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Risks faced by information system operators and users are not only determined by their own security posture,

but are also heavily affected by the security-related decisions of others. This interdependence between

information system operators and users is a fundamental property that shapes the efficiency of security
defense solutions. Game theory is the most appropriate method to model the strategic interactions between

these participants. In this survey, we summarize game-theoretic interdependence models, characterize the

emerging security inefficiencies, and present mechanisms to improve the security decisions of the participants.
We focus our attention on games with interdependent defenders and do not discuss two-player attacker-

defender games. Our goal is to distill the main insights from the state-of-the-art and to identify the areas

that need more attention from the research community.
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General Terms: Security, Economics, Management

Additional Key Words and Phrases: Interdependent security, security economics, security games, externality

1. INTRODUCTION
Information security has traditionally been considered a strategic cat-and-mouse game
between the defending party and “the attacker”. The goal of the attacker has been to
compromise the defender’s systems and to profit from this unauthorized access, while
the goal of the defender has been to prevent unauthorized access to and usage of re-
sources. In this game, both the attacker and the defender have traditionally been fo-
cusing on developing new technology to achieve their goals. Especially on the defense
side, a traditional approach in information security is to enhance security technologies
to reduce the number of vulnerabilities, hence attacks, and their impact on business
operation.

Even though the defenses are getting more efficient and protecting more users [Mi-
crosoft 2011], the total number of attacks is increasing globally. This trend can mostly
be accounted to the increasing number of devices connected to the Internet, and con-
sequently to the increasing interdependence of information systems. Attackers exploit
this strong interdependence by launching and operating their attacks on a large-scale
from countries where operating costs are reduced and law enforcement is weak. Al-
though the proportion of protected users [Microsoft 2011] is increasing, the equally
increasing number of unprotected computer systems leaves ample space to the attack-
ers for exploitation. In addition to interdependence, available security information is
highly asymmetric and strongly favors the attackers. A fundamental bias is that at-
tackers only need to exploit one vulnerability of the targeted system, while the de-
fender has to protect as many threat vectors as possible. Attackers can – and often do
– proactively test their attack methods offline, but due to the number of attack possibil-
ities, the defenders have a difficult time to patch systems proactively [Anderson 2001].
Moreover, the possibility of using illegal methods gives attackers a broader range of op-
tions than defenders. Finally, the “physics” of security changes over time - new classes
of attacks are being discovered and this dynamics keeps security researchers and prac-
titioners alert.
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The increasing number of attacks suggests that solely improving information secu-
rity technologies does not provide adequate protection against the persistent efforts
of attackers. The adoption of security defense solutions is rather slow [Ozment and
Schechter 2006] and their maintenance overhead often makes them lag behind ac-
tual attack trends. There is a growing number of researchers and industry practition-
ers, who advocate that providing adequate information security requires an economics
approach beyond the traditional technology solutions approach [Anderson 2001; An-
derson and Moore 2006]. They argue that the main obstacle of adopting information
security solutions is the lack of proper incentives for participants to introduce existing
solutions, monitor their systems and share relevant information. For another report
on the efficiency of existing security solutions, we refer the reader to [Defence Signals
Directorate 2012]. The report lists the top 35 mitigation strategies and shows that the
top 4 defenses stop more than 85% of the attacks.

The interaction of a strategic attacker and a defender can be modeled as a game
using the mathematical methods of game theory [Gans et al. 2011; Krugman et al.
2008; Mas-Colell et al. 1995]. For example, the interaction between one attacker and
one defender can be modeled as a classic two-player game.1 Yet, simple two-player
games neglect an important aspect of strategic interaction: there are typically several
interdependent players on the defender side (and often on the attacker side as well).
Interdependent security2 games are a natural extension to simple two-player informa-
tion security games for cases where the defense relies on the efforts of multiple parties.
Most of the real-life information security problems correspond to the interdependent
security model, and hence the model is a powerful tool to reveal inefficiencies of infor-
mation security investments. Interdependence is a core property of networked infor-
mation systems; therefore, it must be considered at the design of information security
defense strategies.

In this paper, we survey interdependent security games.

Definition 1.1 (Interdependent Security Game). We define a security game model
to belong to the family of interdependent security games if there are multiple selfish
but non-malicious players, who can choose whether to invest into security or remain
unprotected. Each player’s goal is to minimize her own risk, which depends on the
investments of some or every other player, and to minimize her security investment
costs.

In other words, we do not survey games in which there is only one “defender” (attacker-
defender games) or in which the players’ risks are independent of the other players’ se-
curity investments. Note that we survey only those games where the defender’s strate-
gic decisions are related to security investments. The effects of malicious behavior on
multiple interdependent players have been studied with other strategy spaces as well,
for example, in congestion games [Babaioff et al. 2007]. However, due to space limita-
tions, we will not discuss games that do not satisfy Definition 1.1 any further.

In most of the models, the attackers are represented as an exogenous, persistent
threat and not as players of the game. Yet, there is evidence that the attacks are
the result of the cooperation of various participants from the underground econ-
omy [Levchenko et al. 2011]. Clearly, the attackers also play an interdependent at-
tacker game among themselves [Herley and Florêncio 2009; 2010]. This area of se-

1Several authors consider two-player security games. For a comprehensive survey of two-player security
games, we refer the reader to [Manshaei et al. 2013].
2In this paper, we will refer to interdependent information security simply as interdependent security, as this
naming is widely accepted in the literature and allows for models in a broader context (e.g., physical security
on airlines in the seminal paper [Kunreuther and Heal 2003]).
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curity modeling is less explored due to the lack of reliable data about the attackers’
interactions and credible assumptions about their profit models. Recent large-scale
data collection efforts aiming at the understanding of the underground economy point
towards this goal [Levchenko et al. 2011]. Our survey focuses on the interdependence
of strategic defenders, but we also mention the strategic behavior of malicious attack-
ers when appropriate. Nonetheless, we do not consider games with interdependent
attackers. It is worth mentioning that there is surprisingly little work on this topic .

Researchers who surveyed game-theoretic models applied to security prob-
lems [Manshaei et al. 2013] typically paid a very limited attention to the problem of in-
terdependence. Interdependence lays at the core of information security problems. The
actions of the participants in information systems bear positive and negative effects on
others. Understanding these effects and leveraging the acquired expertise could lead
to improved security defense solutions. There is a significant body of work on inter-
dependent security games differing in modeling assumptions, solutions approach and
arriving at various conclusions. To the best of our knowledge, our survey is the first
attempt to summarize the key points of related work. In this survey, we make the
following contributions:

— We systematically survey interdependent security game papers to summarize the
modeling assumptions and synthesize a common core model with modeling exten-
sions.

— We categorize the equilibrium solutions in interdependent security games, discuss
efficiency results, and present how these results change varying key modeling as-
sumptions.

— We summarize solution techniques from related work that aim to improve the secu-
rity of information systems.

— We present a discussion on research areas that are not well understood and need
more attention of the research community.

The paper is organized as follows. First, we introduce basic concepts of market eco-
nomics in Section 2. We synthesize a core model of interdependent security games
in Section 3. In Section 4, we systematize interdependence models in the research
literature and connect them to the core model. Section 5 presents extended models,
which relax some assumptions of the core model. We discuss classic equilibrium so-
lutions, their efficiency, and related results in Section 6. Section 7 gives an overview
of attempts to improve upon the often inefficient equilibria in interdependent security
games. Finally, we summarize the work in Section 8 and provide directions for future
research.

2. MARKET ECONOMICS BACKGROUND
In this section, we give a brief overview of the relevant concepts in economics we use
in the paper. The main artifact affecting information security is the existence of ex-
ternalities as presented in Section 2.1, then we also discuss the role of asymmetric
information in Section 2.2 and the effect of monopolies on information security deci-
sions in Section 2.3.

Information security is a public good [Varian 2004; Grossklags et al. 2008] and secu-
rity defense is organized via market mechanisms and regulation. Since market mech-
anisms are in place, information security exhibits all the inefficiencies of a free mar-
ket, but these inefficiencies are magnified by the sensitivity of security information.
In particular, information security markets are threatened by causes of classic mar-
ket failures in economics: externalities of security investment decisions, information
asymmetries, and monopoly providers.
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In the following, we briefly summarize these classic economics concepts to allow a
reader with a computer engineering background to get familiar with the notions of this
paper. For a thorough explanation of these concepts, the reader is referred to a basic
textbook on microeconomics such as [Gans et al. 2011; Krugman et al. 2008; Mas-Colell
et al. 1995].

2.1. Externalities of Security Investment Decisions
In an interdependent market, the actions of the players affect other players. Usually,
these actions are captured in the transaction costs of the players, but often the trans-
action costs do not fully account for the effect of one player’s action on others. This
“spillover” effect of a player’s actions on other players is called an externality. Depend-
ing on the nature of the spillover, we can refer to a positive or a negative externality.

In a positive externality, the action of the player has a beneficial effect on herself,
but other players also benefit from her investment. Information security defense typ-
ically exhibits this type of externality. Information systems rely extensively on net-
working effects, for example the value of a social network is defined by the number of
participants connecting to it. This strong interdependence is often exploited by mis-
creants to speed up the spread of malware programs and infect a large number of
computers [Böhme and Kataria 2006; Anderson and Moore 2006]. In fact, computer
crime became really troublesome by the fact that simple attacks can be amplified to a
world-wide scale with limited resources. Inherently, security investment of the users
or companies prevent the spread of malware infections creating a positive externality
for others. Yet, positive externalities have adverse effects. A typical problem is free-
riding, when players avoid investing in security expecting other players to protect
them. Free-riding significantly contributes to the general under-investment in secu-
rity as it is observed in real-life.

Conversely, the lack of security investment as an action can be regarded as one
having negative externalities. Due to the strong interdependence of information sys-
tems, Internet security can be considered as a public good [Varian 2004]. Those who
do not care about security are adversely affecting the security of others. Negative ex-
ternalities are also present when the player protects herself investing in more security
defense. A typical example for such an effect is the weakest target game discussed in
Section 4.4, where security investment of a player makes her information system more
resistant to attacks and this subsequently motivates attackers to choose other targets
instead. We note that this substitution effect is difficult to observe as we typically do
not possess an in-depth knowledge of the strategic incentives of attackers.

We note that most interdependent security games in related work focus on the case
of positive externalities, that is, on the positive effect of security investment decisions
as the most important factor influencing security decisions. Negative externalities con-
tribute much less to the security investment decisions of both attackers and defenders,
and they are difficult to characterize [Herley and Florêncio 2009; Herley 2010]. We will
detail these models in Sections 4.1 – 4.3.

2.2. Asymmetric Information
The nature of the interaction defines the efficiency of a specific market. The available
information on the market participants and the quality of the products and services
they offer are key aspects defining market efficiency. It is a well-known result in eco-
nomics that asymmetric information can cause serious market inefficiencies [Akerlof
1970]. In [Akerlof 1970], Akerlof sketches the classic example of lemon markets in car
sales in where low-quality cars (lemons) will drive good-quality cars out of the market
if buyers cannot distinguish between the two types. Obviously, sellers have a precise
information of the car type, hence the information asymmetry.
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In the security ecosystem, economics and privacy reasons lead to under-reporting
of security incidents. This in turn results in a non-transparent market where the ef-
forts of the participants cannot be fairly judged. As a matter of fact, transparency
is discouraged because there are other consequences to reporting a security incident.
Asymmetric information problems arise in various examples in the information secu-
rity ecosystem. For example, security products constitute a lemon market themselves
because independent evaluation on their provided security is sparse. The certification
procedure of security products has inherent weaknesses [Anderson 2001]. As currently
the certifiers are contracted by the product developers, adverse incentive effect takes
place and as a result products of questionable quality get certified.

Asymmetric information also diminishes the benefits of risk management solutions
such as insurance. Cyber-insurance, as it is called for information systems, suffers from
the classic insurance artifacts that reduce insurance’s efficiency. First, adverse selec-
tion exists, because insurance is more beneficial for users with high risk and hence
they are more likely to take it. This biased selection of users together with the limited
ability of insurance companies to identify the real risk profile of users causes an inef-
ficient allocation of the insurers’ resources. Another issue is moral hazard, when the
risk perception of users changes when taking insurance. Since the insurance contract
shields users from catastrophic events, they are more likely to take higher risks. In in-
formation systems, users with anti-virus products are more likely to click on suspicious
links expecting the AV product to protect them.

2.3. Monopoly
It is well known that monopoly providers can cause inefficiencies in the market as
well. The adverse effect of the misaligned incentives in case of a monopoly provider is
especially apparent in the security context. A monopoly provider has strong incentives
to provide a less than optimal security solution as we discuss in Section 6.6.

