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Abstract

IoT systems are subject to cyber attacks, including infecting embedded
IoT devices with rootkits. Rootkits are malicious software that typically run
with elevated privileges, which makes their detection challenging. In this pa-
per, we address this challenge: we propose a rootkit detection approach for
embedded IoT devices that takes advantage of a trusted execution environ-
ment (TEE), which is often supported on popular IoT platforms, such as ARM
based embedded boards. The TEE provides an isolated environment for our
rootkit detection algorithms, and prevents the rootkit from interfering with
their execution even if the rootkit has root privileges on the untrusted part of
the IoT device. Our rootkit detection algorithms identify modifications made
by the rootkit to the code of the operating system kernel, to system pro-
grams, and to data influencing the control flow (e.g., hooking system calls),
as well as inconsistencies created by the rootkit in certain kernel data struc-
tures (e.g., those responsible to handle process related information). We also
propose algorithms to detect rootkit components in the persistent storage of
the device. Besides describing our approach and algorithms in details, we also
report on a prototype implementation and on the evaluation of our design and
implementation, which is based on testing our prototype with rootkits that
we developed for this purpose.
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1 Introduction

The Internet has grown beyond a network of laptops, PCs, and large servers: it
also connects millions of small embedded devices. This new trend is called the
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Internet of Things, or IoT in short, and it enables many new and exciting appli-
cations such as smart homes, intelligent transportation systems, smart factories,
and personalized healthcare. At the same time, IoT also comes with a number of
risks related to information security. The lack of security, however, cannot be tol-
erated in certain applications of IoT, including those in the domains of healthcare,
transportation, and industrial automation. In such applications, security failures
may lead to substantial monetary loss, physical damage of expensive equipment,
or even loss of human life. Therefore, one of the biggest challenges today, which
hinders the application of IoT technologies in many cases, is the lack of security
guarantees.

Unfortunately, IoT systems are notoriously insecure. One of the reasons is
that they are built from cheap embedded devices that are easy to compromise
by exploiting weaknesses in the way they are operated and vulnerabilities of the
software components running on them. A consequence of this is that malware for
IoT devices has appeared [1, 16] and gaining momentum [25]. Malware designed
for IoT devices is similar to malware designed for other types of computers: it
compromises the integrity of the device by installing unwanted, and potentially
harmful, software components on it. These software components can then be used
to cause other types of compromise such as allowing the attacker to access the
device remotely by installing a backdoor, tampering with messages sent by the
device to other devices, or making data stored on the device unavailable by deleting
or encrypting them.

Sophisticated malware tries to maintain its presence on infected devices while
remaining invisible for the operators of those devices. This sort of malware is called
rootkit [5]. Typically, rootkits run with elevated (root) privileges and they modify
system commands and/or code and various data structures in the operating system
(OS) kernel such that their files and running processes do not appear in the output
of various system tools used to monitor the operation of the devices. Detecting
such a rootkit is challenging, mainly because any detection program running at the
same or lower privilege levels than the rootkit may also be compromised or may be
misled by the tricks used by the rootkit to hide itself.

In this work, we aim at rootkit detection on embedded IoT devices, and we ad-
dress the above challenge by running our rootkit detection mechanisms in a Trusted
Execution Environment (TEE), which is isolated from the main OS of the device,
and hence the rootkit – even running with root privileges on the main OS – can-
not interfere with its operation. Such a TEE is supported on many embedded
platforms, including the popular ARM platform that supports the establishment
of TEEs by its TrustZone1 technology. A TustZone enabled ARM processor can
execute in two modes: in untrusted mode (called Normal World), it runs a com-
mon OS (e.g., Linux) and applications on top of it (often referred to as the Rich
Execution Environment, or REE for short), whereas in trusted mode (called Secure
World), it runs the trusted OS and the trusted applications of the TEE. Isolation

1https://developer.arm.com/ip-products/security-ip/trustzone, Last visited: Sep 20,
2020
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between these two modes are ensured by hardware based protection mechanisms.
As a result, software components running in the Normal World cannot access some
of the resources (including a part of the system memory) of the device, whereas
trusted software components of the TEE running in the Secure World have unlim-
ited access to all resources. Thus, the TEE provides two advantages for rootkit
detection: it can protect the integrity of some trusted rootkit detection code by
keeping it inaccessible for potentially malicious software running in the REE, and
it can provide a safe execution environment for that rootkit detection code where
it can access and inspect all system resources.

However, as the same processor is shared between the trusted and the untrusted
mode, the execution of untrusted software is suspended when the processor switches
to trusted mode and starts executing trusted software. This means that our trusted
rootkit detection code cannot observe the behavior of untrusted software compo-
nents during their execution, but it can only inspect their memory images reflecting
their state at the time of their suspension. In other words, our rootkit detection
approach is based on analyzing memory snapshots of the untrusted system (OS and
applications), and it consists of identifying the anomalies caused by the rootkit in
the state of the kernel data structures representing processes, as well as computing
the hash values of the memory images of running processes and comparing them
to known good hash values stored safely in the TEE. In addition, as the rootkit
may delete all its components from the memory before our rootkit detection code
is invoked and save itself to persistent storage for later execution, we also scan and
hash files stored on the flash disk of the device from within the TEE, and compare
the computed hash values to known good hashes stored safely in the TEE.

The rest of the paper is organized as follows: In Section 2, we introduce the main
features of rootkits and explain why they are difficult to detect. In Section 3, we
give an overview of our rootkit detection approach, which is based on checking the
system memory and the persistent storage from the TEE. These two components
of our approach are described in more details in Sections 4 and 5, respectively. We
implemented our approach using OP-TEE2, an open source TEE implementation,
and Section 6 contains the details on this implementation effort. In Section 7, we
report on the evaluation of our rootkit detection mechanisms, which we performed
with custom rootkits that we developed for this specific purpose. Finally, we discuss
some limitations of the proposed rootkit detection approach and possible future
extensions in Section 8, and conclude the paper in Section 9.

2 Rootkits

The term rootkit [21] refers to malware or modules of pieces of malware whose
primary goal is to maintain stealth on infected devices while allowing continued
access to its resources. Remaining hidden is in the best interests of the attackers: if
the operators detect the infection, they will try to eliminate the responsible pieces

2https://www.op-tee.org, Last visited: Sep 20, 2020
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of malware by reinstalling the system, and they will also try to patch the exploited
vulnerability rendering the system unavailable for the attackers.

Rootkits employ a wide variety of techniques to remain hidden on infected
devices [7, 21, 22]. User-mode techniques target the user space of devices and
include techniques such as the manipulation of log files, modification of disk-resident
system files (e.g., ls, top) or hooking libraries used by executables. One well-known
user space hooking technique is the abuse of the LD PRELOAD environment variable
to load malicious libraries before benign ones, therefore overriding their provided
functionalities. This technique is used by rootkits such as Azazel3, Jynx2 [8],
BEURK4, vlany5 and bedevil6. Other rootkits, such as HORSEPILL [19], abuse
valid kernel features offered to user space programs to maintain stealth presence
on the device.

Kernel-mode techniques, on the other hand, target the internal data structures
and functionalities in the operating system’s kernel. In the past, modifying the
kernel memory image was a widely used technique to remain hidden on Linux
systems. However, recent Linux kernel versions restrict access to /dev/mem and
/dev/kmem7, mitigating this attack. Other techniques in this category are kernel-
space hooking [28] and direct kernel object manipulation. The former includes the
use of malicious device drivers and the modification of the system call and interrupt
descriptor table. Direct kernel object manipulation tampers with the integrity of
the kernel by targeting dynamic kernel data structures. This technique can be used,
for example, to hide processes from the system administrator. There exist a number
of rootkits employing these techniques, including Adore-NG8, LilyOfTheValley9,
the work presented in [14], OSOM [11], SucKIT [9] and Suterusu10.

