (i = 1, . . . , �) r1 = α1 and ri = αi ⊕ βi−1 (i = 2, . . . , �)
µu = mackuv (u|v|r1|s1| . . . |r�|s�) µv = mackuv (v|u|s1|r1| . . . |s�|r�)

r′|µu−→
s′|µv←−

verify cv and µv verify cu and µu

Figure 1: Operation of the Mutual Authenticated Distance Bounding protocol (MAD).

• Initialization phase:
Both u and v uniformly generate two numbers at ran-
dom. The numbers of u are denoted by r and r′, and
the numbers of v are denoted by s and s′. Both r and
s are � bits long, and both r′ and s′ are �′ bits long

(i.e., r, s ∈ {0, 1}� and r′, s′ ∈ {0, 1}�′). Both u and v
compute a commitment to the generated numbers by
using a collision resistant one-way hash function H:
cu = H(r|r′) and cv = H(s|s′). Finally, u sends cu to
v and v sends cv to u. Note that the random num-
bers can be generated and the commitments can be
computed well before running the protocol.

• Distance-bounding phase:
Let the bits of r and s be denoted by ri and si (i =
1, 2, . . . , �), respectively. The following two steps are
repeated � times, for i = 1, 2, . . . , �:

– u sends bit αi to v, where α1 = r1 and
αi = ri ⊕ βi−1 for i > 1;

– v sends bit βi = si ⊕ αi to u immediately after it
received αi from u.

Node u measures the times between sending αi and
receiving βi, and v measures the times between sending
βi and receiving αi+1. From the measured times, they
both estimate an upper-bound on their distance.

• Authentication phase:
u computes the bits si = αi ⊕ βi, and the MAC

µu = mackuv (u|v|r1|s1| . . . |r�|s�)

Similarly, v computes the bits r1 = α1 and ri = αi ⊕
βi−1 for i > 1, and the MAC

µv = mackuv (v|u|s1|r1| . . . |s�|r�)

Finally, u sends r′|µu to v and v sends s′|µv to u. u
verifies that the commitment cv and the MAC µv of
v are correct, and v verifies that the commitment cu

and the MAC µu of u are correct.

In the above protocol, the MAC ensures the authenticity
of the exchange: both u and v can believe that they ran
the protocol with each other, and thus the distance that
they estimated in the distance-bounding phase is really the
distance between u and v. Sending the commitments in the
initialization phase and making each bit sent in the distance-
bounding phase dependent on the bit received from the other
party in the previous step ensures that the parties cannot
send bits too early, and thus, cannot cheat the other party
by appearing to be closer than they really are.

The security of the protocol further depends on the number
of bits exchanged in the distance-bounding phase. Even if
functions mac and H are secure, an attacker can success-
fully compromise the protocol by guessing the value of the
bits r1, . . . , r� (or s1, . . . , s�), and sending the guessed bits
to v (respectively u) before those bits are revealed by u (re-
spectively v). However, the probability of a successful guess
is 1/2�, and hence decreases exponentially in �.

3.2 Guaranteeing Encounter Freshness (GEF)
Having described the SECTOR protocol for authenticated
distance-bounding, we propose two mechanisms (GEF-Ce
and GEF-CeCl) for guaranteeing the freshness of node en-
counters. By guaranteeing encounter freshness, we mean
that the claimant can prove to the verifier that its encounter
with the certifier happened at, or before, but not later than
the time of their actual encounter.

4

3.2.1 GEF with Certifier Authentication (GEF-Ce)
GEF-Ce uses hash chains for guaranteeing encounter fresh-
ness. Each node u creates a hash chain V0, V1, . . . , VN by
choosing the initial value V0 uniformly at random and com-
puting Vi = H(Vi−1) for i = 1, 2, . . . , N , where H is a one-
way hash function. VN is called the root of the hash chain
and it is distributed to all other nodes in the network in
an authentic way. Node u discloses the elements of its hash
chain to its one-hop neighbors in reverse order (with respect
to generation) begining with VN−1 and proceeding towards
V0. A simple disclosure scheme consists in publishing chain
elements at regular time intervals. Thus, the length of the
chain N is chosen as the expected number of hash values
that will need to be disclosed. This disclosure scheme en-
ables each node that resides in the first-hop neighborhood
of u to get the latest published value Vi. A neighbor re-
ceiving Vi can verify its authenticity by hashing it itera-
tively N − i times and comparing the result H(N−i)(Vi) to
the pre-distributed authentic root VN . The knowledge of Vi

then serves as a proof of being close to u prior to the time
when Vi was published. In other words, a verifier can typi-
cally check which of the claimants had met a given certifier
more recently.

Due to its simplicity, this mechanism can be very efficiently
implemented. As shown by Coppersmith and Jakobsson
in [7], a single hash chain of length N can be managed by
storing only �log2 N� + �log2(log2 N + 1)� hash values and
outputting chain elements at a cost of only 1

2
log2 N hash

operations per element. The mechanism also requires that
each node stores n− 1 hash chain roots (the authentic hash
chain roots of the other nodes). The cost of verification of
a received hash value is at most N hash function compu-
tations, but this can be significantly reduced if, instead of
storing hash chain roots, each node stores the most recently
received authentic hash chain elements of the other nodes.

Clearly, GEF-Ce mechanism provides only certifier, but not
claimant authentication (this means that it can be verified
who disclosed a given hash value, but it cannot be verified
to whom the value was disclosed).