Yet, there is an even more serious effect caused by a monopoly provider, that is, the
dramatic increase in the correlation of security incidents because a single flaw in the
product of a monopoly provider can be exploited at a large number of users [Böhme
and Kataria 2006; Anderson and Moore 2006]. In the realm of information security,
miscreants are strategic decision-makers themselves and optimize their investments
when attacking. To have the most benefit for a unit cost, they tailor their attacks to
the software solutions of major providers. A typical example are the attacks against
Microsoft products on personal computers due to their dominating presence as an oper-
ating system or more recently the rise of Android malware on mobile platforms. We can
say that using software from monopoly providers magnifies the exposure of computer
systems to attacks and enables large-scale, correlated incidents.

3. CORE MODEL OF INTERDEPENDENT SECURITY GAMES
The literature on interdependent security games is very diverse in terms of modeling
approaches, assumptions, notations, and solution concepts. In order to be able to dis-
cuss the various models in a unified manner, in this section, we synthesize a core model
of interdependent security games and introduce a common notation. A very important
element of this core model, the model of the interdependence between players, will be
discussed separately in Section 4 due to its complexity. Then, in Section 5, we present
various extensions to the core model, which relax certain assumptions.

3.1. Notations and Notational Conventions
We summarize the notations used in this paper in Table I. Vectors are assumed to be
column vectors and denoted by bold symbols (e.g., x = [x1, . . . , xN ]T is the vector of
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Table I. Notations Used in the Paper

Symbol Description
Core Model

N number of players
xi security investment

of / for player ifi risk function
Ci (unit) cost of security investment
Li loss when compromised

Interdependence Models & Extensions
B number of byzantine players
α risk non-additivity
F friendship factor
Wi initial wealth (or endowment)

of / for player idi number of neighbors
ωij influence of player j on player i
τij rate of traffic from player i to player j

Note: When a value is uniform over the set of players, we omit the sub-
script (e.g., if the unit cost of investment is the same for all players, we
let C denote it).

security investments). When a value is uniform over the set of players, we omit the
subscript i.3

3.2. Core Model
There are N interconnected players, who are assumed to be selfish but non-malicious,
while attackers are modeled as exogenous threats. The players are also generally as-
sumed to possess complete information and to be rational and risk-neutral4.

The security investment of player i is denoted by xi, and it can be modeled both as
discrete (e.g., xi = 0 if player i does not invest and xi = 1 if player i invests5) and con-
tinuous (i.e., xi ∈ R≥0). Discrete investments can model, for example, the purchase of a
security product, such as an antivirus software. An example for continuous investment
decisions is setting the sensitivity of security monitoring systems (IDS). In this lat-
ter case, higher sensitivity of the security monitoring system generates more alarms
and warnings, which need to be processed by security experts incurring significant
costs. Discrete investments are assumed, for example, in [Kunreuther and Heal 2003;
Lelarge and Bolot 2008; Grossklags et al. 2008] and in all of the games that are based
on the inoculation interdependence model6. Continuous investments are assumed, for
example, in [Varian 2004; Jiang et al. 2011; Böhme 2012]. The discrete investment
assumption does not necessarily have to be a restriction. For example, in [Grossklags
et al. 2010a], discrete investments are assumed, but sensitivity analysis with respect
to the discrete choice assumption shows that differences between the discrete and con-
tinuous cases arises only in some boundary cases of limited practical relevance.

The risk of an incident, such as a security breach, for player i depends on the invest-
ment of player i as well as the investments of the other players. The value of player i’s

3Please note the difference in notation between vectors and uniform constants. For example, C denotes the
unit cost of investment for every player, while C denotes the vector consisting of each player’s unit cost of
investment.
4Much of the economic conflict literature related to production, appropriation, defense, and rent seeking
also assumes risk neutrality [Hausken 2006].
5We note here that in the vast majority of research papers, discrete investment modeling means a binary
decision.
6The inoculation model is introduced in Section 4, along with the other interdependence models.
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risk is computed using a risk function fi as

fi(x) = fi(xi,x−i) , (1)

where x−i is the investment vector of all players but player i. The risk function fi is
often assumed to be the probability of a security incident, in which case fi ∈ [0, 1]. The
exact form of the risk function is determined by the model of interdependence between
the players. In the literature, various models of interdependence have been proposed,
which we will discuss in Section 4. For now, we only assume that fi is non-decreasing
in xi for every player i.

The goal of player i is to maximize her expected payoff, which is defined as

−Lifi(x)− Cixi , (2)

where Li is the potential loss if an incident indeed occurs and Ci is the (unit) cost of
investment for player i.7 Equivalently, each player i can minimize her expected cost,
which is

Lifi(x) + Cixi . (3)

The risk of a player is often decomposed into two parts: direct risk and indirect risk
(e.g., [Kunreuther and Heal 2003; Kearns and Ortiz 2004; Lelarge and Bolot 2008]).
Almost without exception in the literature, risks are assumed to be non-additive, that
is, a player can sustain either direct or indirect loss, but not both. In [Heal and Kun-
reuther 2004], a risk non-additivity parameter α is introduced, which measures the
extent to which losses are non-additive. If α = 0, then the total risk of a player is the
sum of her direct and indirect risks; if α = 1, then indirect losses are conditioned on
the direct losses not occurring.

In discrete security investment models, perfect protection (also called complete or
strong protection) is frequently assumed, which means that a player’s overall risk is
always zero when she invests in security.8 Examples of models assuming perfect pro-
tection include the model of [Lelarge and Bolot 2008], the second class of problems
in [Heal and Kunreuther 2004], the model of [Theodorakopoulos et al. 2013], and ev-
ery inoculation game. It is also often assumed that the probability of direct loss is zero
when a player invests in security, e.g., in [Kunreuther and Heal 2003; Kearns and
Ortiz 2004; Heal and Kunreuther 2004].

In classic epidemic models9, it can also be assumed that there is no direct risk at all,
only indirect; for example, in [Omic et al. 2009; Theodorakopoulos et al. 2013]. Perfect
or strong protection can be assumed in this case as well; for example, in [Theodor-
akopoulos et al. 2013].

4. MODELS OF INTERDEPENDENCE
In this section, we systematize the models proposed in the literature for interdepen-
dence between players. Recall that, based on the players’ security investments x, a
model of interdependence determines each player i’s risk, which we represented as a
general function fi(x) in the previous section. In this section, we provide a classifica-
tion of interdependence models (see Table II), and describe each one in more detail.

The primary interdependence between players is that security investments create
positive externalities (as discussed in Section 2.1). Positive externality means that the
investments of other players have a positive effect on the security and, consequently,

7Many papers assume that the potential loss is 1 for every player or, alternatively, that the (unit) cost is 1,
and incorporate the ratio between loss and cost into Ci, Li or fi.
8Recall that, in discrete security investment models, binary investment is assumed predominantly.
9Classic epidemic models are introduced in Section 4, along with the other interdependence models.
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Table II. Summary of Models of Interdependence Between Players

Model Externalities Related work

general
positive [Gordon et al. 2003] [Ogut et al. 2005]

[Jiang et al. 2011]
both [Heal and Kunreuther 2004]

propagation

epidemic

positive

[Lelarge and Bolot 2008] [Lelarge
2009] SIS [Omic et al. 2009] SIP
[Theodorakopoulos et al. 2013]

inoculation
[Aspnes et al. 2004] [Moscibroda et al.
2006] [Meier et al. 2008] [Dı́az et al.
2009] [Kumar et al. 2010]

other

weakest link
[Varian 2004] [Grossklags et al. 2008]
[Grossklags et al. 2010a] [Grossklags
et al. 2010b]

best shot, total effort
[Varian 2004] [Grossklags et al. 2008]
[Grossklags et al. 2010a] [Grossklags
et al. 2010b] [Pal and Hui 2011]

linear both

linear influence [Miura-Ko et al.
2008b] [Miura-Ko et al. 2008a] [Saad
et al. 2010] [Radosavac et al. 2008] ef-
fective investment [Jiang et al. 2011]

stochastic one-hop
propagation

positive

discrete [Kunreuther and Heal 2003]
[Kearns and Ortiz 2004] [Heal and
Kunreuther 2005] continuous [Böhme
2012]

other
bad traffic [Jiang et al. 2011] net-
worked control systems [Amin et al.
2012] [Amin et al. 2011]

strategic adversary
both

[Hausken 2006]
stochastic one-hop
with adversary

[Ceyko et al. 2011; Chan et al. 2012]

weakest target negative [Grossklags et al. 2008]

the payoff of a player, while negative externality means the contrary. This positive ex-
ternality can be explained in many ways: a successfully compromised player can be
used to mount attacks against players that depend on it, investments of a single play-
ers can result in security patches that can be used by every other player, etc. However,
a player’s investment can also have a negative externality on other players. Security
investment of a user causes her to become a less attractive target for the adversaries
and, consequently, the adversaries spend more of their resources on attacking other
players [Hausken 2006].

The organization of this section is the following. First, in Section 4.1, we discuss gen-
eral models, which do not assume some specific attack mechanism to explain the inter-
dependence between the players and, hence, have only some mild constraints on fi(x).
Then, in Section 4.2, we discuss models which assume that interdependence is caused
by the propagation of security incidents and compromises.10 Next, in Section 4.3, we
discuss models which focus on positive externalities and assume some specific (but not
propagation-based) mechanism to explain interdependence. Finally, in Section 4.4, we
discuss models which focus on negative externalities.

10In other words, these propagation-based models assume that once an attacker or malware compromises a
player, it will be able to compromise the neighbors more easily.
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4.1. General Models
It is possible to derive results from general models of interdependence, in which the
risk function f can be an arbitrary function that satisfies a set of assumptions.

The most common assumption is that security investments exhibit positive but de-
clining returns for every player [Gordon et al. 2003; Ogut et al. 2005; Jiang et al. 2011].
The positive returns (i.e., strictly decreasing risks) model the positive externalities be-
tween the players: if one player increases her investment in security, every player
benefits. Formally, ∂fi(x)

∂xj
< 0, ∀i, j. The declining returns (i.e., convexity of the risk

function) model the diminishing marginal utility of security investments, a generally
accepted assumption. Formally, ∂2fi(x)

∂x2
j

> 0, ∀i, j.
The target set of the risk function is also often restricted. In [Ogut et al. 2005],

the risk function fi is assumed to measure the probability of an incident at player i;
consequently, it has to satisfy fi(x) ∈ [0, 1], ∀i. In the general model of [Jiang et al.
2011], the risk function has no such meaning and it is only required to be finite and to
satisfy fi(0) > 0, ∀i.

In [Gordon et al. 2003], such a general two-player model is introduced to study
security-based information sharing organizations (SB/ISOs), but which can also be
used to model positive externalities arising from a wide-range of other types of inter-
actions between the players.11

In [Heal and Kunreuther 2004], a slightly less general model is presented, which
decomposes risk into direct and indirect parts. The expected indirect loss of player i,
when she follows strategy xi ∈ {S,N} and the players in the set K invest in security,
is denoted by qi(K,xi). Then, the expected cost of investing is ci + qi(K,S), where
ci is the cost of the security investment, while the expected cost of not investing is
piLi + (1 − αpi)qi(K,N), where α ∈ [0, 1] measures the extent to which damages are
non-additive and pi is the probability of a direct loss for player i. The model is used to
study three classes of problems:

— Partial protection: qi(K,N) = qi(K,S) and α = 1, so that ci(K) = pi(Li − qi(K,N)),
where ci(K) is the cost of investment at which player i is indifferent between invest-
ing and not investing. Observe that ci(K) is increasing in K, that is, the more players
invest in security, the more likely it is that others will follow. In this class, a player’s
investment reduces both her own risk and the risk experienced by other players. This
class can be used to model, for example, airline baggage security.

— Complete protection: qi(K,S) = 0 and α = 1, so that ci(K) = qi(K,N)(1 − pi) +
piLi. Contrary to the previous class, the threshold cost ci(K) is now decreasing in
K, which means that the more player invest in security, the less likely it is that
others will invest as well. In this class, if a player invests in security, then she cannot
be harmed at all by the actions or inactions of others. This class can be used to model,
for example, a completely effective vaccine against a contagious disease.

— Positive externalities: qi(K,N) = qi(K,S), so that ci(K) = pi(qi(K,S) − Li). Note
that, similarly to the previous class, the threshold cost ci(K) is decreasing in K. In
this class, an investment by one player creates positive externalities, making it less
attractive for others to follow. This class can be used to model, for example, firms’
decisions on research and development (R&D) expenditures.

11Note that, in [Gordon et al. 2003], the risk of a player depends on the θjxj fraction of the other player’s
investment xj . The sharing portion θj is discussed in detail in Section 7.2.8, until then we can assume that
it is incorporated into the general function f .
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4.2. Attack Propagation Models
Propagation-based models are motivated by the idea that a player’s risk usually does
not depend directly on her peers’ investment levels. For example, the direct cause of
receiving a computer worm via e-mail is the sender’s computer being infected with
the worm; hence, a player’s risk of receiving a worm depends directly on her peers’
risks, not their investment levels. The peers’ investment levels affect a player’s risk
indirectly, since they affect the peers’ risks directly (e.g., they affect the peers’ risk of
being infected with the worm). Note that this idea fits in the core model perfectly, as
player i’s risk fi(x) depends on the investment levels x ultimately.

