
7th International Conference on Internet of Things, Big Data and Security (IoTBDS), 22–24 April, 2022.

SIMBIoTA-ML: Light-weight, Machine Learning-based Malware
Detection for Embedded IoT Devices

Dorottya Papp1 a, Gergely Ács1 b, Roland Nagy1 c, and Levente Buttyán1,2 d

1CrySyS Lab, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
2ELKH-BME Information Systems Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary

{dpapp, acs, roland.nagy, buttyan}@crysys.hu

Keywords: IoT, embedded systems, malware detection, machine learning.

Abstract: Embedded devices are increasingly connected to the Internet to provide new and innovative applications in
many domains. However, these devices can also contain security vulnerabilities, which allow attackers to
compromise them using malware. In this paper, we present SIMBIoTA-ML, a light-weight antivirus solution
that enables embedded IoT devices to take advantage of machine learning-based malware detection. We show
that SIMBIoTA-ML can respect the resource constraints of embedded IoT devices, and it has a true positive
malware detection rate of ca. 95%, while having a low false positive detection rate at the same time. In
addition, the detection process of SIMBIoTA-ML has a near-constant running time, which allows IoT devel-
opers to better estimate the delay introduced by scanning a file for malware, a property that is advantageous in
real-time applications, notably in the domain of cyber-physical systems.

1 INTRODUCTION

Embedded devices are special-purpose devices de-
signed to carry out a well-defined set of tasks. Nowa-
days, these devices are increasingly developed with
networking capabilities and are often connected to the
Internet. This technological advancement led to what
is now known as the Internet of Things (or IoT for
short), and embedded devices with networking capa-
bilities are also called embedded IoT devices.

The Internet of Things has enabled a wide range
of new and innovative applications in many modern-
day application domains, including healthcare, trans-
portation and agriculture. Unfortunately, embedded
IoT devices can have security weaknesses (just like
other types of computers). Such weaknesses include
insecure open ports, default or hard-coded passwords,
and software vulnerabilities. Open ports and weak
passwords allow attackers to easily gain access to the
device, while software vulnerabilities, notably those
in the operating system of the device, allow for a
wide range of malicious activities. Moreover, IoT
devices in certain application domains are desirable

a https://orcid.org/0000-0002-9976-614X
b https://orcid.org/0000-0003-4437-0110
c https://orcid.org/0000-0003-2305-3271
d https://orcid.org/0000-0003-4233-2559

targets for attacks, because they handle sensitive per-
sonal and business-related data, or control critical
processes. Another reason for attackers to compro-
mise IoT devices is to build a large-scale attack infras-
tructure and leverage the combined computing power
of millions of such compromised devices. Conse-
quently, there has been a rise in the number of mal-
ware targeting embedded IoT devices. One of the
most infamous examples is Mirai (Antonakakis et al.,
2017), which infected hundreds of thousands of IoT
devices and launched one of the largest distributed de-
nial of service attacks against Internet-based services
in 2016. But the IoT threat landscape includes other
malware families as well, such as Gafgyt, Tsunami,
and Dnsamp (Cozzi et al., 2020).

Detection of malware on embedded IoT devices
is a challenging problem. In a recent paper (Tamás.
et al., 2021), we proposed SIMBIoTA (SIMilarity
Based IoT Antivirus), an effective and efficient an-
tivirus solution for such devices. The operating prin-
ciples of SIMBIoTA are similar to those of traditional
signature-based antivirus solutions, but SIMBIoTA
uses TLSH hash values of known malware instead of
raw binary signatures for detection purposes. TLSH
(Oliver et al., 2013) is a similarity hash algorithm, and
it is different from cryptographic hashes, as it is de-
signed to maximize collisions. This means that small
variations in the input do not alter the TLSH output



significantly. In other words, similar inputs result in
similar TLSH hash values, and SIMBIoTA takes ad-
vantage of this feature. More specifically, in case of
SIMBIoTA, embedded IoT devices store only a few
TLSH hash values of known malware, and they com-
pare the TLSH hash values of new files to these stored
hashes. If the TLSH hash of an unknown file is sim-
ilar to that of a known malware, the unknown file is
detected as malware. The main advantage of SIM-
BIoTA is its light-weight requirements for storage,
computation, and bandwidth, as well as its remark-
able detection capabilities. Indeed, according to the
experiments reported in (Tamás. et al., 2021), SIM-
BIoTA achieved a true positive detection rate of ca.
90%, even for previously unseen malware, and a false
positive detection rate of 0%.