3.2.2 GEF with Certifier and Claimant
Authentication (GEF-CeCl)

GEF with Certifier Authentication, although appealing due
to its simplicity, lacks claimant authentication and thus pro-
vides only weak protection against malicious nodes (we will
discuss this in Section 4.2). With multiple hash-chains, we
will now enable higher protection against attacks, but at
a somewhat higher storage cost. The mechanism works as
follows. Each node u creates n − 1 different hash chains,
one chain for each of the other n − 1 nodes in the network.
The hash chain that node u associates to node v is created
in a way that u chooses an initial value V v

0 , and computes
its corresponding root value V v

N . While u keeps the initial
values secret, it distributes all the root values of the chains
to the other nodes, along with the corresponding addresses
of the nodes.

To certify their encounter, two nodes first exchange their
addresses and then the values of the hash chains that they
previously created for each other and for that time instance.

In this way, by receiving a hash value generated by the
other node, any of the two nodes can prove that it has in-
deed encountered the other node prior to that time. The
main advantage of this mechanism over the single hash chain
mechanism is that it enables claimant authentication during
the verification. Another advantage is that its computation
complexity does not change with the number of nodes and
is the same as for the GEF-Ce mechanism. Its main disad-
vantage is the storage requirement, which increases linearly
with the number of nodes in the network and is thus n times
higher than that for the GEF-Ce mechanism: O(n log2 N).

Both GEF-Ce and GEF-CeCl mechanisms are designed for
any-to-any verification, but can be applied equally to any-
to-one scenarios, in which case the cost of distributing hash
chain roots is significantly reduced.

3.3 Guaranteeing the Time of Encounter
(GTE)

Having presented two simple mechanisms based on hash
chains, we now propose more sophisticated mecha-
nisms based on hash-trees that provide guarantees on the
exact time of the encounters.

The mechanism of tree-authenticated values is an efficient
hash tree authentication mechanism. It was first presented
by Merkle and it is also known as Merkle hash trees [19]. To
authenticate values (V0, V1, ..., VN), we place them at leaf
nodes of a binary tree. We then use the Merkle hash tree
construction to commit to the values V0, ..., VN , which works
in the following way. First, each value is hashed to avoid
disclosing the neighbor values during authentication. Thus,
each value Vi hashes into mi = H(Vi). Each internal node of
the binary tree is derived from its two child nodes. Consider
the derivation of some parent node mp from its left and right
child nodes ml and mr: mp = H(ml|mr). We compute the
levels of the tree recursively from the leaf nodes to the root
node.

3.3.1 GTE with certifier authentication (GTE-Ce)
We use the Merkle trees to guarantee the time of encounter.
Our scheme works as follows. Each node concatenates value
release times with random values to create the leaf values
V0, V1, ..., VN . Thus, we write Vi = timei|randi, where timei

represents the time at which the value Vi will be released
and randi is a random value generated by the node for the
i’th leaf value of the tree. After these initial values are
generated, they are blinded with a one-way hash function to
prevent disclosing neighboring values in the authentication
information. Thus, mi = H(Vi) = H(timei|randi). Once it
generates the tree, each node distributes the root of the tree
to other nodes in an authentic way. The node then releases
the time values in the order from V0 to VN (e.g., in fixed
time intervals, starting at a predefined time), along with
their siblings on the tree; these values enable any other node
to recompute the root of the tree and thus to authenticate
the values.

Example (Figure 2): When a certifier releases the value
V2, it releases it along with its siblings m3, m01 and m47.
These values are then stored by the claimants in the cer-
tifier’s neighborhood. When a claimant presents the value

5

v
0

m
0

m
01

m
03

m
47

m
07

m
23

m
45

m
67

v
1

m
1

v
2

time rand
2 2

=

=

m
2

v
3

m
3

v
4

m
4

v
5

m
5

v
6

m
6

v
7

m
7

Figure 2: Example of the Merkle hash tree and the
authentication of V2 with the GTE-Ce mechanism.

V2 to a verifier as a proof that it encountered the certi-
fier at time t, the verifier authenticates the received value
and extract from it the time of the encounter (time2 in the
example). To authenticate the received value V2, the ver-
ifier computes H(H(m01|H(H(V2)|m3))|m47) and checks if
it corresponds to the previously received authentic root of
the certifier m07. Similarly to GEF-Ce, this mechanism
can also be implemented very efficiently. As shown in [18],
Merkle trees can be efficiently stored by storing less then
1.5 log2

2 N/ log2 log2 N hash values, and hash tree values can
be efficiently outputted with a computation cost of less then
2 log2 N/ log2 log2 N hash function operations per output
value. The mechanism also requires that each node stores
n − 1 root hash values.

3.3.2 GTE with certifier and claimant
authentication (GTE-CeCl)

The same security problems as with GEF-Ce are inherent
to GTE-Ce, because in both mechanisms only the certifier
is authenticated. The main problem is that with GTE-Ce
it is only possible to verify the source of the message (the
certifier), but the verifier cannot be sure that the encounter
really happened with the claimant or with some other node
that disclosed the authentic value to the claimant. In or-
der to prevent this and similar attacks, we can use a similar
mechanism as with hash chains. Each node creates n − 1
hash trees, one tree for each other node in the network.
Consequently, instead of distributing one, a node is sup-
pose to distribute n − 1 root values, one for each node, by
thus enabling authentication during certification and veri-
fication of the encounter. We call this mechanism GTE-
CeCl-basic. However, creating n − 1 trees and distributing
the same number of roots is expensive, as it requires storing
n×1.5 log2