As a motivating example, consider popular software products that are run at a sig-
nificant number of devices. Due to market dynamics, these products create a quasi-
monopolistic situation (introduced in Section 2.3), which is the case with Microsoft
Windows in the realm of desktop operating systems, and which is becoming the case
with Android for mobile devices. This monopolistic market situation allows mali-
cious software to spread to a large number of devices, which is often modeled using
propagation-based attack models.

4.2.1. Epidemic Models. Epidemic models describe how a transmittable disease
spreads or extinguishes in a network of individuals. These models can readily be ap-
plied in the study of information security, for example, to model viruses spreading in
computer networks. If the virus protection (or recovery) decisions of the individuals
are modeled using game theory, the resulting model is a propagation-based interde-
pendent security game. In this case, the security investment decisions correspond to
the virus protection decisions, and the risk of a player is the risk of being infected.

In an epidemic model, each player at any given moment in time can be in one of
the states that represent different stages of the epidemic. The most commonly used
states are susceptible, which denotes players who are not infected, but are suscepti-
ble to the virus, and infected, which denotes players who are infected and capable of
spreading the virus to susceptible players. The transitions between these states are
usually modeled as stochastic processes, which are controlled by the investment de-
cisions of the players. For example, the probability of a susceptible player becoming
infected within a certain time period can depend on her security investment and the
number of infected players that she is connected to.

In the SIS (Susceptible Infected Susceptible) model, there are only two states, sus-
ceptible and infected. In this model, infected players are eventually cured of the
disease, and then become susceptible immediately. In [Omic et al. 2009], an N -
interwined SIS model based game is proposed. The N -interwined model is an ana-
lytically tractable SIS model, which makes only one approximation of a mean-field
kind, and whose accuracy improves as the size of the network increases [Mieghem
et al. 2009]. In the proposed game-theoretic model, each player’s security investment
decision determines her curing rate. More specifically, the transition of a player from
the infected state to the susceptible state is determined by a Poisson process whose
rate is equal to the player’s investment.

The SIP (Susceptible Infected Protected) model presented in [Theodorakopoulos
et al. 2013] introduces a protected state, which represents players who invest in se-
curity and, therefore, are immune to the virus. Players in the susceptible or protected
state occasionally learn the state of the network and have an opportunity to revise
their current investment decisions, that is, they can choose between being susceptible
or being protected. Players in the infected state are eventually disinfected and, then,
become protected. All of these opportunities and transitions are modeled as Poisson
processes.
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As the number of players increases, propagation based models can become very
complex. One way to cope with this complexity is to use mean-field approxima-
tion [Theodorakopoulos et al. 2013]. In this case, instead of following each player’s
state, only the number of players in each state is kept track of, which allows the tran-
sition functions to be expressed as deterministic functions of the system state.

In [Lelarge and Bolot 2008; Lelarge 2009], local mean-field (LMF) analysis is pro-
posed, which extends mean-field approximation by allowing to model the correlation
structure on local neighborhoods in the network. It is shown that LMF gives exact
asymptotic results as the number of players tends to infinity for sparse random net-
work graphs with a given degree distribution. In [Lelarge and Bolot 2008; Lelarge
2009], LMF is used to study a propagation-based model, in which players can be ei-
ther infected directly (i.e., direct loss) or indirectly through their infected neighbors
(i.e., indirect loss). The probabilities of direct loss and contamination from an infected
neighbor are determined by the investment decision of the player.

4.2.2. Inoculation Games. One of the most prevalent propagation based model for inter-
dependence is the inoculation game, which was introduced by Aspnes et al. in [Aspnes
et al. 2004].

In the basic inoculation game [Aspnes et al. 2006], the players correspond to the
nodes of an undirected graph G = (V,E). Investment decisions are discrete: if xi = 0,
player i remains unprotected; if xi = 1, player i inoculates herself and she is considered
secure. After the players made their choices, the adversary picks some node uniformly
at random as a starting point for an infection. The infection then propagates through
the graph, infecting a node if she is unprotected and any of her neighbors becomes
infected. In the basic model, the cost being secure and the cost of being infected are
both uniform.

In the model of [Moscibroda et al. 2006], which we will discuss in Section 5.3, the
inoculation game is extended by allowing some players to be malicious or byzantine
rather than selfish. In [Meier et al. 2008], which we discuss in Section 5.2, the players
also take the costs of their neighbors into account by a factor F , called the friendship
factor. In [Dı́az et al. 2009], the basic inoculation game is used to study the question
whether a mediator can increase social welfare by implementing a correlated equi-
librium, which is discussed in Section 7.1.3. In [Kumar et al. 2010], the inoculation
game is generalized by allowing arbitrary security and infection costs, and arbitrary
distributions for the starting point of the infection. More significantly, the generalized
inoculation game includes a network locality parameter l that represents a hop limit
on the spread of the infection.

4.3. Other Models Focusing on Positive Externalities
In this subsection, we discuss the remaining models of interdependence with posi-
tive externalities, which assume some specific but not propagation-based mechanism
between the players. Note that, even though some of them model how an incident
propagates from one player to another (e.g., [Kunreuther and Heal 2003]), we do not
consider them to be propagation-based, since they do not allow incidents to spread far-
ther than one hop. In other words, if a model assumes propagation, a player’s risk is
still influenced only by those players to which she is directly connected.

In [Varian 2004], three prototypical interdependence models are introduced: weakest
link, best shot, and total effort. These models are based on the idea that security is a
public good; hence, each player’s risk is determined by the overall level of security.
More formally, in all three of these models, the probability of successful operation is
P (H(x)) for every player, where P is a differentiable, monotonically increasing and
concave function, and H depends on which model is used (see below). The function P is
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often assumed to be a linear mapping, which simplifies to the identity function if xi ∈
[0, 1] for every i (e.g., in [Grossklags et al. 2008; Grossklags et al. 2010a; Grossklags
et al. 2010b]). The three models are defined as follows.

— In the weakest link (also called perimeter defense) model, the level of security is
determined by the smallest security investment. Formally,

H(x) = min
i
xi . (4)

Weakest link interdependence can be used to model, for example, the perimeter de-
fenses of enterprises, which are vulnerable if an attacker can identify a weakness
that leads to their circumvention. This tightly coupled dependency can be modeled
by considering the minimum investment [Grossklags et al. 2008; Grossklags et al.
2010a; Grossklags et al. 2010b].

— In the best shot model, the level of security is determined by the largest security
investment. Formally,

H(x) = max
i
xi . (5)

Best shot interdependence can be used to model security scenarios with built-in re-
dundancy, for example, censorship-resistant networks, where a piece of information
is available to the players as long as at least one of them is secure [Pal and Hui 2011;
Grossklags et al. 2008; Grossklags et al. 2010a].

— In the total effort (also called cumulative defense and sum-of-efforts) model, the level
of security is determined by the sum of the security investment of all players. For-
mally,

H(x) =
1

N

∑
i

xi (6)

Total effort interdependence is used to model the security of end users, who are
subject to cumulative interdependencies. For example, an under-investing user
who causes increased spam activity represent a security risk to every other user
[Grossklags et al. 2008; Grossklags et al. 2010a; Grossklags et al. 2010b; Pal and Hui
2011].

The total effort model is appealing as it is relatively simple, yet it can be used to
study a wide range of phenomena, such as free-riding. However, it is based on the
assumption that each player’s risk is influenced uniformly by every other player, which
severely limits its application. In many practical security problems, interdependence
relations are nonuniform or infrequent: individual users receive e-mails from only a
subset of all the users in a system, firms only do business with a set of partners, etc.

The model can generalized by replacing the summation with an arbitrary linear
combination. In the linear influence model introduced in [Miura-Ko et al. 2008b], the
linear combination is expressed using a weight matrix Ω, where ωij is the degree of
player j’s influence on player i. Then, the risk of player i is

Pi(ωi) , (7)

where the subscript i of Pi signifies that Pi also depends on the identity of the player.
Note that the above formula can also incorporate direct risks if the ωii elements of
the matrix are filled in accordingly. In [Saad et al. 2010], the linear influence model
of security investments is complemented with an additional linear network, which
models how much the vulnerabilities of one player influence or threaten the other
players. In this model, the payoff of a player is the difference between the positive and
negative influences that are caused by the security investments and the vulnerabilities
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of the neighboring players. The linear influence model is also used in [Radosavac et al.
2008] and [Miura-Ko et al. 2008a].

A similar model, called effective investment, is presented in [Jiang et al. 2011]. Let ωij

measure the “importance” of player j to player i. Then, the total risk of player i is

LiPi

 N∑
j=1

ωijxj

 . (8)

Besides the above classic models of interdependence, several other models have been
proposed, which are usually tailored to more specific information security problems:

— In [Kunreuther and Heal 2003] and [Kearns and Ortiz 2004], stochastic one-hop prop-
agation models are introduced, which can be applied to a wide range of security prob-
lems, such as airline baggage security, fire safety, or computer viruses. To model indi-
rect risks, let qji denote the probability that player i is harmed as a result of player j
not investing in security. To compute the probability that player i is harmed, assume
that risks are non-additive and that security decisions are binary. Then, the total
risk of player i is

(1− xi)piLi + (1− (1− xi)pi)

1−
∏
j 6=i

(1− (1− xj)qji)

Li , (9)

where pi is the direct risk probability of player i [Kunreuther and Heal 2003; Kearns
and Ortiz 2004].12

— In [Jiang et al. 2011], another model of interdependence is introduced besides the
general and the effective investment models, which we have discussed previously. The
bad traffic model is based on the amount of malicious traffic (e.g., traffic that causes
virus infection) from one player to another. Clearly, the security risk posed by a unit
of traffic depends on the investments of both players, so the probability that a unit
of traffic from player k harms player i can be denoted by φk,i(xk, xi). Then, the rate
at which player i is harmed by traffic from player k is τkiφk,i(xk, xi), where τki is the
rate of traffic from k to i, and the total risk of player i is

Li

∑
k 6=i

τkiφk,i(xk, xi) . (10)

If the security investment is implemented as a traffic filter (e.g., a firewall) and this
filter is symmetric (i.e., treats incoming and outgoing traffic in the same way), then
it can be assumed that φk,i(xk, xi) = φi,k(xi, xk).

— In [Amin et al. 2011], a special interdependence model is proposed for networked
control systems (NCSs), which generalizes the model of [Amin et al. 2012]. The prob-
lem of the security choices of individual NCS is formulated as a two-stage game, in
which players make their security and control decisions, respectively. Each player’s
plant is modeled as a discrete-time stochastic system, which is controlled by the in-
put sequence chosen in the second stage. The model incorporates both reliability and
security risk; the latter reflects the interdependence among players due to their sys-
tems being networked.

— In [Böhme 2012], a two-player model is introduced to study the effectiveness of au-
dits. The functional relationship between security investment xi and the probability

12In [Kunreuther and Heal 2003], the model is first introduced for airline baggage security, where an un-
protected player can “contaminate” only one other player, and it is later adapted to computer security, which
results in the above model.
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pi(xi) of a direct loss occurring is adopted from the Gordon-Loeb model [Gordon and
Loeb 2002]. Formally, pi(xi) = β−xi , where β is the player-specific security productiv-
ity. The probability that either direct or indirect loss occurs is computed in the same
way as in the stochastic one-hop models of [Kunreuther and Heal 2003] and [Kearns
and Ortiz 2004]:

f1(x1, x2) = 1− (1− β−x1)(1− δβ−x2) , (11)
where δ is the degree of interdependence.

4.4. Models Focusing on Negative Externalities
Negative externalities13, introduced in Section 2.1, created by the players’ investments
do not rely on explicit interdependence relationships between the players, thus they
are fairly difficult to model. More precisely, it is very hard to characterize the set of
affected players and estimate the strategic moves of an attacker after a player hardens
her defense. This is probably the main reason why there is a limited literature studying
this issue.

Yet, there are a few attempts to incorporate negative externalities into interdepen-
dent security models. In [Heal and Kunreuther 2004], negative externalities are mod-
eled by assuming that the probability of direct loss for a non-investing player, which is
constant in the basic model, increases as the number of investing players grows.