Many proof-of-concept rootkits compromise the virtualization layer, the BIOS
and/or the firmware of hardware components [10, 15, 17, 18]. Such rootkits are
called OS-independent rootkits and their advantages are manifold. Rootkits in the
lowest-level components can survive reboots and re-installations, and they leave no
traces on the disk. Their detection is particularly challenging because they do not
make visible changes to the operating system.

In response to the rising threat of rootkits, a number of detection methods
have been proposed [24]. Signature-based methods scan the files on the disk for
byte sequences and use a signature database to detect known rootkits. Tools that
implement this method include chkrootkit11 and Rootkit Hunter12. The main lim-

3https://github.com/chokepoint/azazel, Last visited: Sep 16, 2020
4https://github.com/unix-thrust/beurk, Last visited: Sep 16, 2020
5https://github.com/mempodippy/vlany, Last visited: Sep 16, 2020
6https://github.com/wiperpaul/bdvl, Last visited: Sep 16, 2020
7https://lore.kernel.org/lkml/18778.1508769258@warthog.procyon.org.uk/, Last visited:

Sep 16, 2020
8https://github.com/yaoyumeng/adore-ng, Last visited: Sep 16, 2020
9https://github.com/En14c/LilyOfTheValley, Last visited: Sep 16, 2020

10https://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-

on-x86-and-arm/, Last visited: Sep 16, 2020
11http://www.chkrootkit.org/, Last visited: Sep 17, 2020
12http://rkhunter.sourceforge.net/, Last visited: Sep 17, 2020
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itation of signature-based methods is similar to those of signature-based intrusion
detection systems and virus scanners, namely, that they cannot detect very recent
or sufficiently modified old rootkits.

Behavior-based detection methods detect deviations from “normal” patterns of
system behavior [12], e.g. timing discrepancies and irregularities in resources such
as the Translation Lookaside Buffer (TLB). Such methods, however, require a priori
measurements of the analyzed system in a controlled environment. Differences
between the real and the controlled environment can decrease the accuracy of such
approaches. The baseline measurements must also be stored securely on the device,
otherwise, malware can influence the detection method.

Cross-view-based methods assume that there is no perfect rootkit which can
perfectly emulate all aspects of the system. In order to detect compromises, they
enumerate system parameters in at least two different ways and compare the results.
However, the kernel consists of many dynamically changing structures: a change
in an enumerated structure during cross-checking can lead to false alarms. To
overcome this challenge, Carbonite13 preempts scheduling, thereby prohibiting new
processes to spawn. However, such an approach has an impact on performance.

Integrity-based detection methods compare a snapshot with a trusted baseline.
In the case of files, the trusted baseline can be the hash value of a file computed
in a controlled environment, which can be checked with tools such as Samhain14.
Kernel data structures can also be monitored for malicious changes, e.g. system
call re-maps can be detected using StMichael15, running processes can be listed
with KSTAT16, and Gibraltar [3] uses a set of automatically derived data structure
invariants for monitoring purposes. The main challenge of integrity-based detection
is the secure storage of the baseline: if the kernel is assumed to be compromised,
then no file or memory on the system is adequate for storage. Rootkits in the
kernel can modify the return value of system calls necessary for reading files and
may compromise the Virtual Memory Management unit of the operating system to
access and/or tamper with data stored in memory.

Reliable detection of rootkits requires that the detector runs with higher priv-
ileges than the rootkit itself; as a result, detectors are placed in ever lower levels
in the devices’ architecture or even into a separate hardware. Paladin [2] is an
example of the former approach. It defines protected zones for memory and files,
and performs integrity checks from the hypervisor. Copilot [20], on the other hand,
is an example of the latter: it is a coprocessor-based kernel integrity monitor imple-
mented as a PCI card which connects the monitored system to the remote detector.

Our proposed method incorporates ideas from cross-view-based and integrity-
based detection methods, including integrity checks on files similarly to other file
integrity checkers [27], and anomaly detection in kernel data structures similarly to
Strider GhostBuster [26]. We provide a more in-depth discussion of our detection
methods in Section 3. Unlike other approaches, however, our proposed method

13https://securiteam.com/tools/5jp0m1f40e/, Last visited: Sep 21, 2020
14https://www.la-samhna.de/samhain/, Last visited: Sep 17, 2020
15https://sourceforge.net/projects/stjude/, Last visited: Sep 21, 2020
16http://www.s0ftpj.org/docs/lkm.htm, Last visited: Sep 17, 2020
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does not need additional hardware: we leverage a TEE to prevent the rootkit from
interfering with our rootkit detection process. We also use the TEE to safely store
baseline values (e.g., file hashes and hash values of memory images).

3 Overview of our approach

As mentioned previously, the basic idea of our rootkit detection approach is to
leverage the TEE (Trusted Execution Environment) for running functions aiming
at detecting integrity violations and inconsistencies in the state of the untrusted
system components of the REE (Rich Execution Environment) that may have been
caused by a rootkit. The primary targets for checking integrity and consistency are
the kernel code and the kernel data structures (in particular, data structures rep-
resenting processes, as well as data structures holding function pointers) of the
untrusted OS, as rootkits typically modify those to achieve their goals. The kernel
code and data structures can be accessed from the TEE by reading the memory
snapshot of the REE that is left behind when execution is transferred to our rootkit
detection function in the TEE. In addition, besides checking code and data struc-
tures in the memory, we must be prepared for malware that tries to remove its
traces from memory before the invocation of our rootkit detection function. Be-
cause it cannot remain in memory, it may try to hide itself in persistent storage
in such a way that it can execute again later when the memory has been checked.
Hence, our rootkit detection approach also includes checking the persistent storage
for signs of malware.

To achieve our goals, we deploy two software components: a Trusted Application
(TA) running in the TEE and a client application (CA) running as a user space
process on top of the untrusted OS in the REE. Our CA should be started when
the system is booted and then it should run continuously. The main role of the
CA is to invoke the TA periodically and to pass certain data to the TA collected
from the REE (e.g., the list of running processes as seen by the ps program when
executed on the untrusted OS). The TA performs rootkit detection by executing
different integrity and consistency verification functions as described below. In
order to ensure that the TA is indeed invoked periodically, a watchdog timer can
be started during the boot process that can only be reset by the TA; therefore, if
the TA is not invoked, the timer expires and the device reboots itself. When the
TA finishes its execution, control is returned to the CA, which runs concurrently
with other applications and services in the REE.

In the sequel, we assume that the OS running in the REE is Linux. Some of our
rootkit detection functions described below are specific to Linux, because rootkits
often operate at low level in the system architecture and exploit specific features or
mechanisms of the OS kernel. Yet, the principles even behind these Linux specific
functions are sufficiently general to be applied for other operating systems as well.
Moreover, some of the detection functions we present are agnostic to the OS used.

When invoked, our rootkit detection TA performs the following verification
steps aiming at detecting inconsistencies in the data held by certain kernel data
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structures or modifications of kernel code:

• Looking for hooks in the Virtual File System (VFS): Rootkits of-
ten target the so called operation structures of the VFS and replace (hook)
function pointers there such that file operations are handled by attacker code
instead of legitimate kernel code. For instance, the rootkit may hook the
lookup function in the operation structure of the inode of the /proc direc-
tory, and ensure that certain process IDs are removed from its output, and
hence, become invisible to certain system utilities. Thus, in each operation
structure of the VFS, we check if function pointers point inside the address
space where the kernel code segment is located. Any function pointer point-
ing outside that address space is considered to be hooked. More details on
detecting hooks of the VFS file operations are provided in Subsection 4.1.

• Detecting hidden tasks: Another way of hiding certain processes is to ma-
nipulate kernel data structures (a.k.a. Direct Kernel Object Manipulation or
DKOM for short) representing them. At the kernel level, processes (threads)
are represented by tasks, and there are different data structures, such as the
task list, the task tree, and so called PID namespaces that hold information
about existing tasks. In addition, tasks also appear in queues used by the
kernel for scheduling them. Rootkits rarely modify these data structures in a
consistent manner. For instance, in order to hide itself, a rootkit may remove
its task structure from the process list or process tree, while it must keep
itself in the run queue to be scheduled and have the chance to be executed
on the CPU. Therefore, we check all those data structures that hold infor-
mation about existing tasks and we compare the list of tasks obtained from
them to each other and to the process list received from the CA running in
the REE. Any inconsistency among these lists is interpreted as an integrity
violation of the system. More details on detecting hidden tasks are provided
in Subsection 4.2.