2 N/ log2 log2 N tree values and (n−1)2 roots per
each node.

Certifier and claimant authentication can be achieved more
efficiently, whereas each node still maintains a single hash-
tree. We propose that instead of creating n − 1 hash trees
of size N (N leaf nodes), each node creates a single tree of
size n × N and divides it into n equal parts. Thus, upon
encounters, the certifier releases to the claimant values that

are allocated for this claimant (e.g. for node i, the values in
range [(i−1)N, iN〉). We call this mechanism the optimized
GTE-CeCl and we denote it by GTE-CeCl-opt. The opera-
tion of GTE-CeCl-opt is shown on Figure 3. GTE-CeCl-opt
is very efficient in terms of storage, as it requires each node
to store only 1.5 log2

2 nN/ log2 log2 nN hash values and n−1
hash tree roots, versus n1.5 log2

2 N/ log2 log2 N hash values
and (n− 1)2 roots for GTE-CeCl-basic. The computational
cost per output value of GTE-CeCl-basic is the same as
for the GEF-Ce mechanism (less than 2 log2 N/ log2 log2 N
hash operations), whereas in the case of GTE-CeCl-opt,
the computational cost per output value is slightly higher
(2 log2 nN/ log2 log2 nN hash operations).

An example of the GTE-CeCl mechanism is shown on Fig-
ure 4. In the figure, the values V u

iv and mu
iv represent the

values on the hash tree created by node u, which are used
by u to certify its encounters with node v at time instance i.
In the example that is shown on the figure, we assume that
each node allocates only 8 leaf (time) values for each other
node in the network. This corresponds to the example trees
shown on Figures 2 and 3. In the protocol, the nodes release
values (V v

2u, V u
2v) associated with the time t = 2s, given that

the values are released each second.

GTE-Ce, GTE-CeCl and GTE-CeCl-opt are designed pri-
marily for any-to-any verification scenarios and are thus very
appropriate for mobile ad hoc networks.

3.3.3 Conventional symmetric-key and
public-key mechanisms

A more conventional approach to solving the addressed prob-
lems would rely on classical symmetric-key and public-key
techniques. As we will show, both have some drawbacks
with respect to the solutions that we described: public-
key cryptography because of its high computation cost, and
symmetric-key cryptography because it can hardly be im-
plemented for any-to-any verification scenario.

If public-key cryptography is used, the certifier certifies the
encounter by computing a signature over a timestamp and
by distributing it to its neighbors. An authenticated version
of this mechanism also includes the authentication of each
neighbor and the computation of a signature over the times-
tamp and identity of each neighbor, such that each neighbor
receives a distinct message. The verification of the encounter
in this mechanism is straightforward if the verifier knows the
authentic public key of the certifier. A more secure mech-
anism assumes that nodes jointly sign the timestamp and
their respective identities, when they encounter, which pre-
vents cheating, unless the nodes collude. The public-key
implementation is equally appropriate for both any-to-any
and any-to-one encounter verification. Its main disadvan-
tage is the high cost of public-key operations, which are
almost three orders of magnitude slower than conventional
symmetric-key and hash-chain operations.

A similar approach can be based on symmetric-key cryp-
tography. However, a symmetric-key approach is more ap-
propriate for any-to-one than for any-to-any verification and
thus we describe its operation in any-to-one scenario.

The certifier computes a message authentication code over

6

m
015

v
0

m
0

m
01

m
03

m
47

m
07

m
23

m
45

m
67

v
1

m
1

v
2

m
2

v
3

node 1 node 2

..................

.........

node n-1

m
3

v
4

m
4

v
5

m
5

v
6

m
6

v
7

m
7

v
8

m
8

m
89

m
811 m

1215

m
815

m
1011

m
1213 m

1415

v
9

m
9

v
10

m
10

v
11

m
11

v
12

m
12

v
13

m
13

v
14

m
14

v
15

m
15

..................

Figure 3: Tree authenticated values with the optimized GTE-CeCl mechanism. Each node creates a single
hash tree with n×N leaf values: N values for each node in the network. Upon encounter, the certifier releases
a value (and its siblings) that corresponds to the claimant that it encountered and to the time instance at
which they encountered.

a timestamp, with a key that it shares with a base station
and sends it along with the timestamp to its neighbors. The
certifier’s neighbors store these values and use them to prove
their encounters to the base station. The authenticated ver-
sion of this mechanism assumes mutual authentication of
the encountering nodes by means of their shared secret key
(e.g., by using MAD). After they authenticate each other,
the nodes compute MACs over the timestamp and their id’s
with the keys that they share with the base station. These
MACs then serve as proofs of the encounter. The advantage
of this symmetric key based mechanism resides in its simplic-
ity and its resilience to various attacks. Its main drawback is
that it is mainly limited to any-to-one verification scenarios.

3.4 Distribution of the authentic roots
The mechanisms described in the previous subsections re-
quire each node to distribute its hash chain or hash tree
roots in an authentic way to every other node in the net-
work. Here, we briefly describe how this can be performed
under the assumption that there is an off-line central au-
thority in the system. We explain the mechanisms in terms
of distributing the root of a single hash chain of each node,
but they can also be used to distribute multiple hash chain
roots and single or multiple hash tree roots in an identi-
cal way. In all the approaches presented below, each node
maintains two hash chains: an active and a pending one. We
assume that the root of the active hash chain has already
been distributed; thus the active hash chain can be used for
guaranteeing encounter freshness as described in the previ-
ous subsections. In contrast, the root of the pending hash
chain has not been distributed yet, and the goal of the node
is to distribute it to every other node in the network be-
fore the active hash chain runs out of elements. When the
root of the pending hash chain has been distributed, the
node can turn the pending hash chain into an active state.
At the same time, the node would generate a new pending
hash chain and begin distributing its root. Putting in place
the pending hash chains while using the active ones ensures
continuous operation of the system. We now describe three

possible approaches.