In [Hausken 2006], negative externalities are modeled by introducing an adversar-
ial player, who considers the players’ strategies and substitutes into the most opti-
mal attack allocation. The adversary invests an amount of X with a unit cost of C
into attacking the players. The fraction of the attack directed at player i is Xi, where∑N

i=1Xi = X. The attack on player i is assumed to take a form that is common in
the conflict and rent seeking literature, where player i keeps a fraction hi of her ini-
tial wealth Wi, while the adversary gets the remaining fraction 1− hi, where hi is the
contest success function. In [Hausken 2006], the common ratio formula is used for hi:

hi =
xi

xi +Xi
. (12)

Consequently, the payoff of player i is
xi

xi +Xi
Wi − Cixi , (13)

and the payoff of the adversary is
N∑
i=1

Xi

xi +Xi
Wi − CX . (14)

For analytical tractability, the model is based on a two-stage game. Both orders of
decisions making are studied, that is, both when the adversary moves first and the
other players move second and vice versa.

In [Grossklags et al. 2008], two models with negative investment externalities are
introduced.

— In the weakest target model, the attacker is always able to compromise the player(s)
who invests the least, but leaves the other players unharmed. This models an at-
tacker who has infinite strength and is determined to compromise an arbitrary set of
players with the lowest possible effort.

13Note that negative externalities are also called “substitution- or displacement effect” in the interdepen-
dent security literature. We use the above nomenclature to avoid confusion with the classic notion of the
substitution effect in economics.
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Table III. Summary of Modeling Assumptions in Related Work

Assumption Related work

Investment decision discrete [Kunreuther and Heal 2003; Kearns and Ortiz 2004;
Heal and Kunreuther 2004; Aspnes et al. 2004; Heal
and Kunreuther 2005; Moscibroda et al. 2006; Meier
et al. 2008; Lelarge and Bolot 2008; Grossklags et al.
2008; Grossklags et al. 2010a; Lelarge 2009; Dı́az et al.
2009; Kumar et al. 2010; Amin et al. 2012; Theodor-
akopoulos et al. 2013; Amin et al. 2011]

continuous [Varian 2004; Ogut et al. 2005; Hausken 2006;
Grossklags et al. 2008; Miura-Ko et al. 2008b; Miura-
Ko et al. 2008a; Radosavac et al. 2008; Omic et al.
2009; Jiang et al. 2011; Pal and Hui 2011; Böhme
2012]

Incomplete information only the distribution of the other players’ direct
threats is known [Grossklags et al. 2010a], only the
distribution of the degrees of one’s neighbors is known
[Pal and Hui 2011]

Non-rational & altruistic players non-strictly rational players [Theodorakopoulos et al.
2013], altruistic players [Meier et al. 2008]

Malicious players strategic adversary [Hausken 2006], byzantine play-
ers [Moscibroda et al. 2006]

Risk-averse players utility function [Ogut et al. 2005; Lelarge and Bolot
2008]

— The weakest target with mitigation model is a variation of the weakest target model.
The difference is that the probability of a successful attack on the player(s) who in-
vest the least depends on their investment level in this model. This models an at-
tacker who has finite strength.

In [Ceyko et al. 2011] and [Chan et al. 2012], the stochastic one-hop propagation
model of [Kunreuther and Heal 2003] is extended to account for strategic attacks,
which take the players’ security investments into account. In particular, the attacker
is modeled as a strategic player, who can choose for each player whether to launch an
attack or not. The attacker’s goal is to maximize the sum of the players’ costs while
minimizing the number of attacks she has to launch.

Finally, note that linear interdependence models can also incorporate negative exter-
nalities through negative degrees of influence or importance. Examples of such models
are the linear influence model in [Miura-Ko et al. 2008b] and the effective investment
model in [Jiang et al. 2011], which are discussed in Section 4.3.

5. EXTENSIONS TO THE CORE MODEL OF INTERDEPENDENT SECURITY GAMES
In the core model, we assumed all players to possess complete information and to be
rational, selfish, non-malicious, and risk-neutral. However, certain papers relax these
assumptions to allow for more realistic modeling. In this section, we present these as
extensions to the core model, which relax some assumptions to allow for incomplete
information (Section 5.1), non-rational players (Sections 5.2), malicious players (Sec-
tion 5.3), and risk-averse players (Section 5.4). In Table III, we present key papers
from related work and the most significant modeling assumptions they make. Results
on how these extensions affect the game will be presented in Section 6 after the general
results.

5.1. Incomplete Information
In practice, individuals rarely possess complete information about the situation they
are acting in. This limitation is especially true in the context of security, where the
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adversarial threat is almost always unknown and the effectiveness of security invest-
ments, such as firewalls, is very hard to measure.

In [Grossklags et al. 2010a], the maximum discrepancy in the expected payoff of an
expert player in a complete information environment versus in an incomplete informa-
tion environment is studied. The expert player is assumed to possess superior technical
and structural understanding of computer security threats and defense mechanisms.
Therefore, she correctly understands how her utility is computed, based on the inter-
dependencies that exists in the network. In a complete information environment, the
expert player knows the actual direct attack probabilities of all players. In an incom-
plete information environment, on the other hand, the expert player knows only the
probability distribution of the other players’ direct attack probabilities and the actual
value of her own direct attack probability. In both environments, all the other play-
ers are modeled as non-expert players, who underappreciate the interdependence of
network security and try to optimize a perceived utility, which actually differs from
realized utility.

In [Pal and Hui 2011], the authors study the equilibrium behavior of players who
possess only partial information about their underlying neighborhood connectivity
structures. Each player i is assumed to know her own degree di (i.e., the number of
other players to whom she is connected somehow), but has information regarding only
the probability distributions of her neighbors’ degrees dNi

, i.e., knows the values of
P (dNi

|di). The players are assumed to begin with ex-ante symmetrical beliefs and com-
mon priors regarding the degrees of their neighbors, which are then updated based on
their own degrees. Each player is also assumed to be aware of the degree correlation
between the neighboring nodes and to account for it when deciding on her strategy.
The strategic interactions are modeled as a Bayesian game of incomplete information,
whose type space is the player knowledge on the potential degrees of her neighbors.

5.2. Non-Rational and Altruistic Players
The assumptions of strict rationality and pure selfishness are very rough simplifica-
tions compared to reality. In practice, individuals often make non-rational decision and
respect the interests of their peers.

In [Theodorakopoulos et al. 2013], non-strictly-rational players are introduced into
a game based on an epidemic interdependence model. The stability and the domains of
attraction of the game’s equilibria are studied in three scenarios: homogeneous strictly
rational players, homogeneous non-strictly rational players, and strictly rational play-
ers who are divided into two response classes (i.e., players are grouped together based
on their behavior). In the first scenario, players always make investment decisions
that minimize their expected costs. In the second, non-strictly rational scenario, the
players’ investment decisions are suboptimal, but as the level of threat increases, the
probability that a player invests in security increases monotonically. In the third sce-
nario, the players are strictly rational, but inhomogeneous: they are divided into two
classes, which correspond to different loss values and costs of investment.

In [Meier et al. 2008], altruistic players, who care about the welfare of their direct
neighbors in the social network, are introduced into the inoculation model, which we
discussed in detail in Section 4.2.2. The expected social cost in this non-selfish envi-
ronment is compared to the expected social cost in a purely selfish environment. In
the non-selfish environment, the players try to minimize their perceived cost, which
is the sum of their actual cost and the actual costs of their neighbors multiplied by a

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: 12.



A Survey of Interdependent Information Security Games A:17

friendship factor F . Formally, the expected cost of an altruistic player i is

Lifi(x) + Cixi + F

∑
j∈Ni

Ljfj(x) + Cjxj

 , (15)

where Ni denotes the neighbors of player i. The friendship factor captures the extent
to which players care about their friends, i.e., the players adjacent to them in the social
network.

5.3. Malicious Players
In most studies, the adversaries are not modeled as strategic players or, equivalently,
their strategies are assumed to be exogenously given. In practice, however, the invest-
ment decisions made by the players can influence the actions of the adversaries. For
example, a rational adversary might opt to focus her resources on attacking players
who have invested less and, therefore, are more vulnerable to attacks, which can mean
a higher payoff for the adversary. Similarly, using popular software products increases
usability, but it also increases the number of attacks due to the attacker optimization
strategies mentioned in Section 2.3. The given ecosystem greatly influences the strate-
gic decisions of the attacker in whether she performs generic attacks against a large
set of targets or she executes a more targeted operation. Only recently did some re-
searchers [Herley 2010; Laszka et al. 2013] and practitioners [Microsoft 2011] brought
this important distinction to the attention of the security community. We believe that
this distinction in threat modeling can bring substantial benefit to the community.

In [Hausken 2006], all the adversaries are represented by a single player, called the
agent. The model is studied with both exogenous and endogenous adversarial strate-
gies. Endogenous adversarial strategies create negative externalities between players’
security investments, which we discussed in Section 4.4.

In [Moscibroda et al. 2006], in addition to the inefficiencies caused by the selfishness
of players, some players are allowed to be malicious. As a simplifying assumption,
these so called byzantine players have the same set of strategies as the selfish players
and cannot be distinguished from them, but their goal is to deteriorate the overall
system performance without any regard to their own costs.14

5.4. Risk-Averse Players
In practice, individuals are generally believed to be risk-averse, which is most com-
monly modeled using a utility function ui, which quantifies the desirability of different
outcomes for a given player i. If the risk function fi(x) measures the probability of a
security breach at player i, which implies fi ∈ [0, 1], then the expected payoff of player
i can be computed as

fi(x)ui(Wi − Li − Cixi) + (1− fi(x))ui(Wi − Cixi) , (16)

where Wi is the initial wealth (or endowment) of player i [Ogut et al. 2005; Lelarge
and Bolot 2008]. Note that we did not introduce Wi in the core model as it does not
affect the decisions of risk-neutral players.15

The utility function ui is assumed to be monotonically increasing (u′i > 0), which
implies that outcomes with higher monetary value are more desirable, and concave
(u′′i < 0), which implies risk-aversion due to the diminishing marginal utility. In [Ogut

14Arguably, there are other attacker threat models. The profit-optimizing attacker model seems to be more
realistic in general.
15In [Ogut et al. 2005; Lelarge and Bolot 2008], a player also has the option of investing in insurance, which
we discuss in Section 7.2.1.
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et al. 2005], the model also assumes constant absolute risk aversion (CARA) given by
a constant ratio −u′′

u′ .

6. EQUILIBRIA AND EFFICIENCY OF INTERDEPENDENT SECURITY GAMES
Game theory allows us to model the strategic interaction of decision-makers in infor-
mation security. These games enable us to derive results about the equilibrium in-
formation security investment of the population of players. Furthermore, the authors
in the literature use existing and novel metrics to characterize the efficiency of the
equilibria compared to the achievable total social welfare. In this section, we present
equilibrium and efficiency results and discuss the guidelines they present towards im-
proving information security.

We follow the classic methodology of game theory to describe the equilibrium solu-
tions. First, we present existence and computability results on Nash equilibria in inter-
dependent security games in Section 6.1. Then, we discuss the efficiency of these equi-
libria compared to the social optimum in Section 6.2. Next, in Section 6.3, we present
results comparing the efficiency of different equilibria to each other. Section 6.4 con-
siders the effects of incomplete information. Then, we discuss how the game changes
in the presence of byzantine players in Section 6.5. Finally, in Section 6.6, we present
results on how improvement in security technology affects the players’ investment de-
cisions.

6.1. Existence, Multiplicity, and Computability of Nash Equilibria
One of the principal questions regarding any game is whether it has an equilibrium
solution or not. In the overwhelming majority of the surveyed papers, the equilibrium
concept is the Nash equilibrium which is defined as follows.

Definition 6.1 (Nash equilibrium). A set of strategies is a Nash equilibrium if no
player can increase her utility by unilaterally deviating from her equilibrium strategy.

In general, such equilibrium exists for interdependent security games. For discrete
investment strategies, in [Heal and Kunreuther 2004], it is shown that there always
exists a pure-strategy Nash equilibrium in the positive externalities class of problems,
which also holds if there are negative externalities. For continuous investment strate-
gies, in [Jiang et al. 2011], it is shown that there always exists some pure-strategy
Nash equilibrium in their general model of interdependence. Since these general mod-
els, which we introduced in Section 4.1, incorporate most of the other interdependence
models as special cases, the results also hold for the majority of the other models.

However, there are some exceptional models to which the above general rule does
not apply. For example, if negative externalities dominate, there might not be a pure-
strategy equilibrium. In the weakest-target model of [Grossklags et al. 2008], the game
does not have any pure-strategy equilibrium for non-trivial parameter values; how-
ever, a mixed-strategy Nash equilibrium exists. On the other hand, in the weakest-
target model with mitigation of [Grossklags et al. 2008], a pure-strategy equilibrium
may exist (besides a mixed-strategy one). As another example, the extended stochastic
one-hop model of [Chan et al. 2012] does not have a pure-strategy equilibrium either,
due to the negative externalities.