• Integrity checks: Besides manipulating task related kernel data structures,
rootkits can also modify other important data structures in the kernel, as well
as the code of running processes. For instance, a common rootkit technique,
called system call table hooking, is to replace function pointers in the system
call table such that when certain system calls are invoked, attacker code is
executed before control is given to the legitimate function that handles those
system calls. Another technique, called inline hooking, has similar effects,
but in this case, the system call handling functions themselves are modified
by inserting a jump instruction at the beginning of the function that points
to some attacker code. Similarly, the code of any processes in the memory
may be modified by the rootkit including the kernel code segment, system
programs, and user space applications. For this reason, we perform integrity
verification of the system call table, the kernel code segment (which includes
the functions that handle system calls), system programs currently execut-
ing, and the code segment of our CA running in the untrusted execution
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environment. This integrity verification is based on accessing these pieces
of data structures and code in the REE memory from our TA, computing
the hash values of their memory image, and comparing the computed values
to known reference values stored securely within the TEE. These reference
values are computed and saved in secure storage provided by the TEE after
system installation when the system runs for the first time. More details on
the integrity checks we perform are provided in Subsection 4.3.

• Looking for persistent rootkit components: Finally, as rootkits may
remove their components from memory before our TA is invoked and our
consistency and integrity verification is executed, and hide themselves on
persistent storage, we must also look for these persistent components. For
this, our TA accesses the persistent storage of the device, recursively hashes
all files in a pre-selected set of folders, and then compares the computed
hash values to known reference values stored securely in the TEE. These
reference values are computed and saved in secure storage provided by the
TEE after system installation when the system runs for the first time. The
folders are pre-selected in such a way that they contain all the binaries and
scripts that could legitimately execute on the device. This requires a certain
organization of the files in the file system, notably to separate files (including
programs) that should not change from those that has variable content (e.g.,
files used mainly for data storage). However, this is not a serious limitation
of our approach, because this kind of separation is also useful for many other
reasons related to the maintenance and troubleshooting of the device.

An issue that we have to consider is that while our TA is waiting for I/O
operations (i.e., reading file contents) to complete, control may be given back
to the REE. When this happens, pre-scheduled jobs may be executed by the
job scheduler (e.g., cron). Hence, in theory, a rootkit can hide its persistent
component in a program file A and schedule the execution of A before remov-
ing itself from memory. Then, program A (and hence the rootkit) could be
executed by the job scheduler during the file hashing operation performed by
our TA, and when executing, the rootkit can move itself from program file
A into program file B. If this move operation happens after file B has been
hashed already and before file A being hashed, then the computed hash values
would be good, and we would not detect the rootkit, which can then be re-
installed when file B is executed. As I/O operations are usually slow, our TA
is mostly waiting during the file hashing, which means that control is mainly
at the untrusted execution environment, and hence, chances of the above de-
scribed scenario happening are not negligible. To cope with this issue, our
CA disables all file access operations (including execution of programs) be-
fore invoking our TA and re-enables them only after the TA completes its
job. More details on this are provided in Section 5.

Figure 1 gives a high level overview of our rootkit detection components (i.e.,
the CA and the TA), their interaction, and the operations they perform. As it can
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Figure 1: High level overview of our rootkit detection components, their interac-
tions, and the operations they perform.

be seen, the CA is started at boot time, it continuously runs, and it invokes the
TA at random time intervals. Before invoking the TA, the CA disables execution
type access to files, such that new programs cannot be started during the checks
of the TA. Then the TA performs the above described consistency and integrity
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checks on the kernel data structures and the code segments of the kernel, running
system programs, and our CA. If integrity violations or inconsistencies are found,
then they are reported to the operator of the device via some remote attestation
protocol, but this is out of the scope of this paper. If the verification of the memory
is successful, then the TA proceeds with hashing the files in the pre-selected folders
in the persistent storage, and comparing the computed hash values to the stored
reference values. Again, if an integrity violation is found, then it is reported.
Otherwise, control is returned to the CA, which re-enables file access, and sleeps
until the next round of all these operations.

4 Detection of rootkit components in the kernel
memory

In this section, we discuss the checks we implemented in order to detect the traces of
rootkit infections in the Linux kernel memory. These checks focus on the integrity
of and consistency between kernel objects and target common techniques applied
by rootkit. In the following subsections, we briefly introduce certain kernel objects,
describe attacks against them, and present our methods to determine whether the
system is infected by a rootkits. In Subsection 4.1, we present the Linux kernel’s
Virtual File System (VFS) and our technique to detect rootkit attacks against its
structures. In Subsection 4.2, we discuss direct kernel object manipulation (DKOM)
in details and our techniques to counter this attack. Finally, in Subsection 4.3, we
describe our proposed checks to examine the integrity of the analyzed system.

4.1 Detecting hooks in the Virtual File System

The Virtual File System (VFS) [4] is an API in the Linux kernel which hides the
differences of the various file system drivers. It uses 4 main data structures to
abstract away the details of different file system implementations, shown in Figure
2. The superblock structure represents a mounted partition and stores metadata
about the partition itself, which is usually present in the first block of the underlying
physical device. Superblocks are chained together into a doubly linked circular list,
which is accessible from the data segment of the kernel binary. Each superblock
maintains a circular, doubly linked list of the inodes stored on the disk. An inode
is the physical representation of a file or a directory stored on the device. An inode
can be used by one or more directory entries, or dentries for short. For example,
if we create a new file and a hard link pointing to it, then we will have one inode
and two dentires referencing the inode.

Open files are represented by so-called file structures in the context of a process.
Tampering with these is impractical from the rootkit authors point of view. For
example, to modify the way a process reads a file, the hook must be scheduled
between the open and the first read call, and this must be performed every time
a process opens the file. There are easier and more stable solutions to implement
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Figure 2: Relationship of VFS objects. White objects are checked, gray ones are
ignored by our checks.

this behavior, so we consider files structures out of the scope of our integrity and
consistency checks.

At code level, VFS uses so called operation structures which contain function
pointers. Each function pointer implements a functionality used by the layers above
VFS (e.g. lookup to retrieve the contained dentries in the inode of a directory or
get_inode_usage to find out how many inodes are used on a partition), where the
implementation is provided by the underlying file system drivers. These operation
structures appear in all 4 of the previously mentioned structures.

Rootkits often target the operation structures: by hooking certain function
pointers, they can alter the results returned by these functions. For example, an
attacker can create a Linux kernel module, find the inode corresponding to the
/proc directory, and hook the lookup member of its inode_operations. With
a properly designed replacement, attackers can hide their presence by excluding
certain process IDs whenever process information is retrieved from /proc.

We perform integrity checks on 7 different operation structures. They cover all
the operation structures used by superblocks, inodes, and dentries. For superblocks,
we analyze super_operations, which implement general file system operations
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(e.g., allocating inodes); dquot_operations, which handle quota objects on disk;
quotactl_ops, which manage quotas on the file system; and export_operations,
which are operations for the nfs daemon to communicate with file systems. For
inodes, we analyze inode_operations and file_operations. The former provides
operations to manage the inode, including rename, unlink, etc. The latter one
contains the file operations assigned to a file structure when a process opens a
dentry pointing to this inode. This structure contains function pointers like read,
write, flush and many more. For dentries, we check dentry_operations, which
hold directory entry related operations. For example, delete removes the dentry,
but the inode remains intact, just in case other dentries use the inode as well.

For each operation structure, we examine the function pointers, and consider
one to be hooked if it points outside of the address space where the code segment
of the kernel is located. We perform the check recursively, i.e., we inspect every
inode of a superblock and every dentry of an inode. Unfortunately, inspecting all
superblocks is time consuming, therefore, we only focus on the /proc file system
as hooking its inode operations is a common technique to hide rootkit processes.