In the first approach, we assume that the off-line central
authority issues public-key certificates to every node in the
network at initialization time. In order to distribute the
root of its pending hash chain, node u digitally signs the
root and floods the network with the signed message and its
public-key certificate. Each node will receive the new hash
chain root of u and authenticate it by verifying the signature
using the public-key certificate of u. We envisage using this
approach when the hash chains are long (e.g., they can be
used for days without running out of elements); as a result,
signature verifications must be performed only rarely.

The second approach is similar to the first, but it can also
be used when the hash chains are short (e.g., they can only
be used for several hours). In this approach, too, node u
floods the network with the signed root of its pending hash
chain, but in this case, TESLA [22] is used for signing. More

specifically, u signs the root V (i) of its ith pending hash chain
with its ith TESLA key K(i), and floods the signed message
with its previous TESLA key K(i−1) attached to it. With
the disclosed TESLA key K(i−1), every node can authen-
ticate the root V (i−1) of the (i − 1)th pending hash chain
sent by u in the previous flood, which would then become
active. Since TESLA is based on symmetric key crypto-
graphic primitives, authentication of the hash chain roots
can be done efficiently. The roots of the TESLA key chains
can be distributed by messages that are signed using public-
key cryptography, because TESLA key chains can last for
a longer period of time, roots of TESLA key chains can be
distributed less frequently.

In the third approach, the root of the pending hash chain
is disseminated in an authentic way by the mobility-based
scheme we proposed in [8]. Together with the root of the
pending hash chain, the nodes also disseminate a time t in
the future. The value of t should be estimated in such a way
that the active hash chain does not run out of elements by t

7

u v

— Execution of the Mutual Authenticated
Distance Bounding (MAD) —

— start of GTE-CeCl certification —
Select from the hash tree the Select from the hash tree the

value V u
2v that corresponds to v value V v

2u that corresponds to u
and to time t = 2 and to time t = 2

V u
2v,mu

3v,mu
01v,mu

47v,...−→
V v
2u,mv

3u,mv
01u,mv

47u,...←−
— end of GTE-CeCl certification —

u verifier
— start of GTE-CeCl verification —

u and verifier authentication
V v
2u,mv

3u,mv
01u,mv

47u,...−→
If H(...H(mv

01u|H(H(V v
2u)|mv

3u))|...)
= root(v)
encounter verification is correct;
else refuse verification

— end of GTE-CeCl verification —

Figure 4: An example of the execution of the protocol for guaranteeing the time of node encounters
(GTE-CeCl).

and the root of the pending hash chain is distributed to all
other nodes by time t. Then, at t, the pending hash chain
becomes active, and a new pending hash chain is generated;
the process is then repeated.

4. SECURITY ANALYSIS
Having presented the protocols, we now analyze their resis-
tance to various attacks.

4.1 Attacker model
We call a node malicious if it is not controlled by the central
authority, but is controlled by an attacker (and thus cannot
positively authenticate itself to honest network nodes). We
call a node compromised if it can positively authenticate
itself to honest network nodes, but is controlled by an at-
tacker. We assume that when a node is compromised, its
secret keys and the other secrets that it shares with other
nodes become known to the attacker. Thus, a compromised
node is, for other nodes, indistinguishable from an honest
node. We further assume that when a node is compromised,
this is not detected by other honest nodes, nor by the central
authority (at least for some time).

We distinguish attackers according to the number of
malicious and compromised nodes that they control. By
Attacker-x-y we denote the attacker that controls x mali-
cious and y compromised nodes [14].
We focus on four types of attacks:

• Attack-Cl: The attacker plays the role of a claimant
and tries to convince an honest verifier that it (the
attacker) has encountered an honest certifier at some
time, whereas it really did not, or it did but at some
different time.

• Attack-Ce: The attacker plays the role of a certifier
and tries to convince an honest claimant that it (the

attacker) is an honest certifier, or/and tries to falsify
the time of the encounter.

• Attack-CeCl: The attacker controls two nodes: it
plays a role of a claimant and the role of a certifier and
tries to convince an honest verifier that the certifier
and the claimant met, whereas they really did not, or
if they have indeed met, the attacker tries to convince
the verifier that they have met at some different time
from the time of the actual encounter.

• Attack-V: The attacker plays the role of the verifier
and tries to extract some encounter information from
an honest claimant in order to use this information
to prove to an honest verifier that it has encountered
those nodes that the honest claimant met.

Some of the proposed mechanisms contain the mutual or
one-way authentication of nodes during certification and/or
verification. For all mechanisms, we implicitly assume that
the verifier and the claimant always perform mutual au-
thentication before they verify/prove the encounter. The
claimant and certifier authentication during certification of
the encounter is not implemented in all mechanisms. Mecha-
nisms such as GEF-Ce, GEF-CeCl, GTE-Ce and GTE-CeCl
implicitly contain the authentication of the certifier by the
claimant, but not the authentication of the claimant by the
certifier. Only the MAD mechanism assumes mutual au-
thentication between the claimant and the certifier. So, only
a combination of MAD with time and freshness mechanisms
will ensure the full security of the system in which they are
implemented.