The number of Nash equilibria can also depend on both the model and its param-
eters. For example, in [Lelarge and Bolot 2008], there is always a unique equilibria
in the case of strong protection, but there can be one or two equilibria depending on
the parameters in the case of weak protection. The game presented in another work
[Miura-Ko et al. 2008b] has a unique NE if the connection/weight matrix of the in-
fluence network is strictly diagonally dominant. The number of equilibria can also
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be infinite. For example, in [Omic et al. 2009] it is shown that a SIS epidemic model
based game can have an infinite number of equilibria if equilibrium is reached at the
threshold of extinguishing the epidemic. As the multiplicity of equilibria can be very
important to the efficiency of the system, it is discussed in more detail in the following
subsection.

Efficient algorithms for computing a Nash equilibrium have been proposed in several
papers. In [Kearns and Ortiz 2004], an algorithm with O(N2) time complexity is given
for computing a pure-strategy Nash equilibrium in their stochastic one-hop propaga-
tion based interdependence model. In [Heal and Kunreuther 2004], a polynomial-time
algorithm is given for finding a pure-strategy Nash equilibrium in their general, dis-
crete investment strategy based, positive externalities model. The proposed algorithm
also works if there are negative externalities. In [Aspnes et al. 2006], it is shown that
finding an arbitrary pure-strategy Nash equilibrium in the basic inoculation game is
easy: starting from any pure-strategy profile, if at each step some player with a subop-
timal strategy changes her strategy, then the profile converges to a Nash equilibrium
in at most 2N steps. Consequently, a Nash equilibrium can be computed in O(N3)
time. In [Miura-Ko et al. 2008b], an iterative algorithm, called Asynchronous Best
Response Dynamics (ABRD), is proposed to compute the unique pure-strategy Nash
equilibrium in the linear influence model. Finally, in [Chan et al. 2012], the authors
propose a polynomial-time algorithm for enumerating all mixed-strategy equilibria in
their extended stochastic one-hop model, given that the adversary attacks only a sin-
gle player. Unfortunately, the problem of finding an equilibrium is NP-hard for some
games. For example, in [Kumar et al. 2010], it is shown that even determining whether
an instance of the generalized inoculation game with hop limit l has a pure-strategy
equilibrium is NP-hard, where 1 < l <∞.

If an equilibrium state is desirable and some of the players are byzantine, then
these players may try to prevent the system from reaching an equilibrium or, if the
system is already in one, to dislodge it. Preventing the system from reaching an equi-
librium forces the honest players to keep changing their strategies continuously, incur-
ring costs and potentially hindering security. In [Moscibroda et al. 2006], the minimum
number of byzantine players that can prevent an inoculation game from reaching an
equilibrium is studied. A game is called B-instable if B byzantine players are sufficient
under the assumption that selfish players are not aware of the presence of byzantine
players. It is shown that the virus inoculation game is generally 1-instable, but for a
certain restricted class of network graphs, it is not 1-instable. Unfortunately, the inoc-
ulation game is always 2-instable, which implies that a very low number of attackers
masquerading as honest participants can prevent a system from reaching an equilib-
rium.

6.2. Efficiency of Nash Equilibria and Free-Riding
The efficiency of a game’s Nash equilibrium solution can be measured against the so-
cially optimal strategy profile. This social optimum is usually defined as the minimum
of the sum of the players’ individual costs. The metric is relevant because a regulator,
also called a social planner, would try to optimize this total social welfare.16 The effi-
ciency is typically expressed as the ratio of one of the game’s equilibria – usually the
pessimistic worst-case equilibrium [Koutsoupias and Papadimitriou 1999] – and the

16One criticism of social optimum as an optimization goal is that social optima are not necessarily fair,
and hence alternative, fairness-respecting metrics should be considered. Let us also mention that in [Omic
et al. 2009], the social cost is not computed as the sum of individual costs, but using a “social” unit cost of
investment.
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social optimum. In this subsection, we discuss some of the most important inefficiency
results and the prevalent efficiency metrics.

In many interdependent security game models, efficient equilibria simply cannot
exist. For example, in [Kunreuther and Heal 2003], it is shown that for certain pa-
rameter values, a stochastic one-hop propagation model can lead to a game that has
the same characteristics as the prisoner’s dilemma, leading to a single equilibrium in
which no player invests in security. In [Varian 2004], it is shown that in the total ef-
fort interdependence model, investments levels are always too low in the equilibrium
compared with the socially optimal levels. In [Lelarge 2009], it is shown that the equi-
libria in their epidemic model are always socially inefficient as long as investment
externalities are positive. In [Böhme 2012], it is shown that in their stochastic one-hop
propagation model, the equilibria are always located below the social optimum if there
is any positive degree of interdependence.

In some models, efficient equilibria can exist, but are very volatile. For example,
in [Grossklags et al. 2008], it is shown that in the weakest link interdependence model
with an insurance option, the equilibria in which players invest a positive amount in
security are very volatile when there are many players. That is, the slightest rumor
that one player may decrease her investment level is able to make the equilibrium
collapse.

Based on these inefficiency results, one might conclude that positive externalities
are inherently destructive and the players are always better off if they are indepen-
dent. However, if the positive externalities are caused by security information sharing,
they are usually beneficial. In this case, the social cost in the equilibria of the games
is high only when compared to the social optima, but it is low compared to the social
cost in the case of independent players. In [Gordon et al. 2003], it is shown that in a
general two-player model, the social cost in the equilibrium in the case when there are
positive externalities is always less than in the case of independent players. However,
if the comparison is based solely on the level of achieved security, positive investment
externalities can have a negative effect. In [Gordon et al. 2003], it is shown that even
though social welfare is always increased, the overall level of security might be re-
duced. This can be explained by the positive externalities’ mainly negative effect on
investment decisions. In [Gordon et al. 2003] and [Ogut et al. 2005], it is shown that
in general continuous investment models, the optimal investment level of each player
with positive externalities is lower than or equal to the optimal level without external-
ities.

One of the most widely used metrics for quantifying the inefficiency of a game is
the Price of Anarchy (PoA), which was introduced in [Koutsoupias and Papadimitriou
1999]. The Price of Anarchy is the worst-case ratio between the social cost of a Nash
equilibrium and the social optimum. This shows how much information security could
be improved if appropriate regulations are introduced.

In [Jiang et al. 2011], the Price of Anarchy is analyzed in a general interdependence
model with continuous investments. It is shown that, for any given equilibrium x, the
ratio between the social cost at x and the social optimum, denoted by ρ(x), is bounded
by

ρ(x) ≤ max

{
1,max

k

{
−
∑

i
∂fi(x)
∂xk

Ck

}}
. (17)
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This results is used to analyze two concrete interdependence models, effective invest-
ment and bad traffic. In the effective investment model, the PoA is

PoA ≤ max
k

1 +
∑
i: i 6=k

ω̂ik

 , (18)

where ω̂ij = Ci

ωii

ωij

Cj
is the “relative importance” of player j to player i. In the bad traffic

model, the PoA is

PoA ≤ 1 + max
i,k: i 6=k

Liτki
Lkτik

. (19)

Note that the bounds are tight in both cases.
In [Aspnes et al. 2006], it is shown that the Price of Anarchy in the basic inoculation

game is Θ(n). In [Kumar et al. 2010], it is shown that when the disease hop limit
is l = 1 and players are uniform in the generalized inoculation game, the Price of
Anarchy is at most maxi di + 1, where maxi di is the maximum degree in the player
interdependence graph.

One of the main causes for these inefficiencies is the presence of free-riding: in-
terdependent players tend to underinvest and “free-ride” on the positive externalities
created by the investments of the other players.

In the general two-player model of [Gordon et al. 2003], it is shown that, at the
equilibrium, a small increase in security investments by either player would decrease
social cost, which indicates the presence of free-riding. The extent of free-riding can be
very extreme in some cases. For example, in the total effort model of [Varian 2004], the
level of security is determined by the player with the highest ratio of unit loss to unit
cost. Consequently, all other players free-ride on this single player. However, it is also
possible that a player invests more in security in an equilibrium than the socially opti-
mal level [Gordon et al. 2003]. In this case, even though the level of security is higher,
the player’s strategy is economically suboptimal due to the costs of overinvestment in
security.

In [Miura-Ko et al. 2008b], a metric, called the Free-riding Ratio, is proposed to
quantify the extent of free-riding. Formally, the Free-riding Ratio γi of player i is the
ratio of the externalities produced by the neighbors of i over the amount she would
invest in isolation. If γi < 0, i is forced to over-invest, since the contribution of her
neighbors is negative. If γi = 0, there is no free-riding in either positive or negative
sense. If 0 < γi < 1, there is limited free-riding, but i still invests a positive amount.
Finally, if γi ≥ 1, there is complete free-riding, which means that i invests nothing and
depends completely on her neighbors. The equilibrium values of the free-riding ratios
are computed for three example scenarios in [Miura-Ko et al. 2008b], and are used to
analyze the scenarios.

When studying the efficiency of a system, it is important to determine how well it
“scales”, i.e., as the size of the system increases, how much its efficiency decreases. In
the case of interdependent security games, we can consider a game to be scalable if it
retains its efficiency as the number of players increases.

Unfortunately, related work below shows that most interdependent security games
do not scale well. For example, in [Varian 2004], it is shown that in the total effort in-
terdependence model with identical players, the equilibrium investment level remains
constant as the number of players increases, but the socially optimal amount of invest-
ment increases; thus, the game becomes more inefficient. In [Grossklags et al. 2008], it
is shown that in the total effort interdependence model, an equilibrium in which every
player invests becomes more and more unlikely as the number of players increases. In
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the stochastic one-hop propagation based model for computer security of [Kunreuther
and Heal 2003], it is shown that increasing the number of players increases the neg-
ative externality to an investing player if the other players are not investing. Conse-
quently, the incentive for a player to invest diminishes and investing in security can
never be a dominant strategy as the number of players grows large. Generally, games
based on interdependence models, where the positive effects yielded by the players’
investments are shared among every player (e.g., in most linear models), are prone to
free-riding if the number of players is high. Similar results exist for propagation based
models as well. For example, in [Aspnes et al. 2006], it is shown that the inefficiency
(i.e., the PoA) in the basic inoculation game is proportional to the number of players.

There also exist some scalable interdependence games. For example, in [Varian
2004], it is shown that in the weakest link interdependence model with identical play-
ers, the socially optimal and the equilibrium risks are identical, regardless of the num-
ber of players.

In the case of classic epidemic models, efficiency can be also measured by the equi-
librium level of the infection (or by whether the disease extinguishes or not). In [Omic
et al. 2009], it is shown that there can be no Nash equilibrium in the SIS model
such that the infection rate is below the epidemic threshold, at which the disease ex-
tinguishes. In other words, the epidemic is never extinguished by selfish players. In
[Theodorakopoulos et al. 2013], a counter-intuitive phenomenon is observed in the SIP
model. It is shown that a higher learning rate, which is the rate at which players learn
what the infection level is, leads to a higher infection level.

6.3. Equilibrium Selection
Besides measuring against an ideal strategy profile, such as a social optimum, the
equilibria can also be measured against each other. In the previous subsection, we al-
ready discussed the existence of multiple sustainable equilibria in an interdependent
security game. If these equilibria have different social costs, a coordination problem
arises: the network can be “trapped” in a less desirable equilibrium with a higher so-
cial cost, as no individual player has any incentives to change her strategy to the one
in the more desirable equilibrium. In this case, there is a possibility of tipping or cas-
cading: inducing a sufficiently large fraction of the players to invest will lead others to
follow. Such mechanisms are discussed in Section 7.1.4. Note that in non-deterministic
models, such as the stochastic one-hop propagation model, even a single (equilibrium)
strategy profile can lead to substantially different outcomes [Laszka et al. 2014; John-
son et al. 2014]. The possibility of multiple outcomes, which can have substantially
different social costs, indicates that interdependence can cause systemic risk, a phe-
nomenon which has received only little attention from the research community so far.

In [Grossklags et al. 2010b], the existence of multiple equilibria is listed as one of
the key obstacles that may prevent the players from reaching a high security outcome.
It is shown that, in both the weakest-link and the total effort interdependence mod-
els, there exists a multiplicity of equilibria when security investments and insurance
are both available. The existence of less secure and more secure equilibria may cause
coordination failures if a single player deviates from investing in security to buying
insurance, as a single player deviating might cause other players to follow, which in
turn causes the game to end up in a less secure equilibrium.

In [Lelarge and Bolot 2008], the multiplicity of equilibria is studied in the local-
mean-field epidemic model with weak protection. It is shown that if the cost of pro-
tection is in a given range, then everyone and no one investing in security are both
Nash equilibria. In this case, the socially optimal strategy profile is always everyone
investing. In [Lelarge 2009], it is shown that if the players’ potential losses Li are non-
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uniform, there is a possibility for the existence of multiple Nash equilibria in the case
of strong protection as well.

In [Kunreuther and Heal 2003], it is shown that for certain parameter values, ev-
eryone and no one investing in security can both be equilibria in a stochastic one-hop
propagation model. Regulations are proposed to solve the coordination problem arising
when none of the players invests because she believes others would not do so.