4.2 Detecting hidden tasks

Processes and threads are represented by tasks in the Linux kernel. A task is
approximately equivalent to a thread: single-threaded processes consist of a single
task, while multi-threaded ones are made up of several tasks sharing the same
address space. Each task is represented with the so-called task_struct structure.
In Linux 5.1, there are three data structures which contain all of the existing tasks.

Task list: All task objects are linked together into a doubly linked circular list.
In earlier versions of the kernel, this list was used to populate the /proc file
system.

Task tree: Tasks are also organized into a tree via the relation of creation. When
a task creates other tasks, they become its children and they refer to their
creator as their parent. The root of this tree is the so called init_task, the
kernel task which starts the init process (the first process in the user space).

Pid namespace, IDR and the struct pid: Pid stands for process identifier
and IDR is the rewritten version of the old ID allocation API. Linux provides
pid namespaces as an isolation feature. By default, there is only one such
namespace, the initial pid namespace. Each namespace maintains a radix
tree17, containing pointers to pid structures18 (struct pid *). Pid struc-
tures contain lists of pointers for the tasks with an equal ID, thread group
ID, process group leader or session ID. The Pid namespace is responsible for
keeping track of taken pids and for fast access to tasks via their pids19. In
recent kernel versions, this mechanism populates the /proc directory.

17https://lwn.net/Articles/175432/, Last visited: Mar 19, 2021
18https://lwn.net/Articles/195627/, Last visited: Mar 19, 2021
19https://lore.kernel.org/patchwork/patch/834401/, Last visited: Mar 19, 2021
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Direct kernel object manipulation (DKOM) is a rootkit technique which modi-
fies the data structures traversed by the kernel when asked to retrieve information
about tasks. For example, rootkits can use DKOM to hide a process by removing it
from the data structure queried for process information. Many rootkits target the
task list to hide a backdoor on older systems; the same can be achieved on mod-
ern Linux by removing a pid structure from the IDR of the initial pid namespace.
DKOM is rarely applied thoroughly, rootkits usually remove processes only from
the necessary data structures, thus leaving the kernel memory in an inconsistent
state. For example, the Reptile rootkit20 hides the kernel module implementing its
functionality by removing the module from the list used by the kernel to populate
/proc/modules. However, it is still visible under /sys/module. Another example
is the deadlands rootkit21: it is capable of removing a process from the list of tasks
and a hash table (used by older kernel versions for fast access of tasks by their
pids), but the hidden task can still be found in the task tree.

Our analysis attempts to detect these inconsistencies. We assume that a trivial
goal of an attacker is to hide a process from the output of the ps utility. First, in
the REE, we execute ps and pass its output to our TA running in the TEE in order
to compare it to pid lists we can extract from the REE kernel memory. The pid of
ps itself must be excluded from this list because it is not running when we perform
our check. Our TA, after checking /proc, iterates through the task list, saves the
pid of every task, and then looks for pids present in the list, but missing from the
output of ps. If no hidden process is found, the TA performs a depth-first search
on the task tree and compares the pid list created in this way with the sample from
ps. If no inconsistency is found, the TA performs the same check for the IDR. If
it does not find any hidden processes, it tries to determine if there is any process
present in any of the mentioned data structures, but missing from any of the others.
This is done by taking the union of the three lists and comparing each list to the
union.

The most important feature of the kernel is the capability to schedule processes.
A task is considered to be runnable, if it is not waiting for anything (usually I/O)
and is not stopped. Runnable tasks ready to be executed are collected in sepa-
rate data structures; these are called run queues. Run queues are per-CPU data
structures, i.e., each CPU has its own run queue, and every run queue wraps sub-
runqueues implementing the data structures used by the scheduling algorithms.
We assume that removing a task from a run queue would make it unschedulable
permanently, which is why we include run queues in our consistency check. Our
TA collects the pids of all of the tasks found in the data structures of the schedulers
and then compares them to the union of pids created earlier. If it finds a task in
a run queue which is not present in the union, then the kernel is considered to be
compromised.

20https://github.com/f0rb1dd3n/Reptile, Last visited: Sep 18, 2020
21https://github.com/majdi/deadlands, Last visited: Sep 18, 2020
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4.3 Integrity checks

So far, we focused on revealing hidden processes by verifying the integrity of VFS
components and by performing consistency checks on task-related data structures.
In this subsection, we leave the concept of hidden processes and instead target
common rootkit techniques; some of the checks presented here ensure the integrity
of the system itself, while others defend our solution from a possible attacker.

First, we must ensure that our CA can be trusted. To this end, the CA is
compiled as a static executable (i.e., its binary contains the code for all the used
library functions as well). This allows us to protect it against LD PRELOAD
hooks, a common rootkit technique applied in the user space. The CA passes its
own pid as a parameter to our TA, such that the TA can look for the corresponding
task in the kernel memory. Each task has a pointer to a memory map structure,
which stores information about the task’s memory mappings. From this structure,
we can determine the start and the end of the task’s code segment, and we can
use it to translate the virtual addresses of the process to physical addresses. Via
physical addresses, we can access the contents of the memory pages storing the
code of the task, and we can compute its hash to check whether the code of the
CA has changed. The address translation depends on the system’s configuration;
in our case, the kernel uses 4 Kb pages and 4 layers of translation tables22.

Next, we check the system call table. System calls are the interface between
user space and kernel space. Whenever a user space process needs to perform an
operation that is the kernel’s responsibility, it invokes the appropriate system call.
The system call table is an array of function pointers indexed by the system call
number. On the ARM64 architecture, the system call table resides in the .rodata

section of the kernel binary, which is marked read-only at boot time. If an attacker
can remove the write protection, it is possible to overwrite pointers in the array and
alter the kernel’s control flow to execute a different implementation of the system
call. This is the most popular target of kernel space rootkits. [6]

We were able to remove the write protection using the update_mapping_prot

function23, changing the last parameter from PAGE_KERNEL_RO to PAGE_KERNEL.
Re-enabling the write protection can be done with the same function.

If kernel space randomization is disabled, we are able to retrieve the location of
the system call table after the kernel is compiled. With this information and the
number of entries in the table, we can easily determine the memory area to check.
We do this by creating a hash and comparing it against the one computed on the
intact system call table.

Another common technique is inline hooking. In this case, the attacker chooses
a function to hook and replaces its first few bytes with an unconditional jump
instruction and a pointer to the implementation he wishes to execute instead of the
original one. The previously mentioned write protection is applied to the kernel’s
text segment as well, but similarly to the system call table, it can be removed by

22https://www.kernel.org/doc/html/latest/arm64/memory.html, Last visited: Mar 19, 2021
23https://elixir.bootlin.com/linux/v5.1/source/arch/arm64/mm/mmu.c\#L525, Last vis-

ited Sep 18, 2020
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calling update_mapping_prot on the text segment24. We detect inline hooking, by
hashing the kernel’s entire text segment and comparing the hash value to a reference
value. The location and size of the kernel’s text segment is determined after the
kernel is compiled. Note that this solution does not support self modifying kernel
code and kernel address space layout randomization. The very same approach is
used to verify the integrity of the text segment of the system processes and our CA
running in the REE.

The Linux kernel provides APIs for monitoring file system operations (e.g., fan-
otify and inotify, which both use the same underlying kernel mechanism, fsnotify).
We use fanotify in our CA to ensure that no executable is started while our TA
performs our checks. We do this by placing marks at every mount point to make
sure the kernel does not allow execution of any files until the CA approves it. While
our checks are performed, the CA denies all execution requests. When the checks
are completed, the marks are removed and every execution request is approved.