4.2 Resistance to attacks
4.2.1 GEF-Ce and GTE-Ce
GEF-Ce and GTE-Ce include only the authentication of the
certifier by the claimant, but not the authentication of the

8

claimant by the certifier. Thus, any node can easily get
authentic values from the certifier, and then distribute it
to other nodes. This allows the attacker to share the re-
ceiver hash value among all the nodes that it controls, which
they can use to successfully prove that they have met the
certifier at that time (Attack-Cl). Moreover, an attacker
that controls a single compromised node can successfully at-
tack GEF-Ce and GTE-Ce mechanisms by requesting some
node to prove its encounters, and by later using these values
as a proof that it itself encountered these nodes (Attack-
V). Finally, an attacker can successfully perform Attack-Ce
against GEF-Ce and GTE-Ce and can convince an honest
claimant and an honest certifier that they have met, even
if they have never have been in each other’s power range.
This is achieved by creating a wormhole between two hon-
est parties (Attack-Ce).

GEF-Ce and GTE-Ce mechanisms are thus vulnerable to
all attacks performed by attackers that control several ma-
licious nodes (Attacker-x-0), and even to attacks performed
by attackers that control a single compromised node
(Attacker-0-1). These mechanisms are only resistant
to attacks from the attackers that control a single malicious
(but not compromised) node (Attacker-1-0).

4.2.2 GEF-Ce and GTE-Ce with MAD
GEF-Ce and GTE-Ce mechanisms with authenticated dis-
tance bounding (MAD) are more resistant to attacks, be-
cause MAD provides both distance bounding and mutual
authentication between the certifier and the claimant. With
MAD, GEF-Ce and GTE-Ce are resistant to Attack-Cl and
Attack-Ce attacks performed by an attacker that controls
multiple malicious nodes (Attacker-x-0) and attacks per-
formed by an attacker that controls a single compromised
node (Attacker-0-1). GEF-Ce and GTE-Ce with MAD are
also resistant to Attack-V, performed by an attacker that
controls multiple malicious nodes (Attacker-x-0), but not to
attacks from Attacker-0-1.

4.2.3 GEF-CeCl and GTE-CeCl with MAD
We analyze GEF-CeCl and GTE-CeCl mechanisms with the
MAD mechanism. These two mechanisms are stronger then
GEF-Ce and GTE-Ce in that they bind the released hash
values to the identity of the claimant, so that this value can-
not be reused by any node but the claimant for proving an
encounter with the certifier. More precisely, the hash value
released by the certifier uniquely binds the certifier and the
claimant. Due to this improvement, GEF-CeCl and GTE-
CeCl with MAD are resistant to Attack-Cl and Attack-V
attacks performed by Attacker-x-y. By this we mean that it
does not matter how many malicious or compromised nodes
the attacker controls: it cannot convince an honest verifier
to believe a malicious or compromised claimant, if the cer-
tifier is honest. In the same way, a malicious verifier cannot
extract any information from an honest claimant that can
help him to prove anything except that the claimant met an
honest certifier; this is guaranteed by the hash values that
uniquely bind the certifier, the claimant and the time of the
encounter. GEF-CeCl and GTE-CeCl with MAD mecha-
nisms are also resistent to Attack-Ce attacks performed by
an Attacker-0-1, and by an Attacker-x-y.

If a single certifier is compromised, it cannot convince an

honest claimant that they have met, unless they have indeed
met. The GEF-CeCl and GTE-CeCl with MAD are resistent
to Attack-Ce and Attack-Cl performed by Attacker-x-y in
a broader sense, as the only way to cheat for the attacker
is to delegate the same identity to several of the nodes that
it controls. However, one of its nodes still needs to meet
the honest claimant (or certifier) to be able to claim that
all of its nodes have met the certifier (or the claimant), but
they claim this only under the same identity used for the
encounter. Moreover, multiplying or exchanging identities
can be detected by the nodes through a consistency check
of the encounters.

4.2.4 Public-key and Symmetric-key mechanisms
These mechanisms typically exhibit the same level of secu-
rity as GTE-CeCl and GEF-CeCl mechanisms with MAD,
as they provide the same authentication between the certi-
fier, verifier and the claimant.

4.2.5 Other attacks
Other attacks can be envisioned against the proposed mech-
anisms, especially Attack-CeCl, which has not been dis-
cussed so far. In this attack, an attacker controls two com-
promised nodes and can easily convince any verifier that
these two nodes have met, even if they did not. However,
through topology tracking and consistency checking, these
false encounters can be detected, especially if the nodes ac-
tively participate in the network operation. There is always
a chance that an attacker can remove its nodes from the net-
work range and claim that they mutually encountered. At
the same time, its nodes did not encounter other network
nodes. We do not know how useful this attack can be for
the attacker. As we already discussed, additional attacks
can be performed by an attacker that uses the same (com-
promised) identity at several nodes. This attack also cannot
be prevented, but only detected through topology tracking.
However, Attack-Ce by Attacker-x-1 is not very powerful
as it is limited to a single attacker, which can be isolated
through some reputation mechanisms [5].

5. PERFORMANCE ANALYSIS
Here we analyze in more detail the storage, the computation
and the communication overhead of the proposed mecha-
nisms; the summary is shown on Figure 5. From this figure
we can conclude that the mechanism GEF-Ce has the lowest
cost, but also provides the lowest level of protection against
attacks and provides only freshness guarantees, whereas the
GTE-CeCl mechanism provides the highest level of protec-
tion and the exact time guarantees, but at a slightly higher
cost.