The problem of multiple equilibria is also studied in [Heal and Kunreuther 2004].
They characterize games in which every player investing in security and none of the
players investing are both equilibria by the threshold cost for investing ci(K). It is also
shown that if every player investing and no player investing are both equilibria, then
the former strategy profile always Pareto dominates the latter.

6.4. Incomplete Information
In [Grossklags et al. 2010a], the notion of Price of Uncertainty is introduced to measure
the disadvantage of an expert player when it has incomplete information.

Definition 6.2 (Price of Uncertainty). The Price of Uncertainty (PoU) quantifies the
maximum discrepancy in the total expected payoff between complete and incomplete
information conditions. The metric is defined in three forms:

— Difference: PoU1(L,N) = maxC,I∈[0,L]

{
EPcomplete(C, I)− EPincomplete(C, I)

}
,

— Payoff-ratio: PoU2(L,N) = maxC,I∈[0,L]
EPcomplete(C,I)

EPincomplete(C,I) ,

— Cost-ratio: PoU2(L,N) = minC,I∈[0,L]
EPcomplete(C,I)

EPincomplete(C,I) ,

where EPcomplete and EPincomplete denote the expected payoffs under the complete and
incomplete information conditions, and I is the unit cost of insurance17. Recall that
C and L denote the cost of security investment and the magnitude of potential losses
when they are uniform over the players. For the difference and payoff-ratio forms, the
initial wealth (or endowment) W is set to L, while it is set to zero for the cost-ratio
form.

The three forms of the metric are analyzed in three games, which are based on the
best-shot, weakest-link and total-effort interdependence models.

The observations for the first two forms of the metric are mostly consistent with
each other for all three models. Generally, the PoU is high when the number of players
is low, but as the number of players increases, the PoU diminishes. In other words,
as the number of players increases, the importance of information decreases. This is
fortunate, as gathering complete security information gets more difficult (and/or ex-
pensive) as the number of players increases. The combination of the difference metric
and the weakest-link game is an interesting exception, as the PoU is not affected by
the number of players in this case. The main difference between the two forms is that
the PoU increases directly with the potential loss for the difference form, while it is
independent of the magnitude of the potential losses for the payoff-ratio form. This
difference is readily explained by the difference between the two definitions.

The cost-ratio form is the least useful, since the observations based on it are counter-
intuitive and often contradict those that are based on the other forms. The explanation
is that the cost-ratio metric focuses on comparing costs which are insignificantly small,
but whose limiting ratio indicates significant discrepancy.

17Insurance is discussed in Section 7.2.1. Here, it suffices to know that insurance is another investment
option that the player has besides security investments to manage risks.
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In [Pal and Hui 2011], a comparison based on the players’ behavior regarding secu-
rity investments is made between a less-informed case, where each player knows her
own degree (i.e., the number of neighbors she has) and the distributions of her neigh-
bors’ degrees, and a more-informed case, where each player also knows her neighbors’
actual degrees. In the less-informed case, if we assume that the degrees of neighbor-
ing nodes are independent, each player’s investment monotonically decreases with in-
crease in her degree in every symmetric equilibria. In the well-informed case, however,
if we assume that the degrees of the neighbors of a node are stochastically indepen-
dent, we only have that there exists at least one symmetric equilibrium in which each
player’s investment monotonically decreases with increase in her degree. Thus, with
increasing information, the increments in overall network security might follow the
same trends as in the case when players have less information.

6.5. Byzantine Players
The presence of byzantine players can result in an increased social cost due to their
malice. In [Moscibroda et al. 2006], the concept of “price of malice” is introduced to
measure the excess cost caused by a given number of byzantine players.

Definition 6.3 (Price of Malice). The Price of Malice (PoM) is the ratio between the
worst Nash equilibrium with B byzantine players present and the PoA in a purely
selfish system. Formally,

PoM(B) =
PoB(B)

PoA
, (20)

where PoB(B) is the ratio between the worst-case social cost of a NE with B byzantine
players divided by the minimal social cost.

The Price of Malice is studied in two models of awareness: oblivious and non-oblivious.
In the oblivious model, the selfish players are not aware of the existence of byzantine

players, that is, they assume that all the other players are selfish as well. In this case,
players underestimate their probabilities of being compromised and, consequently, the
social cost deteriorates as the number of byzantine players increases. Formally,

PoM(B) ∈

{
Θ
(

1 + B2

L + B3

(N−B)L

)
, when B < L

2 − 1 ,

Θ(L), otherwise.
(21)

In the non-oblivious model, the selfish players know about the existence and num-
ber of byzantine players, but they do not know which players are byzantine. It is also
assumed that selfish players are highly “risk-averse”: each selfish player presumes
that the byzantine players are connected such that her expected cost is maximal. In
this case, the players overestimate their probabilities of being compromised and, con-
sequently, are more willing to invest in security. Interestingly, the Price of Malice can
be less than 1 in this case, which means that the selfish players’ awareness of the ex-
istence of byzantine players may lead to an increased investment in security and an
improvement in social welfare.

6.6. Quality of Security Technology
One might hope that the improvement of security technology, such as the development
of better firewalls and intrusion detection systems, will solve the efficiency problems
over time. Unfortunately, technology improvement rather has a negative effect on in-
vestment decisions.

In [Jiang et al. 2011], it is shown that technology improvement may not offset the
negative effect of the lack of incentives, i.e., the PoA does not change with the im-
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provement of security technology, in case of the effective investment and bad traffic in-
terdependence models. Furthermore, if the effectiveness of investments has improved
by a times, then the optimal social cost cannot decrease more than a times. In other
words, in an interdependent security game, the effect of technology improvement is
never amplified, but can rather be diminished.

In [Lelarge and Bolot 2008] and [Lelarge 2009], a similar result is presented for a
propagation based local mean field model. It is shown that, for a fixed price, increasing
the quality of security technology can lead to a decrease of its adoption.

If the quality and price of security technology is not determined by a competitive
market, but by a monopolist provider, the above phenomena has very unpleasant con-
sequences. In [Lelarge 2009], it is shown that a monopolist security provider has no
incentives to invest in a high-quality product. If the quality of security is low, the de-
mand is higher because of the positive externalities, of which the monopolist can take
advantage. If, however, the quality of security is high, the demand is lower because of
the free-rider effect.

7. IMPROVING SECURITY DECISIONS
This section draws on the conclusions derived from equilibrium results and surveys
related work in which authors proposed game-theoretic solutions and practical mech-
anisms to improve information security. This improvement does not necessarily mean
the increase of the users’ security investments, but rather the overall improvement of
utilities obtained as a result of better security decisions.

First, in Section 7.1, we consider theoretical results and abstract mechanisms that
change the constitution of the strategic situation to set a better equilibrium. Then, in
Section 7.2, we discuss practical regulatory and market-based mechanisms for improv-
ing the players’ security and social welfare.

7.1. Game-Theoretic Equilibrium Improvements
In this subsection, we discuss extensions and abstract mechanisms that improve the
investments decisions in interdependent security games. These extensions and ab-
stract mechanisms can serve as theoretical bases for designing practical mechanisms
for influencing players.

7.1.1. Repeated Game. In repeated games, cooperation is more likely to exist between
players. Jiang et al. [Jiang et al. 2011] use the Folk Theorem in repeated games [Fu-
denberg and Tirole 1991] that proves the support of any feasible and enforceable payoff
vector as a subgame-perfect equilibrium (SPE). In their paper, the authors character-
ize the ratio between the best possible SPE and the social optimum. They found that if
individual rationality constraints are effective, then the efficiency of best SPE will be
lower than the efficiency of the SO. If these constraints do not hold, then the best SPE
can achieve SO.

Repeated games can typically improve the equilibrium solution in a game. Nonethe-
less, one has to take into account the additional coordination and communication over-
head that might prevent the players from achieving the otherwise improved solutions.
Taking the cost of communication into account, the beneficial effects of repeated inter-
actions sometime dissipate [Jiang et al. 2011].

7.1.2. Sequential Moves. In some cases, having the players make decisions sequentially
instead of simultaneously can also improve the equilibrium. In [Varian 2004], it is
shown that for two players in the weakest-link interdependence model, the unique
equilibrium in the sequential-move game is the same as the most secure equilibrium of
the simultaneous-move game. However, for two players in the total effort and best shot
interdependence models, the equilibrium in the sequential-move game is always less
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or equally secure compared to the simultaneous-move game. In this case, the player
who moves first is at advantage since there are only two possible outcomes and the
first mover can choose the one that she prefers. The highest level of security in the
sequential-move game can be achieved by making the player with the lower benefit to
cost ratio move first.

7.1.3. Correlated Equilibrium. Correlated equilibrium (CE) is a solution concept which
generalizes the notion of NE. Let µ be a probability distribution over the strategy
profiles x. First, a mediator selects a strategy profile x with probability µ(x). Then,
she confidentially recommends each player i to invest xi. A distribution µ is a CE
iff, for every player i, the recommended strategy xi is indeed a best response to the
randomized strategies of the other players with distribution µ(x−i|xi). In other words,
it is a NE for all players to follow the recommendation of the mediator.

In practice, the role of the mediator can be played by a trusted third party, such
as a government agency. Alternatively, the players can agree on a distribution µ at a
pre-play meeting and later use a device that generates and distributes the appropriate
strategies. Furthermore, it was shown in [Stoltz and Lugosi 2007] that CE can arise in
an infinite repeated game without a third party or a pre-play meeting. If each player
observes the history of the actions of the other players and chooses her action in each
period based on a “regret-minimizing” criterion, then the empirical frequencies of the
actions converge to a CE.

In [Jiang et al. 2011], the analysis is restricted to CE whose support is on a discrete
set of strategy profiles, called discrete CE. Both the best and the worst-case discrete
CE are studied. First, it is shown that in a general interdependence model based game,
a discrete CE might not achieve the social optimum; however, it can be better than all
NE of the game. Second, it is shown that the PoA of discrete CE is equal to the PoA of
pure-strategy NE in the effective investment and bad traffic interdependence models.

In Section 6.5, we discussed the counter-intuitive phenomenon where the presence
of malicious players improves social welfare by inducing fear. In [Dı́az et al. 2009], the
authors study the question whether this “windfall of malice” can be achieved by a me-
diator without the actual presence of malicious players. It is shown that the mediator
can implement a correlated equilibrium by randomly choosing between two types of
strategy profiles, an optimal and a “fear inducing” one. In the second one, whose only
purpose is to ensure that the selfish players follow the recommendation, any player
who does not invest in protection has about 1/2 probability of being infected. It is
shown that with such a mediator, the social cost for a regular grid is Θ(n2/3L1/3),
which can be a significant improvement compared to the Θ(n) equilibrium social cost
without a mediator.

7.1.4. Tipping and Cascading. If a game has multiple Nash equilibria, it is possible that
the players get “stuck” in a less desirable equilibrium. In this case there is a probability
of tipping or cascading: inducing some of the players to invest in security will lead
others to follow suit.

To study tipping, the concept of critical coalitions is introduced in [Heal and Kun-
reuther 2004]. If no player investing is an equilibrium, a set of players {M} forms a
critical coalition if ci(M) ≥ ci, ∀i 6∈ {M}, i.e., if every other player is better off invest-
ing in security given that the members of the critical coalition do invest. It is shown
that, if a minimal critical coalition exists, then it has to consist of the players with
the highest indirect losses. Furthermore, a minimal critical coalition exists only if the
non-additivity α of direct and indirect losses is greater than zero.

In practice, a regulatory authority or an association is more interested in a cheapest
critical coalition than a minimal one. If the cost of persuading a single player to invest
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Table IV. Mechanisms

Mechanism Regulatory /
market-based

Incentive /
dictate

Related work

insurance both (e.g.,
mandatory
insurance)

incentive [Kunreuther and Heal 2003]
[Ogut et al. 2005]
[Grossklags et al. 2008]
[Grossklags et al. 2010a]
[Pal and Hui 2011]

bonuses & penalties regulatory incentive [Gordon et al. 2003]
[Varian 2004]
[Grossklags et al. 2010b]

liability regulatory incentive [Kunreuther and Heal 2003]
[Varian 2004]
[Ogut et al. 2005]

subsidies & fines regulatory incentive [Kunreuther and Heal 2003]
[Heal and Kunreuther 2004]
[Omic et al. 2009]
[Grossklags et al. 2010b]
[Amin et al. 2011]

regulations regulatory dictate [Kunreuther and Heal 2003]
[Grossklags et al. 2008]
[Omic et al. 2009]

audits & third-party
inspections

market-based dictate [Böhme 2012]

coordination both dictate [Kunreuther and Heal 2003]
[Saad et al. 2010]

security information sharing regulatory dictate [Gordon et al. 2003]
[Ogut et al. 2005]

in security when no other player does so is assumed to be equal to the cost of the secu-
rity investment, it can be shown that any cheapest critical coalition is also a minimal
critical coalition. Consequently, in general, the unique minimal critical coalition of a
game is also its unique cheapest critical coalition.