Since we use another kernel functionality and we assume that the kernel is
compromised, our TA needs to check if the fanotify marks placed by our CA are
intact. Therefore, the CA passes the file descriptor returned by fanotify and the
pid of the CA to the TA. The TA then locates the fsnotify group among the open
files using the received pid and the file descriptor. This group stores a list to the
marks placed. Using the list of marks, the TA checks if all file system partitions
accessible from user-space are indeed marked; if this is not the case, then an attack
is detected. In order to ensure that the TA is aware of all available partitions, the
CA discovers the partitions and saves their in-memory locations to the TA during
the init process, right after secure boot, when the system is unlikely to be already
compromised. In addition, we extend the VFS checks described in Subsection 4.1
such that the TA also checks if there exist partitions not saved previously. This
is needed, because without checking this, the rootkit could create a new partition,
which would not be among the saved ones, and hence, the TA would not check
if there is a mark on it. By checking that all existing partitions have been saved
before, we detect this potential attack too.

5 Detection of persistent rootkit components

Rootkits may try to evade our detection mechanisms discussed in Section 4 by
ceasing all malicious activities, restoring kernel objects to their clean states and
hiding on the file system using persistence mechanisms. Interested readers may
find an in-depth discussion of the topic in [23], we only discuss a few techniques
here. The most basic way of achieving persistence is using functions provided by the
host OS for task automation and scheduling. On Linux distributions, this includes
initialization scripts that execute commands automatically upon system boot or
launching the shell, and task schedulers, e.g. cron, anacron and at.

24https://elixir.bootlin.com/linux/v5.1/source/arch/arm64/mm/mmu.c\#L445, Last vis-
ited: Mar 19, 2021
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Existing software binaries can be easily modified or replaced on the disk by
malware, resulting in the malware being executed when the infected binaries are
executed. Libraries can be placed and loaded through the dynamic linker, resulting
in the backdoored processes executing malicious code without modifying the pro-
gram binary itself. Kernel modules that load during the boot process are also pos-
sible targets for achieving persistence. These persistence mechanisms leave traces
which can be revealed by scanning the file system. We note that there are other
mechanisms as well, some of which are not detectable from the file system (e.g.,
modified boot drivers and firmware). Their detection requires different protective
measures, like a secure boot implementation.

We detect rootkits trying to evade our memory checks via persistence mecha-
nisms by scanning the file system for integrity violations. We describe the known
uninfected state in Subsection 5.1 and present the scanning process in Subsection
5.3. Our detection method assumes a specific structuring of the file system, detailed
in Subsection 5.2. The baseline state to compare hashes against is stored in the
TEE’s trusted storage, the details are discussed in Subsection 5.4.

5.1 Design decisions and hashed file system entries

Our approach for detecting the persistent parts of rootkits on the file system is to
recursively compute hash values for selected directories. To compile such a list, we
originally experimented with parsing the crontab files of the system. Our goal was
to extract all file references from the scheduled shell commands and use these results
together with scanning a selected set of important directories recursively to reduce
running time. We used a static analysis approach based on the source code of the
bash command parser and cron’s crontab entry parser. It is possible to extract the
scheduled commands from the crontab files, however, one must pay attention to
the specified environment variables and keep track of which user’s permissions and
HOME setting will be applied during execution. We built an abstract syntax tree
for each command in the crontab file, extracted the possible file paths from the
command’s parameters (including the invoked command’s own file), and expanded
all valid paths into absolute paths using the PATH and HOME variables.

However, this approach has serious issues which may result in the target list
being incomplete. For example, if the crontab file includes a program which dy-
namically loads and executes another binary, our static analysis would miss that
binary. What is more, our static analysis would need to be able to handle paths
which are constructed dynamically (e.g., using loops). In order to overcome this
challenge, either a “cron policy” is needed which limits how the users can define
scheduled commands or the analysis should be extended with dynamic tools which
run the commands in a controlled environment and extract the directories and files
accessed during execution.

Another automated approach to constructing the list of file system entries to
hash would be to identify all executable files on the file system. However, we cannot
identify such files using the x permission flag, because file permissions are easy to
change. Recognizing ELF binaries by reading the first few bytes for the magic
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value is doable but the device may contain other types of executable files (e.g.,
script files). Differentiating between script files for different interpreters, such as
Python and bash, and simple text files is challenging without executing them.

As our method is designed for embedded IoT devices, we assume a small local file
system. Thanks to the small file system, we can expect to perform a thorough scan
in a reasonably short amount of time. Therefore, we compiled a general list of file
entries to hash which consists of many of the well-known top-level Linux directories,
like /bin, /lib and /etc. There are directories with highly volatile contents, such
as /tmp, /var and /dev, which we do not include in our scanning process. We do
not rely on the common and default locations and naming schemes of the persistent
components of known rootkits. We also do not rely on any malware signature
databases, only on our own reference hashes. This way, we could potentially detect
previously undiscovered rootkits, and are prepared for ones that randomize the
names and locations of their components.

5.2 Recommended file system structuring

We now discuss a few basic structuring practices regarding the file systems mounted
on the device which serve to greatly reduce the false positive rate of the file system
scans. Our detection of persistent rootkit components on the disk was designed
with the assumption that the device adheres to these practices.

As we use hashing to detect inconsistencies, it is necessary to separate the
mounts containing static, unchanging files like program binaries and linked libraries
from the ones containing dynamic, often-changing ones, such as log files. It is
recommended to add the noexec flag to every mount apart from the root file system,
which should be the one containing all programs and scripts executed during normal
operation.

For files that change during runtime and cannot be moved from the root file
system, we provide the option to be excluded from the hashing process. We rec-
ommend to use this option only for non-executable files for the following reason.
Even if rootkits infect these files to achieve persistence, they must also stop their
execution to evade our checks. Therefore, they need another component to execute
the files in which they hide to re-infect the system. If the file in which rootkits
hide is never executed, the rootkit cannot re-infect the system using this evasion
method.

5.3 The hashing process

The hashing process is performed entirely in the Trusted Execution Environment
(TEE). We take a predefined list of directories and/or file paths to be hashed and
create a hashing context for each entry. In the case of directories, we recursively
read the contents of all files from all subdirectories, and load them into the hashing
context. We produce a single SHA-256 digest for every individual entry in the target
list, as shown in Figure 3. The list of paths to be hashed is shuffled before each
new scan to provide a degree of unpredictability to the hashing order; this serves
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Figure 3: Each entry in the list of targets consists of an absolute path, a flag
to indicate whether to traverse the subdirectories recursively or not, and a list of
files to exclude from the hashing. For each target entry, a single SHA-256 digest is
generated. If the recursive flag is set to false, only the files in the top level directory
are calculated into the hash. If it is set to true, all subdirectories are recursively
parsed until the maximum file path length of Linux, and all files not explicitly
excluded are calculated into the hash.

as a secondary hardening technique against timing window attacks, supplementing
the use of the fanotify API (see end of Subsection 4.3). This does not affect the
digests themselves, since the order in which we read files inside directories remains
unchanged.

The reference hashes to which we compare the computed ones are initialized on
first launch, based on the state of the file system at that moment, and are placed
into the TEE’s trusted storage to protect them from tampering. Ideally, this first
launch should occur before putting the target system into active use, but after the
environment has been configured and all files necessary for operation have been
written to the disk. The stored reference hashes become outdated after a system
update or reconfiguration, and have to be replaced. In this paper, we do not discuss
how this update can be solved, but an automated solution for this problem is part
of our future plans.

The reference hashes are loaded from the trusted storage and compared to
the computed hashes. Targets with mismatching hashes are noted and should be
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examined further by the operators. It is recommended to keep a full reference
hash set based on the initial state of the storage in order to find the exact cause
of the mismatch. Pin-pointing mismatching locations would require keeping a 32-
byte hash on the trusted storage for every entity present on the file system. This
approach, however, requires much storage space, which is a drawback in the case of
IoT devices, as they are often equipped with only a small flash memory for storage.
As a result, a trade-off must be made between the amount of storage available and
the precision with which mismatching locations can be identified.

5.4 Using the TEE’s trusted storage

In this subsection, we briefly discuss a few important features of the TEE’s trusted
storage API that are necessary for protecting the authenticity and integrity of our
reference hashes. It is important to mention that according to the specification of
the trusted storage API [13], a single, designated Trusted Storage Space is provided
for each trusted application. As a result, our stored reference hashes are accessible
only by authorized TAs running on the same device in the same TEE as when the
data was created.