We consider a mobile ad hoc network of n = 100 nodes,
where the hash chain roots are updated approximately ev-
ery 1.5 days (36h) and hash values are released every second.
In this network, GEF-Ce mechanism induces the following
costs. Each node stores 17+99 hash values (log2 of the num-
ber of seconds in 1.5 days (i.e., N = 1.5×24×3600) + n−1
(99) root values), and 99 secret keys; this means that each
node stores less then 4kB of information. The computation
cost is equally small, since to release a hash value, each node
needs to perform only 8 hash operations (1

2
log2 of the num-

ber of seconds in 1.5 days, i.e., the number of values on the

9

Mechanism Storage cost Computation cost Communication cost
GEF-Ce log2 N + (n − 1) 1

2
log2 N O(1)

GEF-CeCl n log2 N + (n − 1)2 1
2

log2 N O(1)
GTE-Ce 1.5 log2

2 N/ log2 log2 N + (n − 1) 2 log2 N/ log2 log2 N O(log2 N − 1)
GTE-CeCl-basic n1.5 log2

2 N/ log2 log2 N + (n − 1)2 2 log2 N/ log2 log2 N O(log2 N − 1)
GTE-CeCl-opt 1.5 log2

2 nN/ log2 log2 nN + (n − 1) 2 log2 nN/ log2 log2 nN O(log2 nN − 1)
public-key O(n) 1 signature O(1)
symmetric-key O(n + 1) 1 encryption O(1)
(any-to-one)

Figure 5: Communication cost per certification per node, computation cost per certification per node, and
storage cost per node for proposed mechanisms (n: number of nodes; N: number of time intervals for which
the hash chain or Merkle tree is pre-computed).

chain). This computation cost is very small since already
400 MHz Pentium II processors running Windows can per-
form more then 125, 000 hash operations per second [21]. It
is also important to mention that 400 MHz processors are
already available today in PDAs (e.g., HP pocket PCs). The
communication cost of GEF-Ce is also low, as this mecha-
nism assumes the exchange of a single hash value (e.g., 160
bits) per encounter. It is worth noticing that the GEF-Ce,
as well as the GTE-Ce mechanism cost, scales well with the
size of the network, given that the communication and com-
putation costs of these mechanisms do not depend on the
number of nodes in the network.

If a higher security and time guarantee is needed and the
GTE-CeCl-opt mechanism is implemented, the network
costs are somewhat higher. The storage cost per node is
then approximately 110 + 99 hash values and 99 secret keys
(less then 6kB) (Figure 5). The corresponding computation
cost per hash tree value is around 9 hash chain operations.
The communication cost of the GTE-CeCl-opt is higher than
with GEF-Ce or GTE-Ce and it amounts to 16 hash values,
or 320 bytes per encounter per node. This cost can be sig-
nificantly reduced at the expense of initially distributing to
the nodes not only hash tree roots, but also several lower
hash tree layer values. This approach somewhat increases
the storage cost per node, but reduces the cost of all subse-
quent communication.

Although the symmetric-key mechanism has the lowest com-
munication and storage cost it is only suitable for any-to-one
encounter verifications, typically for multi-hop cellular net-
works. The public-key based mechanism also exhibits very
low communication and storage costs, but is very inefficient
in terms of computation cost, as the public-key operations
are approximatively three orders of magnitude slower than
the symmetric-key and hash operations [21].

One additional figure of merit of the proposed mechanisms is
also their cumulative storage cost, meaning the cost of stor-
ing encounter proofs received by other nodes. For GEF-Ce
and GTE-Ce, this cost is exactly the number of encounters
multiplied by the hash value size (160 bits). This cost can-
not be precisely measured because it depends on the rate
of change of the network topology (notably on the number
of different nodes that a node encounters in a given period,
and on the desired granularity of the encounter tracking).

We illustrate this cost with a simple example. We assume
that the granularity of the encounter tracking is 1 second,
which means that the nodes update the encounters with
their neighbors every 1 second. This would mean that in
1.5 days (36 h), each node stores 2.5MB of hash chain val-
ues. However, it is not necessary that a node stores an
encounter with another node every second (i.e., the corre-
sponding hash values), especially if two nodes stay in each
others’ power range for longer period of time. Instead, a
node can store only a fraction of the encounters with each
node, if these encounters are consecutive (e.g., for a whole
minute). By storing only a fraction of the encounters with
other nodes, nodes can significantly reduce their cumula-
tive storage cost (e.g., if a node stores only 2 encounters
with the same node per minute, it will need to store less
than 300kB instead of 2.5MB). Even if a very fine granu-
larity of encounters is required and a node saves the proofs
of every encounter and the storage required is 2.5MB, for a
whole mechanisms can still be implemented, as today’s per-
sonal portable devices are already equipped with more than
128MB of storage space. The other aspect of the cumula-
tive storage cost is the question of the necessity to keep 1.5
days of old network topology information. This and related
issues will be a part of our future work.

6. APPLICATIONS
In this section we briefly present several examples of the
applications of SECTOR.

6.1 Prevention of wormhole attacks
Wormhole attacks in wireless networks were recently dis-
cussed by several researchers, including Dahill et al. [24],
Papadimitratos and Haas [20], and Hu, Perrig and John-
son [12]. A wormhole is a fast tunnel (e.g., a wireline link)
between two nodes that are, typically, physically very far
from each other. Without this link, it would take several
hops for a packet to be transmitted between the nodes,
whereas through a wormhole, the transmission is very fast
and it requires only one hop. Wormholes are normally very
useful as they enable faster communication between nodes,
but they can be used by malicious users to prevent the cor-
rect operation of routing protocols. In [12], the authors pro-
pose a mechanism called “packet leashes” that aims at pre-
venting wormhole attacks by making use of the geographic
location of the nodes (geographic leashes), or of the trans-
mission time of the packet between the nodes (temporal

10

leashes). In the latter mechanism, the authors assume that
the internal clocks of the nodes are precisely synchronized.