7.2. Mechanisms for Improved Security
In this subsection, we discuss practical mechanisms for improving the level of secu-
rity and social welfare in interdependent security games. A brief comparison of these
mechanisms is given in Table IV.

Please note that the terminology for bonuses/penalties, liability and subsidies/fines
varies in the literature. In this survey, bonuses/penalties are rewards/punishments for
the security outcome of a player (e.g., a player has to pay a penalty if her security is
breached); subsidies/fines are rewards/punishments for the behavior of a player (e.g.,
a player has to pay a fine if she does not invest in security); and liabilities are special
penalties that are equal to the damages caused by the player and are paid to the player
who sustained the damage.

7.2.1. Insurance. To date, insurance is probably the most studied remedy to informa-
tion security investment issues. Cyber-insurance, as it is called in the information
security context reduces the chances of a critical loss by distributing the risk among
the players. Insurance requires the categorization of players, effectively introducing
audit mechanisms. Security audits required by insurance policies subsequently force
the participants to maintain a pre-defined level of system security hence improving
overall information security. The major issues with insurance are the adverse effects
due to externalities (Section 2.1), the large-scale correlation of security incidents due
to monopoly markets (Section 2.3), insurance policy enforcement due to information
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asymmetries (Section 2.2), and the lack of available data. The related work on cyber-
insurance is extensive, for a comprehensive overview of the papers, we refer to [Böhme
and Schwartz 2010]. We will now summarize the issues due to interdependence in
these papers.

Information asymmetries between the insurers and the players can have adverse
effects on investment decisions, which lead to decreased levels of security and, possi-
bly, decreased social welfare. Insurance discourages investment in security if insurers
are unable to detect the careless behavior of the insured players, who know that they
will receive compensation should they suffer loss [Kunreuther and Heal 2003]. Con-
sequently, a high security equilibrium may be lost as the players invest in insurance
instead of security.

On the other hand, if these information asymmetry problems are eliminated, in-
surance with actuarially fair premiums encourages a risk-averse player to invest in
security whenever the increase in security costs is less than the reduction in expected
losses [Kunreuther and Heal 2003]. If insurance is mandatory for the players, secu-
rity is increased because the players invest more into security as a rational response
to the reduction in insurance premiums. Insurance leads to a market solution that is
aligned with the economic incentives of both the insurers, who earn profit from appro-
priately pricing premiums, and the players, who can hedge potential losses [Pal and
Hui 2011].

In the case of voluntary insurance, the players’ insurance coverage decisions can
also be studied. In [Ogut et al. 2005], insurance decisions are assumed to be continu-
ous. As expected, both a higher amount of risk (i.e., expected loss) and a higher degree
of risk aversion cause increased insurance coverage. If the level of interdependence is
higher, then insurance coverage is less or equal (equality holds when the insurance
market is mature). This phenomena might seem counter-intuitive at first because an
increased risk (caused by interdependence) should motivate players to take more in-
surance. However, since the total risk is higher from the insurer’s perspective, so is the
price of insurance, which counters the increased demand for insurance.

When studying the impact of insurance on interdependent security games, the sup-
ply side of insurance also has to be taken into consideration. From the players’ perspec-
tive, the different characteristics of the supply side can be summarized as the maturity
of the insurance market. The maturity of the market is low if

— there are few insurers, and hence little competition,
— adequate actuarial data is unavailable, or
— there exists a high correlation between players’ loss events that can cause significant

system-wide losses [Ogut et al. 2005].

The price of insurance is determined by the maturity of the insurance market and the
level of risk. If the insurance market is mature, the insurers do not make any profit,
i.e., the insurance premium paid by a given player is equal to her risk. Immature
markets can be modeled through a loading factor, which measures the excess of the
premium relative to the risk [Ogut et al. 2005].

In [Ogut et al. 2005], it is shown that insurance market maturity can affect both the
insurance and the security investment decisions of the players. As the market becomes
more mature, security investments decrease, which can be easily explained by the fact
that security investment is more effective than insurance when the insurance market
is immature.

The immaturity of the market is obviously disadvantageous for the players due to
the increased costs of insurance. However, an immature market can also have some
positive effects. For example, a single monopolist insurer can be advantageous be-
cause she wants to internalize the externalities [Kunreuther and Heal 2003]. In a
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competitive market, an insurer would be reluctant to reduce the premium of a player
for investing in security since she cannot observe or control the investments of the
other players, who could cause indirect loss to the client. A single insurer, on the other
hand, can require all players to invest in return for premium reductions and, conse-
quently, increasing the overall level of security. As an other example, in [Grossklags
et al. 2010a], it is shown that the Price of Uncertainty in the weakest-link interdepen-
dence model is the highest when insurance is competitively-priced.

The amount of loss in case of a security breach can also be reduced by using self-
insurance technologies or practices, such as backup provisions [Grossklags et al. 2008;
Grossklags et al. 2010a]. Self-insurance can be modeled in the same way as volun-
tary insurance provided by an insurer with a fixed (unit) price of insurance, which is
determined by the employed technology or practice.

7.2.2. Bonuses and Penalties. In [Grossklags et al. 2010b], rebates and penalties are
proposed as mechanisms that can be used to shape the incentives of players. A player
is subjected to a penalty when her security is broken, and receives a bonus when
she remains secure. In [Grossklags et al. 2010b], these mechanisms are proposed as
economically-motivated strategies that an ISP may use to influence its customer. In
this example, penalties can be implemented as reductions in network throughput or
as a quarantine, while bonuses as monetary benefits or reduced subscription costs.
Numerical sensitivity analysis shows that in general, bonuses and penalties can be
more effective than fines and subsidies, which are discussed in Section 7.2.4, for the
weakest-link interdependence model [Grossklags et al. 2010b]. For the total effort in-
terdependence model, it is observed that moderately sized interventions have little
impact, which can be explained by the rapid decrease in the incentive for investing in
security as the network grows in size. Consequently, penalties need to be in proportion
with the size of the network to have a noticeable impact. It is also noted that such a
policy needs to be well-balanced as most users disfavor penalty-based systems.

In [Varian 2004], the optimal penalty, which induces socially optimal levels of in-
vestment, is studied. It is shown that the penalty should be imposed on the player who
has the lowest cost of reducing the probability of security breach and that the penalty
should be equal to the losses of the other players. It is noted that the principle of the
liability of the player with the least cost is a standard result in the economic analysis
of tort law, where it is sometimes called the doctrine of the “least-cost avoider”.

In [Gordon et al. 2003], a special penalty rule is proposed. Under this rule, if a
player causes damage to other players, then she is charged the value of the difference
between the realized losses of the other players and their expected losses at the social
optimum. It is shown that this mechanism fully internalizes externalities and makes
each player’s objective of minimizing her own expected cost equivalent to minimizing
the social cost function up to a constant.

7.2.3. Liability. A very straightforward way of internalizing externalities is to hold
players liable for the damages they cause to other players because of their negligence.
Liability can be thought of as a special penalty, whose value is equal to the amount of
damages caused and which is paid to the players who sustained the damage.

In [Ogut et al. 2005], the liability system is mathematically analyzed and it is shown
that when players maximize their individual utility, security investment levels are
higher with liability than without.

Unfortunately, the liability system can not be considered a perfect solution for mul-
tiple reasons. In [Kunreuther and Heal 2003], it is observed that the liability system,
despite having attractive theoretical properties, faces practical problems due to high
transaction costs, since determining the cause of a loss can be very costly (think about
the cost of a forensics investigation involving security experts). Furthermore, in [Ogut
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et al. 2005], it is shown that security investment levels with liability are higher than
the social optimum level without liability. That is, liability can make players over-
invest in security compared to the socially optimal level. Finally, in [Varian 2004], it is
shown that in the total effort model, if the liability payment is too large, it may induce
a player to seek to be damaged.

In [Varian 2004], it is also shown that liability is not adequate in general to achieve
socially optimal levels of investment in the weakest link model. In such cases, a neg-
ligence rule can be used to induce optimal investments. Under the doctrine of the
negligence rule, a regulatory authority determines the level of due care prior to the
game. Then, in the event of a security breach, a player can be held liable only if her
investment level is below the level of due care. It can be shown that the negligence
rule induces optimal investment decisions in the weakest link and many other similar
models, such as the total effort model [Varian 2004]. It is noted that this is a standard
result in liability law.

7.2.4. Subsidies and Fines. Subsidies/fines might seem to be similar to bonuses/ penal-
ties at first sight, but there is a fundamental difference between the two mechanisms:
the former rewards/punishes the effort of a player, while the latter rewards/punishes
the outcome [Grossklags et al. 2010b].

In [Kunreuther and Heal 2003], it is proposed that the public sector could inter-
vene directly in free-riding problems by levying a fine on players who do not invest in
security or, equivalently, by providing a subsidy to players who do invest.

In [Amin et al. 2011], a fine is suggested to alter the individually optimal security
choices, in which the players tend to under-invest in security relative to the socially
optimal choices. It is shown that a range of penalties can be computed such that the
individually optimal choices in the game with penalties coincide with the socially opti-
mal ones.

In [Omic et al. 2009], it is shown the Nash equilibrium of the virus protection game
depends on the vector of the unit costs of investment C. By varying C, a “network
manager” (e.g., the public sector) can influence the network equilibrium point. One
way of adjusting the unit cost is through subsidizing the cost of security investments
(e.g., the price of antivirus software); for example, players who have many interactions
and are densely connected can be given cheaper (per unit) antivirus. Another possible
way of adjusting the relative cost of insurance is to levy a fine on those players who do
not invest. Some conditions are introduced in [Omic et al. 2009] that can give guidance
to choosing the right values for the costs of security investments. If all Ci > 1, there
is only one equilibrium, in which no player invests in security. If Ci <

1
di

, a player
always invests a positive amount in security. Finally, too low relative prices can lead
a network further away from the optimum: if a densely connected player invests in
expensive security, other players can invest less such that the network reaches the
epidemic threshold.

In [Grossklags et al. 2010b], subsidies are discussed as a mechanism that ISPs can
use to influence customer behavior. For example, security products can be offered at a
reduced cost. Similarly to bonuses and penalties, it is observed that subsidies and fines
only work at margin in the total effort interdependence model, when the subsidizer
provides security products free of charge [Grossklags et al. 2010b].

7.2.5. Regulations. Instead of relying on economic incentives, such as subsidies or lia-
bilities, to influence the investment decisions of the players, a social planner might be
able to dictate decisions using regulations.
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In [Kunreuther and Heal 2003], the question under what conditions should regula-
tions be considered is studied. In an example of N identical players, regulations are
shown to be desirable from both private and social welfare perspectives if

— there are two stable Nash equilibria, in which everyone and no one invests in secu-
rity,

— the equilibrium where everyone invests yields higher payoffs for all players than the
equilibrium where no one invests, and

— none of the players voluntarily invested in security because they believed others
would not do so.

Therefore, regulations should be considered when the cost of security investment is
between the threshold under which investing is always optimal (regardless of the de-
cisions of the other players) and the expected loss through direct risk. In this case,
regulations solve a coordination problem.

In [Omic et al. 2009], imposing upper bounds Γi, for i = 1, . . . , N , on the infection
probabilities in the virus protection game is studied. These bounds can serve as a form
of strict regulation, which requires the players to reach a level security, regardless of
the costs incurred. Two particular upper bound settings are discussed.

— If Γi → 0 for a given player i and Γj is finite for every other player, the curing rate of
i (i.e., the investment of i) will tend to infinity.

— If Γj = Γ, there exists a feasible strategy profile in which every player invests an
amount that is proportional to her degree in the network di. Unfortunately, this is
not a stable point: if there is an unfair player, who reduces her investment against
the rule such that her infection probability rises above the bound, she can cause the
other players to invest more than what was planned.

The latter result suggests a strategy for steering autonomous systems (ASs) to invest
an amount in security that is proportional to the amount of interactions they have
with other ASs [Omic et al. 2009]. Security can be enforced by requiring their infections
probabilities to be under a certain fixed bound. Together with the fact that the cheapest
threshold, in terms of total security investment, is reached when the players invest
proportionally to their own degrees, this is a very fair way to provide overall security.

If negative externalities dominate, such as in the weakest target model of
[Grossklags et al. 2008], the social planner has to either create a “honeypot player”
or, if that is not an option, to select an individual to act as a target. Unfortunately, if
insurance is not available or too expensive, the selected player essentially sacrifices
herself. The willingness of individuals to serve as “sacrificial lambs” has been studied
by anthropology and economics [Grossklags et al. 2008].

Regulations are only useful if they can be enforced. In order to do that, one has to
first reliably measure the security level of players and their investments. In practice,
security audits and third-party inspections, which are discussed in the following sub-
section, are commonly used for this.