The inner workings of the trusted storage are highly dependent on the TEE
implementation, and it may not be entirely separated from the REE file system.
Consequently, file modifications from a root privileged user account could be a valid
concern. The trusted storage is expected to provide confidentiality and authenticity
through the use of authenticated encryption. This protects our reference hashes
against targeted modification and replay attacks. For additional protection and
separation from the REE file system, the reference files can be stored on a Replay
Protected Memory Block (RPMB) partition25.

The attacker could attempt to delete the reference hashes from the trusted stor-
age, because if this file cannot be found, we assume that our detection method is
in the initialization phase and file hashes are computed. According to the specifi-
cation, the trusted storage is protected from such attacks because a stored object
should not be accessible from outside the TA that created it. How this functionality
is achieved in practice is, again, highly dependent on the TEE implementation. In
our chosen implementation (see next section), the TEE recognizes the data corrup-
tion and generates an alert.

6 Implementation details

We use the Open Portable Trusted Execution Environment26 (OP-TEE) as the
trusted execution environment. It was initially developed by ST-Ericsson and cur-
rently owned and maintained by Linaro. Our implementation uses version 3.6.

Besides the TEE itself, which is essentially a minimal OS running in the Secure
World, OP-TEE consists of Normal World components as well: Linaro has its

25https://lwn.net/Articles/682276/, Last visited: Sep 18, 2020
26https://www.op-tee.org, Last visited: Sep 20, 2020
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own fork of the Linux kernel, which includes an OP-TEE driver. This driver is
responsible for shared memory allocation between the two worlds and provides the
RPC functionality through which the CA and TA can communicate. The driver
exposes its functionality to the user space via a block device. However, in order
to increase usability, the driver also has a counterpart in the user space, a daemon
called tee-supplicant. OP-TEE-related library calls are handled by this daemon
which communicates with the driver using ioctl. This is a bidirectional channel,
meaning that the driver is also capable of requesting operations from the daemon.

There is also a method for extending the functionality of the OP-TEE kernel:
pseudo-trusted applications (PTAs). These applications must be compiled into the
OP-TEE OS and they are capable of exposing core functionality to TAs or CAs.
We used this feature to implement functionality necessary for accessing non-secure
memory, which is otherwise forbidden for TAs. We discuss how we read REE
memory and files via PTAs from the TEE in Subsections 6.1 and 6.2, respectively,
and describe the checks we implemented in order to protect the REE components
of OP-TEE in Subsection 6.3.

6.1 Normal World memory API

To be able to read the memory of the REE kernel, we had to instruct the memory
management unit of the OP-TEE OS to map the physical memory range where
the Linux kernel resides. We determined this range from the boot log and modi-
fied core_mmu.c to register it as non-secure RAM. This makes it accessible in the
context of the TEE, but TAs cannot read it due to address translation issues. The
Normal and Secure Worlds are using two distinct address spaces, which means that
if we take the address of a Linux kernel object, OP-TEE will not be able to process
it. We solved this issue by translating Normal World addresses to physical address,
and back to Secure World virtual addresses. Fortunately, OP-TEE provides us
with tools to accomplish the latter task, so we only needed to implement the for-
mer one. The Linux kernel uses a macro called __virt_to_phys_nodebug, which
can be unfolded into three other macros, which in turn are also unfolded into other
macros. All in all, we implemented 30 macros based on __virt_to_phys_nodebug

to be able to translate Normal World virtual addresses to physical addresses. The
Normal World virtual addresses are obtained from the System.map file of the com-
piled kernel, except for runqueues. Since they are not intended to be used by any
kernel module, we had to implement a patch to dump these addresses into the boot
log, and then we hard coded them into our TA.

In order to access the physical memory in which the Linux kernel resides, we
implemented a PTA. The PTA implements the following interface:

read mem This function expects two parameters, a memory region to copy data
into and a physical address to copy data from. It translates the address to a
Secure World virtual address, and after performing the necessary checks, it
populates the buffer with the requested amount of data.
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hash mem This function is used to create a hash from non-contiguous REE mem-
ory ranges. It expects an array of phys_mem_range structures (containing a
pointer to a memory region and a size), and a buffer where to store the cre-
ated hash. It initializes a hash context, iterates through the array of physical
memory ranges, translates the addresses back to virtual addresses and feeds
the specified regions to the hash function. When it is done, it copies the
produced hash into the output buffer. We chose the SHA-256 hash function
and OP-TEE OS is configured to use the libtomcrypt library27 by default.

6.2 Normal World file API

OP-TEE does not provide access to the REE file system by default. However, we
noticed that OP-TEE’s trusted storage stores encrypted data on that file system,
hence we suspected that there must be a way to access the REE file system from
OP-TEE. After digging the source code, we discovered that the tee-supplicant

daemon can be instructed via RPC calls to perform REE file operations. However,
the set of RPC functions available to perform file operations were not written for
general purposes, but they were designed specifically for the trusted storage. As a
result, to be able to pass arbitrary filenames as parameters, we had to modify the
open and opendir functions. Function readdir also had to be modified due to a
bug we discovered. Our pull request with the fix is merged already28, but it is only
included in the 3.10 release. We modified the previously mentioned functions by
making copies of them in our PTA and applying the necessary changes to the copies.
In addition, as the root of the trusted storage is /data/tee/ and filenames are
prefixed with this string in tee-supplicant, the PTA expects absolute filenames
and prefixes them with ../.. before passing them to open and opendir. The PTA
implements the following interface:

hash file This function expects a filename as a string and a buffer to store the
computed hash in. It opens the requested file (if exists), reads its content by
4096 bytes and passes these blocks to a hash function. When the end of the
file is reached, it finalizes the hash and copies it into the output buffer.

hash dir This function takes four parameters: a directory name, an output buffer,
an integer to indicate if we want to hash recursively (0 for false, 1 for true)
and a pointer to a null-terminated array of strings. It creates a hash context,
opens the specified directory (if exists) and reads its content. For every entry,
we check the blacklist first (to avoid hashing files with changing content, e.g.
/etc/random-seed). If the entry is not on the blacklist, we try to determine
if it is a regular file or a directory. Since we have no stat-like primitive, we
do this by invoking opendir. If opendir fails, we have a file, otherwise, a
directory. For files, we do the same as above: read the file by blocks and

27https://optee.readthedocs.io/en/latest/architecture/crypto.html, Last visited: Sep
18, 2020

28https://github.com/OP-TEE/optee\_os/pull/3962, Last visited: Sep 18, 2020
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feed every block to the hash function. If the entry is a directory and we hash
recursively, then the function calls itself recursively on the entry. Otherwise,
the entry is skipped. Finally, the hash is copied to the output buffer. We use
the SHA-256 hash function from the libtomcrypt library.

In order to ensure the proper functioning of the above described PTA, we had
to apply two patches to the tee-supplicant daemon. First, we had to give it
root privileges, otherwise it cannot read certain files. Second, tee-supplicant’s
readdir handles certain directories improperly: if a directory only stores hidden
files, it is considered to be empty. From the aspect of our persistence checks, this
behavior can be fatal, so we had to patch the appropriate function to only skip
., .. and .nfs* (these files are created by an NFS server, when an open file is
deleted).

6.3 Verification of OP-TEE specific components

As we do not trust software components in the REE, but our implementation relies
on using OP-TEE’s Normal World components, we needed to ensure the integrity
of them. For OP-TEE’s Linux driver, we did not need to implement any additional
checks, because it is compiled as a part of the kernel, so its integrity is verified
when our TA checks the integrity of the kernel code. The daemon tee-supplicant,
however, had to be slightly modified before we applied the same technique as we
used for checking the integrity of our CA. First, we built it as a static binary. Next,
we had to ensure that the pages containing the code of the daemon are present in
the memory, and not swapped out. We implemented a Linux driver to create an
entry under /proc. If pids are written to it, it looks for the corresponding task,
and if it is a thread of tee-supplicant, it generates a page fault for every page
of its code segment. With these preparations, we can apply the same check on
tee-supplicant as we did on the CA, except that we compute the hash of every
task, if it has the proper name (tee-supplicant). This check is executed right
after we check the code of our CA. We could extend this kind of integrity check to
other tasks as well, as described in Subsection 4.3, however, our implementation
currently verifies only the tee-supplicant daemon and the CA.