In our approach, we make no assumptions about clock syn-
chronization between nodes, nor do we assume that the
nodes are equipped with any positioning devices. To detect
wormhole attacks, we use our MAD protocol. This protocol
applies the same principle as packet leashes, with the differ-
ence that it measures the distance at a single node, unlike
with packet leashes where the distance is measured by cal-
culating the difference in time or location at both nodes.
MAD has another important advantage over packet leashes:
that each node can perform distance bounding without hav-
ing to trust an other party, which is not the case in packet
leashes, where two nodes detecting wormholes have to trust
the exchanged information (time or location). Another way
our mechanisms can help to detect wormholes in wireless
networks is through topology and encounter tracking with
GTE mechanisms. If a base station or a node collects net-
work topology information, it can also identify wormhole
links by comparing the obtained encounter information.

6.2 Topology tracking
The first application that we consider is topology tracking.
Topology tracking can be performed by the base station (in
multi-hop cellular) or by the nodes themselves (in pure ad
hoc networks).

6.2.1 Multi-hop Cellular Networks
In the case where a base station performs topol-
ogy tracking, we use the MAD protocol for distance bound-
ing between the nodes, and symmetric-key mechanisms
to certify the time of the encounter. When nodes u and
v receive each others’ hello messages, they first run the
MAD protocol to verify if their mutual distance is smaller
then their power range. If this is the case, u computes a
MAC MACKuBS (u, v, timestampu, duv), where KuBS is
the shared key between u and the base station (BS) and
duv is the distance between u and v estimated based on
the time-of-flight measurements performed by u. Node v
similarly computes MACKvBS (v, u, timestampv, dvu). The
nodes then exchange the computed MACs and the values
that they contain. These proofs of encounters can be ei-
ther passed to the base stations when the nodes get in their
power range, or be periodically sent to the base stations by
the nodes. Furthermore, the base stations can periodically
pool the nodes for the latest encounters.

From the collected encounter information, the network au-
thority can then reconstruct the history of the node encoun-
ters and thus the history of the network topology. This
information can be very useful for the network operator, to
observe the node behavior, to prevent and to detect security
breaches, or to identify cheating nodes [2, 17].

6.2.2 Pure ad Hoc Networks
To enable topology tracking in pure ad hoc networks, we
use mechanisms different than in the multi-hop cellular net-
works, notably, we use GTE-CeCl with MAD. Like in multi-
hop cellular networks, the MAD mechanism ensures distance
bounding between nodes. But unlike in hybrid networks,
here we cannot use the symmetric-key mechanisms as they

do not allow an efficient any-to-any verification of the en-
counters. Instead, we use GTE-CeCl.

Every node creates a single Merkle tree of (n − 1) × N leaf
values, N for each node in the network. The root of the tree
is then distributed to the other nodes, along with the first
and the last leaf value that is allocated for each node (see
Figure 3). When two nodes u and v meet, they first run
the MAD distance bounding protocol and then exchange
hash values, u discloses the value that corresponds to time
t and to node v, along with its siblings on the tree. These
values are then stored by v and serve as a proof to any
other node in the network that u and v have indeed met.
v performs a similar operation and discloses the tree value,
which corresponds to time t and node u. This value serves
to u as a proof that it has indeed met v. Any node in
the network can then collect the proofs of encounters, verify
them and use them to detect node misbehavior or cheating.

6.3 Security of Last Encounter Routing
In [10], Dubois-Ferriere, Grossglauser and Vetterli present
an approach called FRESH, for efficient route discovery in
mobile ad hoc networks using encounter ages. They show
that if nodes only keep track of the time of their encoun-
ters, route discovery can be performed at a much lower cost
than with traditional broadcast search methods. Each node
maintains a local database of the time of its last encounter
with other nodes in the network. This database is consulted
by packets to obtain estimates of the destination’s last en-
counter. As a packet travels towards its destination, it is
able to successively refine this estimate, because node mo-
bility has “diffused” estimates of the times of encounters. In
each step of the destination search, the node that receives
the packet performs a restricted broadcast and queries its
neighbor nodes for the last encounter with the destination.

In the original proposal, this route discovery mechanism is
not secured and a dishonest node can for example adver-
tise a very recent encounter with the destination of a given
packet and thus prevent the packet from ever reaching the
destination. To prevent this, we apply our GEF-Ce or GEF-
CeCl mechanisms with MAD. Whenever a node broadcasts
a request for the node that had the most recent encounter
with the destination, all nodes need to reply with the hash
value that proves this encounter. The node with the most
recent correctly verified encounter is then chosen as a relay.

Introducing GEF-Ce or GEF-CeCl into route discovery is
not very costly because it requires, besides node authentica-
tion through MAD, the exchange of only a few hash values.

7. CONCLUSION
In this paper, we have presented SECTOR, a set of protocols
for the secure verification of the time of encounters between
nodes. We have built these protocols on well-established
cryptographic techniques, including hash chains and Merkle
hash trees. We have also shown how to adapt the protocols
to the specific requirements of a given application. We have
explained that the overhead is very reasonable and we have
assessed the robustness with respect to attackers of differ-
ent degrees of strength. We have applied this solution to
several problems, including prevention of wormhole attacks,

11

securing routing protocols based on last encounters, as well
as cheating detection by means of topology tracking.