One way for the public sector to enforce regulations is to turn to the private sector
for assistance [Kunreuther and Heal 2003]: third-party inspections coupled with in-
surance protection can encourage players to reduce their risks from incidents. Such a
management-based regulatory strategy forces the players to do their own planning as
to how they meet the regulations, instead of regulatory decision-making.
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7.2.6. Audits and Third-Party Inspections. Regulations prescribe rules for the players, but
additional mechanisms are needed to enforce these rules18. Audits and third-party
inspections are required to check the compliance of the players to the regulation. Se-
curity audits can generate positive utility through two channels [Böhme 2012]:

— First, they can help overcoming information asymmetries described in Section 2.2.
Security products constitute a lemon market, which results in the price for goods of
unknown quality dropping to the price of insecure goods. Audits can be used to signal
the quality of security and, thus, establish a market for secure products.

— Second, they can solve coordination problems. Audits can be used as credible sig-
nals, which the players can use to announce information about their investment and
security levels. This allows new, socially better equilibria that would not be stable
otherwise.

Of these two channels, the first one affects the relationship between a player and an
external entity; hence, it is not directly connected to interdependent security games.
The second one, on the other hand, can be used to improve the interdependent players’
security decisions through coordination.

In [Böhme 2012], the author studies the question under which conditions do secu-
rity audits generate positive utility by solving the coordination problems, which would
otherwise hinder the reduction of interdependent risks. Based on the degree of inter-
dependence and the security productivity19, the following equilibrium situations are
identified:

— If the degree of interdependence is low, players always have incentives to invest at
or above a certain level. Therefore, audits below this level are ineffective. Thorough
audits, however, can improve social welfare. Since this involves coordination at non-
equilibrium points, such audits have to be bilateral.

— If the degree of interdependence and the level of security productivity are both high,
there exists three Nash equilibria. In one of them, all players abstain from invest-
ment. In this case, security audits can be maximally effective in solving the coordina-
tion problem between multiple equilibria. Unilateral audits above a certain level are
enough to move all players to the best possible equilibrium. However, even the best
possible equilibrium is below the social optimum. To further approach the optimum,
more through, bilateral audits are needed.

— If the degree of interdependence is high, but the level of security productivity is low,
there exists exactly one Nash equilibrium, in which all players abstain from invest-
ment. This case is not a coordination game in the strict sense; therefore, the effec-
tiveness of all audits is limited. Audits may contribute to higher security level if all
players perform bilateral audits. Unilateral audits are less effective in general and
completely ineffective for a certain range of the parameters.

— If the degree of interdependence is very high and the level of security productivity
is very low, there exists exactly one Nash equilibrium, in which all players abstain
from investment, which concurs with the corner solution of the social optimum. In
this case all audits are useless. Mandatory audits with sanctions would induce over-
investment and decrease social welfare.

— If the degree of interdependence is zero (i.e., there is no interdependence at all), there
exists exactly one Nash equilibrium which concurs with the social optimum.

18Another way to improve security is to establish industry good practices, but they typically remain recom-
mendations only with no enforcement power.
19For the definitions of these parameters, see Section 4.3.
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One of the main implications of the analysis is that effectiveness is very sensitive to
the situation as unfitting audits are often useless. As a solution, audits should best
be designed in a modular manner to allow tailored examinations. However, the first
situation can serve as a rule of thumb, since it covers more than half of the parameter
space: audits at very low security levels are often ineffective; therefore, they should be
focused on the possibility to extract verifiable information about high security levels.
Finally, mandatory audits seem unnecessary in situations where the players have their
own incentives to conduct audits.

7.2.7. Coordination and Cooperation. In the absence of a social planner, the players can
choose to cooperate for the common goal of reducing social cost and coordinate the
game themselves.

In [Kunreuther and Heal 2003], two non-centralized coordinating mechanisms are
discussed, both in the context of airline security. First, an association of players could
play a coordinating role by requiring every member to follow certain rules and regula-
tions, including the adoption of security measures. The association could then refuse
to do business with players who are not members and/or not follow the rules. Second,
players who have invested in security could announce publicly that they will not do
business with players who have not done so. This tactic may encourage irresponsible
players to invest in security.

In [Saad et al. 2010], coalitional game theory is used study the cooperation between
players whose security is interdependent. The players can form cooperative groups,
i.e., coalitions, which allow them to

— improve the positive effects of their security investments and
— reduce the negative effects of their threats on the other players of the same coalition.

The formation of coalitions also entails costs for the players. First, there are usually
natural frictions between the players due to differences that need to be overcome,
which can be modeled by a friction matrix, where each element is the degree of friction
between a pair of players. Second, coordinating the coalition requires effort from the
participating players, which can be modeled by a cost that is proportional to the size
of the coalition. The model is used to establish the necessary and sufficient conditions
under which it is beneficial for two coalitions to merge into one. These results are ap-
plied in the study of an example network, which models the cooperation between the
different divisions of a large company that offer video-on-demand services.

7.2.8. Sharing of Security Information. In [Gordon et al. 2003], security-based informa-
tion sharing organizations (SB/ISOs) are studied in a general two-player model. In
this model, if player i shares security information with the other player, a portion
(denoted by θi ∈ [0, 1]) of her security investment benefits the other player without di-
minishing the benefit of the providing player. It is shown that information sharing al-
ways decreases the social cost through increased positive externalities. Consequently,
if there are no enforcement costs associated with a sharing policy, the mandated de-
gree of sharing should always be increased. It is also shown that without mandatory
sharing, players have no incentives to share security-based information: if the players
are free to select their sharing portions, the only equilibrium is when the portions of
both players are zero. This discrepancy between the socially and individually optimal
strategies (i.e., between sharing and not sharing) implies that there is a greater need
for cooperation when information sharing is possible.

In [Ogut et al. 2005], two models of information sharing are analyzed. First, informa-
tion sharing reduces direct attack probability, but not the degree of interdependence.
Second, information sharing reduces the degree of interdependence, but not direct at-
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tack probability. In the second case, a central agency informs firms on how to protect
themselves from indirect attacks.

8. SUMMARY AND FUTURE DIRECTIONS
In this paper, we survey the state-of-the-art of interdependent security games. We also
distill the most important core modeling decisions and provide an overview of exten-
sions found in the literature. The game-theoretic models in this survey identify a few
key problems in information security investments and the authors propose potential
remedies to mitigate these problems. Yet, we believe that several open problems re-
main that need more attention from the research community. We now present a few of
these open problems in the hope of bootstrapping new exciting research in the area.

8.1. Security Investments
In interdependent security games, the security investment of the players is modeled
either as a discrete or a continuous variable. To keep the models tractable, the discrete
security investment is usually defined as a binary decision between full protection or
no protection at all. Similarly, continuous investments are easy to use in modeling.
This simplifications do not capture the real nature of security modeling, where invest-
ment typically happens in discrete steps (such as buying a set of security products or
conducting X number of system tests). Multidimensional security investments are not
thoroughly considered in the literature. A player can invest in different types of secu-
rity mitigating options, for example allocate some budget on user education and/or se-
curity technology improvements and/or cyber-insurance. The modeling of this diversity
of security options is a potential improvement to many of the existing game-theoretic
models.

8.2. Strategic Adversaries
Most papers in the interdependent security literature consider the attackers as an ex-
ogenous, persistent threat and not as players in a game. Note that the interdependent
security models are fundamentally different from research modeling the attackers–
defenders interaction as a two-player game.20 Nonetheless, the attacker have their
strategic incentives and they are working towards maximizing their, mostly unknown,
utilities. Moreover, there is evidence that the attacks experienced by the defenders
are the result of the cooperation of various participants in the underground economy
[Levchenko et al. 2011]. We believe that the proper modeling of strategic adversaries in
interdependent security games is a largely undiscovered research area. It was partially
untouched, because the utilities of attackers are difficult to judge and quantify. With an
increasing number of papers including measurements about the activity underground
black markets [Holz et al. 2009], the opportunity opens to develop appropriate game
models.

8.3. Negative Externalities
In this survey, we have seen that the security investment decisions of players create
both positive and negative externalities. Most of the interdependence models focus on
positive externalities as they typically rely on relationship information that is easy
to model, maybe even known to the players. On the contrary, negative externalities
typically arise when attackers substitute a target for another one upon discovering
the adequate protection of their original target. The selection involves the rational (or

20Most papers that do model strategic adversaries consider them in an attacker-defender two-player game.
One of the few exceptions including interdependency of the defenders is [Hausken 2006] covered in Sec-
tion 5.3.
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not so rational) decision-making process of the attacker that is notoriously difficult to
model. In [Herley 2010], the author point out that there is a scalability issue when
modeling attackers, and indeed attackers cannot just target the total population of
potential victims. The author argues that finding the right target (i.e., correctly as-
sessing the security posture of the targets) is a key task the attackers need to do and
is a modeling aspect most existing models neglect.

8.4. Topology and Network Modeling
Most interdependent security models abstract away the real topology of computer
networks to be able to formulate closed-form equilibrium and efficiency results. Yet,
network topology plays an important role as it is the true basis for security interde-
pendence. Epidemic models come closest to considering the network topology when
they model the explicit spreading behavior of a virus and other malware in a network.
Nonetheless, epidemic models carry their legacy from biology and thus their assump-
tions are often inappropriate in computer networks. For example, recovery and resis-
tance in epidemic models do not correspond to the recovery and forensics of computer
networks. To date, there is a lack of reliable, extensive and diverse data sources that
would enable researchers to verify the predictions of their models in a real-world envi-
ronment. Very recently, there has been some effort in industry to collect and share ex-
tensive security data on a large-scale and make it available to researchers [Dumitras
and Shou 2011]. Such datasets will lead to a new avenue of research that hopefully
results in more applicable, realistic models and enable the establishment of various
security metrics that can be used in risk modeling.

Understanding the impact of network topologies is not the last step. Network topolo-
gies emerge from the strategic interaction of players in a global interaction game. One
can argue that topology formation is not driven by security concerns, but by other
utility components. Yet, we believe that security should be considered when making
decisions about whom to connect with, as the resulting topology can have an impact
on the emerging security risks. To the best of our knowledge, strategic and secure net-
work formation has not been addressed in the research literature of interdependent
security games. We argue that this fundamental emerging property, which not only
affects the risks of individual players (individual point of view) but also defines net-
work robustness (social point of view), should be studied in more detail. Understand-
ing the characteristics of strategic network formation should ideally lead to efficient
and secure network topologies, otherwise more attention needs to be paid to incentive
mechanisms to drive the players towards robust and secure networks.

8.5. Reducing Uncertainty and Information Sharing
One of the key factors to hamper proper security investments is the inability of players
to assess their environment, the risks they face and the cost of the potential options
to mitigate these risks. We touch upon a few papers in this survey that address un-
certainty in security investment decision-making. We believe that the lack of trans-
parency in security is a significant problem that reinforces the attackers’ advantages.
The uncertainties surrounding risks and the benefit from implementing security-
improving remedies can be greatly reduced by establishing extensive, industry-wide
datasets for specific domains of security research. The availability of real-world dataset
should allow researchers and practitioners to establish widely-accepted risk metrics
and security benchmarks. In addition, uncertainty can be greatly reduced across play-
ers using information sharing. In practice, industry has established common standard
for security information sharing, for example by means of IP blacklists [Sinha et al.
2008]. The authors of [Gordon et al. 2003] show that information sharing reduces the
need for security investment for firms while increasing the social welfare (that is they
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are protected with less investments). Yet, the same authors also prove that informa-
tion sharing is not in the best interest of rational players and if they are to select the
amount of information shared, they will select none. Thus external enforcement mech-
anisms are needed to improve social welfare. Indeed, in practice, information sharing
remains a key ingredient of agile, reactive defense solutions, but there is a lot of room
for improvement, for example in forensics [Bencsáth et al. 2012] and coordinated ac-
tion against the attackers’ infrastructure in phishing [Moore and Clayton 2008].

8.6. Dynamic and Repeated Games
Establishing and maintaining information security is not a static process. Nonetheless,
most of the research papers consider single stage (that is one-shot) games. We mention
in Section 7.1.1 that repeated games allow players to establish more efficient equilib-
ria. The number of equilibria typically increases in repeated games, but the multitude
of equilibria emphasizes the question of equilibrium selection. Equilibrium selection
comes with the price of increasing coordination and communication overhead between
the players. In an extreme case, the cost of coordination can completely cancel out the
benefits of repeated interactions. Thus, the players have to weigh carefully if and how
much they are willing to coordinate in order to achieve a better equilibrium in interde-
pendent security games. Since security is inherently a cat-and-mouse game between
attackers and defenders, dynamic games seem to be a logical next step as modeling
tools. We encourage more research contributions modeling information security using
both dynamic repeated and evolutionary games.
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