7 Evaluation

We evaluated our implemented method on different types of rootkits. Our results
in detecting kernel space rootkits are presented in Subsection 7.1. In Subsection
7.2, we present the results of detecting a custom rootkit’s persistent components.
The performance of our implementation is presented in Subsection 7.3.

7.1 Detecting different rootkits in kernel memory

In order to test our rootkit detection method, we wrote multiple kernel space rootk-
its. We also wanted to test it against real kernel space rootkits found in the wild,
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but we were unable to find any that would work in our environment (the ones we
found on github were written for older kernels or different architectures). How-
ever, we did manage to make user space rootkits work in our environment. In this
subsection, we will describe these rootkits and the way our method was capable of
detecting them.

Syscall hook: This test rootkit was implemented as a Linux kernel module. When
it is loaded, it disables the write protection of the kernel’s .rodata segment
and replaces one of the function pointers in the system call table. Finally, it re-
enables the write protection. On unload, it restores the modified pointer. We
are capable of detecting the corruption of the system call table by comparing
the freshly computed hash to one created from the intact table.

Inline hook: This rootkit is similar to the previous one: in this case, we remove
the write protection of the text segment of the kernel and tamper with the
first few bytes of a chosen function, then restore it on unload. Again, this
modification will change the hash of the text segment, and comparing it with
the original one will reveal the presence of the rootkit.

DKOM I: This rootkit creates a backdoor process and attempts to hide it via
removing it from the initial pid namespace’s IDR. For a regular ps, the back-
door process is invisible, however it is possible to connect to it. Our solution
detects the backdoor because it was not removed from the list of all the tasks,
but it was missing from the output of ps.

DKOM II: In this test, we extended the functionality of the previous rootkit: we
remove the backdoor process from the task list and the task tree as well, thus,
our solution’s only chance is to find it in any of the run queues. At this point,
detection success depends on the rootkit’s payload. In our case, it was a bind
shell, which spends little time in run queues; it mostly waits, therefore, it is
in wait queues. As currently our implemnentation does not check wait queues
(the issue of wait queues will be explained in Section 8), we did not detect
this rootkit. However, if the payload had been a computationally intensive
task, such as a cryptocurrency miner, it would probably have been detected.

A HORSEPILL variant: HORSEPILL [19] is a ramdisk-based rootkit, which
exploits namespaces. It infects klibc, a minimal library used in the early
user space. It hides a process by creating a new pid namespace and executes
systemd in this namespace. Normally, it would not be possible to see kernel
threads with this setup, but HORSEPILL has a workaround to fake these in
the freshly created namespace. Unfortunately, HORSEPILL is not compati-
ble with our test environment, as we use a different init system, we do not use
klibc, and we do not assemble ramdisks on the system like personal comput-
ers usually do. However, we were able to port the idea behind HORSEPILL
to work in our environment. In our case, the ramdisk is assembled by Buil-
droot29, and starting the init process happens as follows: First, the Linux

29https://buildroot.org/, Last visited: Sep 18, 2020
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kernel calls /init, a minimal shell script, and sets the 3 default file descrip-
tors to /dev/console. Then, it invokes /sbin/init, which is a symlink to
busybox30. We managed to start our HORSEPILL variant by replacing the
symbolic link to another binary. This binary clones two new threads and
executes the original init and our backdoor in them. Busybox is executed in
a new pid namespace to hide the backdoor from the rest of the system. Our
implementation lacks HORSEPILL’s feature of faking kernel threads, there-
fore, they appear as hidden processes to our detection solution, much like the
backdoor process. Originally, HORSEPILL fakes kernel threads by collecting
their names, creating new processes in the namespace of init, and renaming
them to the names of the kernel threads. The output of our detection mech-
anism would be the same in this case: we would find the original ones and
the backdoor.

BEURK: BEURK is a userspace rootkit, the name stands for Beurk Experimental
Unix RootKit. It exploits the linker’s capability to load a library into the
address space of a process before everything else, thus, it can hook certain
library calls. It creates a backdoor when the accept function is called and
certain conditions are met (local port matches its configuration, remote port
is in range specified in its configuration). The created process is hidden from
every other process, except its children. This is achieved by hooking the
readdir and readdir64 functions, which are wrappers around the getdents

and getdents64 system calls, respectively. When they are called on /proc,
if the next entry is the pid of the backdoor, then it is skipped. We were able
to detect the presence of the BEURK backdoor because it is missing from the
output of ps, but present in the task list.

7.2 Detecting persistent components

In order to illustrate how our solution can detect the persistent components of
rootkits, we created a proof of concept demonstration based on a potential vulner-
ability in an earlier version of our rootkit detection approach. Before we decided
to use fanotify to prevent executables from starting during our checking process
executed by our TA, we experimented with a technique that a sophisticated rootkit
could use to avoid detection and stay persistent even after both the kernel memory
and the file system checks have finished. The concept is the following:

1. Let’s assume that the system has been compromised and the rootkit process
is present in the memory. Let’s also assume that the rootkit is able to predict
when the next scan will happen and has an accurate idea of how long each
scanning phase takes to finish.

2. Right before the scan is about to launch, the rootkit places a binary on the
file system (which it has been storing on the heap), which, when executed,

30https://busybox.net/, Last visited: Sep 18, 2020
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would load the rootkit back into memory and reinfect the system. It also
runs chmod to make the file executable.

3. The rootkit then creates a crontab entry that is scheduled to execute the
binary in the time window between the memory and the file system scan.

4. The rootkit process terminates at this point in order to avoid detection. Since
it has no process loaded into memory and made no modifications to the kernel,
the first phase of the scan finishes without finding any inconsistencies.

5. The scheduled task executes, the rootkit is loaded into memory. It immedi-
ately deletes the previously placed binary from the file system, and restores
the modified crontab file.

6. Since every modification on the file system was reverted, the second phase of
the scan finds no mismatching hashes.

This vulnerability was deemed very hard to exploit in practice due to the limited
time window available for the attack. It is important to mention that the versions of
cron based on Vixie-cron 31 were not designed to execute tasks in such an accurate
manner either, it only “wakes up” at each minute. The task’s execution could be
delayed by an arbitrary number of seconds by using the sleep instruction in the
scheduled task. Accurate timing would be hard to achieve reliably, considering
that the interval between the scans is randomized, but we still considered it an
architectural weakness, for which we needed a proper solution, not just hardening
and mitigations.

With the current architecture, this vulnerability does not exist because we place
the FAN_OPEN_EXEC_PERM fanotify mark on every file system. Fanotify would pre-
vent the malicious crontab entry from executing the rootkit binary (more accu-
rately, it would prevent the cron daemon from creating the bash session to run the
shell command executing the binary), and the file system scan would detect the
mismatches in the directory containing the rootkit binary.

As a demonstration, we prepared a small, statically linked C program which
stores its own binary’s bytes and is able to place and delete the binary on the file
system at will. To simulate the perfectly timed scenario, instead of using cron, we
used a small bash script to execute the binary on time, and disabled the memory
checks.

The results were the following: The script tried to relaunch the program after it
placed its binary in /bin and terminated, but fanotify prevented the relaunch. The
script was waiting for permission to execute the binary, but the request was put on
hold while the file system scan was running. The file system scan then detected the
mismatch in /bin. Without the fanotify marks in place, the program would have
been able to launch and delete the binary, and avoid detection.

31https://directory.fsf.org/wiki/Vixie-cron, Last visited: Sep 18, 2020
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Figure 4: Execution time in seconds depending on the number of processes

7.3 Performance measurements

Performance impact is always a concern with anti-malware solutions. In this subsec-
tion, we present the performance characteristics of each part of our implementation
and review their impact on the system. Our implementation runs in a virtualized
environment with 1057 MBs of RAM and 2 Cortex-A57 cores.