To the best of our knowledge, this paper is the first to ad-
dress the problem of securing topology and encounter track-
ing; the only exception is the prevention of the wormhole at-
tack, which was previously investigated by other researchers.

In terms of future work, we intend to study in more detail
the behavior of the proposed protocols, notably by means
of simulations, in different mobility scenarios. We will also
show that this approach can be useful in more conventional,
one-hop wireless networks, if the base stations (or the access
points) are not completely trusted.

8. REFERENCES
[1] D. Balfanz, D. Smetters, P. Stewart, and H. Wong.

Talking to strangers: Authentication in ad hoc
wireless networks. In Proceedings of NDSS, 2002.

[2] N. Ben Salem, L. Buttyán, J.-P. Hubaux, and
M. Jakobsson. A charging and rewarding scheme for
packet forwarding in multi-hop cellular networks. In
Proceedings of MobiHoc, 2003.

[3] R.B. Bobba, L. Eschenauer, V.D. Gligor, and
W. Arbaugh. Bootstrapping Security Associations for
Routing in Mobile Ad-Hoc Networks. Technical
Report TR 2002-44, University of Maryland, May
2002.

[4] S. Brands and D. Chaum. Distance-bounding
protocols (extended abstract). In Theory and
Application of Cryptographic Techniques, pages
344–359, 1993.

[5] S. Buchegger and J. Y. Le Boudec. Performance
analysis of the confidant protocol (cooperation of
nodes - fairness in dynamic ad-hoc networks). In
Proceedings of MobiHoc 2002, Lausanne, June 2002.

[6] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks. In IEEE
Symposium on Security and Privacy, May 2003.

[7] D. Coppersmith and M. Jakobsson. Almost Optimal
Hash Sequence Traversal. In Proceedings of the Fifth
Conference on Financial Cryptography (FC ’02), 2002.

[8] S. Čapkun, J.-P. Hubaux, and L. Buttyán. Mobility
Helps Security in Ad Hoc Networks. In Proceedings of
MobiHoc, 2003.

[9] Y. Desmedt. Major security problems with the
‘unforgeable’ (feige)-fiat-shamir proofs of identity and
how to overcome them. In SecuriCom’88, 1988.

[10] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli.
Age Matters: Efficient Route Discovery in Mobile Ad
Hoc Networks Using Encounter Ages. In Proceedings
of MobiHoc, 2003.

[11] R. Hauser, A. Przygienda, and G. Tsudik. Reducing
the Cost of Security in Link State Routing. In
Proceedings of NDSS, February 1997.

[12] Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet
leashes: A defense against wormhole attacks in
wireless networks. In Proceedings of IEEE Infocom,
April 2003.

[13] Y.-C. Hu, D. B. Johnson, and A. Perrig. SEAD:
Secure efficient distance vector routing for mobile
wireless ad hoc networks. In Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and
Applications, June 2002.

[14] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A
Secure On-Demand Routing Protocol for Ad Hoc
Networks. In Proceedings of MobiCom, September
2002.

[15] Y.-C. Hu, A. Perrig, and D. B. Johnson. Efficient
Security Mechanisms for Routing Protocols. In
Proceedings of NDSS, February 2003.

[16] J.-P. Hubaux, Th. Gross, J.-Y. Le Boudec, and
M. Vetterli. Toward Self-Organized Mobile Ad Hoc
Networks: The Terminodes Project. IEEE
Communications Magazine, January 2001.

[17] M. Jakobsson, J.-P. Hubaux, and L. Buttyán. A
Micropayment Scheme Encouraging Collaboration in
Multi-hop Cellular Networks. In Proceedings of the 7th
Financial Cryptography Conference, 2003.

[18] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo.
Fractal Merkle Tree Representation and Traversal. In
RSA Cryptographers Track, 2003.

[19] R. C. Merkle. Protocols for Public Key
Cryptosystems. In Proceedings of the IEEE
Symposium on Security and Privacy, 1980.

[20] P. Papadimitratos and Z.J. Haas. Secure Routing for
Mobile Ad Hoc Networks. In Proceedings of CNDS,
January 2002.

[21] M. Peirce. Multi-Party Electronic Payments for
Mobile Communications. PhD thesis, 2000.

[22] A. Perrig, R. Canetti, J.D. Tygar, and D. Song. The
TESLA Broadcast Authentication Protocol. RSA
CryptoBytes, 5(Summer), 2002.

[23] K. Romer. Time Synchronization in Ad Hoc
Networks. In Proceedings of MobiHoc, 2001.

[24] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and
E. M. Belding-Royer. A Secure Routing Protocol for
Ad hoc Networks. In Proceedings of ICNP, 2002.

[25] N. Sastry, U. Shankar, and D. Wagner. Secure
Verification of Location Claims. Technical Report
UCB//CSD-03-1245, EECS, UCB, 2003.

[26] F. Stajano. Security for Ubiquitous Computing. John
Wiley and Sons, February 2002.

[27] B. Waters and E. Felten. Proving the Location of
Tamper-Resistant Devices. Technical report,
Princeton University, http://www.cs.princeton.edu
/∼bwaters/research/location proving.ps

[28] K. Zhang. Efficient Protocols for Signing Routing
Messages. In Proceedings of NDSS, March 1998.

12