Since most of our checks are process-related, we measured the execution speed
depending on the number of currently running processes: we spawned new back-
ground processes with the less command, which did not consume relevant amount
of CPU time slices, but increased the size of the data structures we needed to check.
Figure 4 shows the execution time of the checks separately and in total as well.

RPC call stands for the communication between the CA and TA: all necessary
input is collected, the TA is invoked and the TA performs normalization of its
input. As expected, the number of running processes is irrelevant in this case.

Checking the integrity of the VFS does not scale well. This is due to the nature
of the /proc file system. For every process, approximately 300 new files are created
by the kernel. These are regular files and symbolic links, resulting in an increasing
number of inodes. Our checks scale linearly with respect to the number of inodes.

The DKOM check achieves better performance with respect to the growth in
the process count: for n processes, it traverses a list made of n elements and two
trees with n nodes each. It also sorts arrays of n pids and performs binary searches
to find differences between the collected lists of pids.

Integrity checks scale very well, the hash check of the kernel’s text segment
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and the system call table can be performed with constant time complexity, and
interaction with task-related data structures is necessary only when it is looking
for the task of the CA (for the purpose of hashing its text segment and verifying
the integrity of the fanotify marks) and the tasks of tee-supplicant. However,
extending this integrity check to other tasks would probably have an impact.

Finally, our solution performs the file system checks. These checks have no
relation to the process count, they depend on the number of files included in the
check and the overall size of those files. This part is by far the most time consuming,
since it requires RPC calls and world switches to read the bytes of the files.

While our scanning process is being executed in the TEE, it uses only one of the
cores. As a result, the REE can execute on the other core. Processes running in the
REE are not halted while we perform our checks, but significantly less resources
are available to them until the checks are completed. Until our TA reaches the
file system checks, the core it uses can only execute REE code when an interrupt
occurs that has to be handled in the REE. During the file system checks, however,
our implementation needs to wait for a lot of I/O operations, and while waiting,
control is given back to the REE, where the Linux kernel’s scheduler can execute
other tasks on the first core as well.

8 Discussion and future work

In this section, we present some known weaknesses of our approach and discuss
ideas to overcome them.

8.1 Known limitations and possible solutions

The first limitations comes from OP-TEE and the way it handles interrupts. In-
terrupts are divided into two groups, foreign and native interrupts. The former
one needs to be handled by the Normal World, and the latter one by the Secure
World. If an interrupt rises and the CPU which should handle it is not in the
appropriate world, the machine switches to the correct world, and the interrupt
handler is executed. However, OP-TEE does not have its own scheduler, but it
uses the Linux kernel’s scheduler. When a CPU is executing code in the Secure
World and a foreign interrupt occurs, the execution of the TA does not continue
immediately after the handler exits. It only resumes execution when the scheduler
gives the CPU to the thread associated with the TA.

In addition, on a system with multiple cores, it is possible for one core to execute
in the Normal World and another in the Secure World. This behavior can make our
inconsistency checks unreliable: it is possible for a new thread to start during our
checks, making them fail despite the lack of any hidden processes. This issue might
be resolved if we can disable other cores during our checks, and disable interrupts
as well to ensure the uninterrupted execution of our checks. Disabling a core is
possible from the REE, however, it has a negative impact on the performance of
the system. Disabling interrupts is a bit more complicated, although, PTAs can do
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it while they are running. It might be possible to disable and re-enable interrupts
for other Secure World threads as well, or the check itself can be implemented in a
PTA in order to use this feature.

Another, less manageable issue is the way the Linux kernel handles waiting
tasks. This is implemented via wait queues, which store the tasks waiting for the
same event. When the event occurs, it is possible to wake up all the tasks or just
one of them. The issue lies with how Linux creates wait queues: some exists as
global variables, but most of them are created on stacks or as members of other
structures. So far, we have not been able to find a way to enumerate all the
currently existing wait queues in memory, thus, we are unable to check all of them,
only those implemented as global variables.

Our current method is unable to handle self modifying features in the Linux
kernel and Address Space Layout Randomization in the kernel. These features
would break the integrity check of the kernel’s text segment.

A source of another limitation is our decision of not checking the entire VFS
layer, only the objects accessible from the superblock of /proc. As a result, the
kernel-level integrity of other file systems are not checked, but we rely only on file
hashing. A possible attack against the persistence check might be to hook the read
function in the default file operations of an inode to show the original content of
the file for every entity except for the one executing it.

Finally, a way to bypass all of our checks would be for a malware to uninstall
itself before the checks are performed. When the checks are completed, the malware
could be reinstalled by exploiting the same vulnerability it originally exploited to
infect the system. Note, however, that this can work against any rootkit detection
approach, because there remains nothing malicious to detect in the system.

8.2 Future work

There are multiple features with which our method could be extended. First, our
current implementation does not support updates. REE package updates would
modify or add new files to the file system, so they would likely break the file system
check for persistent rootkit components, and a kernel update would certainly break
the integrity checks and probably the VFS and task-related ones too. In the future,
we would like to address the former issue by recomputing reference hashes in a
secure way. The latter issue may require re-implementing certain checks, making
its automation challenging.

We discussed multiple checks for Linux kernel modules. They are the most
convenient way to execute code in kernel space [7], therefore, rootkits often use
them and try to hide their modules. Consequently, we disabled module support
in the Linux kernel configuration, making rootkit installation more challenging.
However, without module support, all necessary drivers must be compiled into the
kernel, which is a functional restriction. In addition, there are other kernel resources
worthy of being checked as well, such as components of the network stack.

We would also like to make our solution compatible with other kernel security
features. We reviewed a long list of possible configurations and our solution is
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incompatible with only two of them: structure randomization and Kernel Address
Space Layout Randomization. In case of structure randomization, the members
of selected kernel structures are randomized at compile time. We could make our
method compatible with this feature by compiling a kernel module with access
functions, for example, to get the next task in the task list, and use these functions
from a library in our TA. Kernel Address Space Layout Randomization is a tech-
nique which places the kernel’s text segment at a random location at boot time.
This feature interferes with several of our checks and we do not have a solution so
far that can support this feature.

9 Conclusions

In this paper, we addressed the problem of detecting rootkits on embedded IoT
devices. Rootkits are malicious software that typically run with elevated privileges,
which makes their detection challenging. Our solution is based on identifying signs
of a rootkit infection (i.e., modifications to the code of system programs and the
operating system kernel, as well as inconsistencies in certain kernel data struc-
tures) using a trusted application that is running in an isolated trusted execution
environment. Fortunately, such trusted execution environments are supported on
many embedded platforms used in IoT applications, and their protection measures
ensure that malicious code cannot interfere with our detection mechanisms even
when running with root privileges. We described in detail how we check both the
memory of the untrusted execution environment and the persistent storage from
our trusted application, looking for integrity violations and inconsistencies. We also
reported on a prototype implementation of our approach, including some specific
implementation level issues that we had to solve to make our prototype working
in practice. Finally, we evaluated our design and implementation by testing the
prototype with rootkits that we developed for this purpose.

Our approach has some limitations that we discussed in the paper. In sum-
mary, we can detect modifications of the kernel code and system programs, as well
as hooking attacks in the memory, and we can also detect the presence of rootkit
components in the persistent storage of the IoT device. Detection of manipulations
of process related kernel data structures is not complete, as we were not able to
analyze certain data structures (e.g., wait queues). In addition, at the time of
this writing, we do not support multi-core processors, address space layout ran-
domization, and self-modifying code in the kernel. Some of these limitations can
be addressed (e.g., the kernel can be statically compiled with all the drivers in-
cluded), while others require more work in the future. Despite all these limitations,
we believe that our work demonstrates that it is possible to protect even small
embedded devices used in IoT applications from sophisticated and powerful soft-
ware based attacks, and that IoT is not necessarily as insecure as it is commonly
perceived.
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