In this paper, we also use TLSH hash values for
malware detection on IoT devices, but in a manner
different from that of SIMBIoTA. Our key observa-
tions are that TLSH hash values can serve as com-
pact representations of binary files and, thanks to their
well-defined structure, they can be used as feature
vectors for training machine learning models, which
can then be used for malware detection. We show
that this approach can result in interesting trade-offs
in terms of detection performance and resource usage
on embedded devices. More specifically, our contri-
butions, in this paper, are the following:
• We introduce SIMBIoTA-ML, which replaces

SIMBIoTA’s database of TLSH hash values with
a random forest classifier trained on TLSH hashes
of malware and benign files.

• We measure the true and false positive detection
rates of SIMBIoTA-ML, as well as its storage re-
quirements and running time.

• We compare SIMBIoTA-ML’s measurement re-
sults to those of SIMBIoTA and discuss the ad-
vantages and disadvantages of both solutions.
Specifically, we find that SIMBIoTA has lower
storage requirements and false positive detection
rate, but SIMBIoTA-ML outperforms SIMBIoTA
in terms of true positive detection rate even for
new, previously unseen malware samples. We
also show that SIMBIoTA’s database of TLSH
hash values increases over time, which has an im-
pact on its detection time. Specifically, the larger
the database is, the longer it takes for SIMBIoTA
to decide whether an unknown file is malicious
or not. By contrast, we show that SIMBIoTA-ML
has a near-constant running time, which allows for
better estimation of the delay introduced by the
antivirus solution, and this can be an advantage
in case of real-time applications in the domain of
cyber-physical systems.

The paper is structured as follows: Section 2
provides background information on malware detec-
tion approaches and SIMBIoTA. Section 3 discusses
SIMBIoTA-ML and our changes to SIMBIoTA’s ar-
chitecture in order to use machine learning. The per-
formance of SIMBIoTA-ML is evaluated in Section 4.
Finally, Section 5 concludes the paper.

2 RELATED WORK

In this section, we provide background information
on machine learning-based malware detection, and
we summarize the operation of SIMBIoTA.

2.1 Malware detection with machine
learning

Traditionally, antivirus products rely on signatures
and heuristic rules that try to capture complex static
patterns in known malware samples. One problem
with this approach is that, like any method relying
on static features of binaries, it can be evaded by
packing, encryption, obfuscation, and code polymor-
phism. These techniques modify a malware sample’s
binary form in such a way that it cannot be detected by
the same signature or heuristic rule, while, at the same
time, its behavior remains the same. Another prob-
lem, which is more important for our present work,
is that creating signatures and heuristic rules requires
expert knowledge, and often necessitates reverse en-
gineering techniques. As a result, it is a time con-
suming and tedious task. Hence, signature-based and
heuristic approaches have a hard time keeping up with
the constantly evolving threat landscape1, and their
reliance on expert knowledge is a scalability bottle-
neck for antivirus companies.

In response, significant research effort has been
dedicated to automate malware detection using ma-
chine learning (Ye et al., 2017; Ucci et al., 2019;
Gibert et al., 2020). Machine learning requires fea-
tures, which are usually automatically extracted using
static and dynamic program analysis techniques (Soli-
man et al., 2017). Features can be derived from a
variety of sources, including the samples’ instruc-
tions (Dovom et al., 2019; Takase et al., 2020), their
control-flow (Alasmary et al., 2019), invoked API
functions and system calls (Abbas and Srikanthan,
2017; Shobana and Poonkuzhali, 2020), and mes-
sages sent over the network (Meidan et al., 2018;

1https://www.sophos.com/en-us/medialibrary/pdfs/
technical-papers/sophoslabs-2019-threat-report.pdf (ac-
cessed: Feb 28, 2022)

https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-2019-threat-report.pdf


Goyal et al., 2019). Feature extraction can result in
thousands of features, some of which may be redun-
dant and can be eliminated with data mining tech-
niques.

For efficient malware detection, machine
learning-based approaches require lots of benign and
malicious samples to train on. These samples are
often collected from so-called intelligence networks.
Nowadays, users’ machines run only a client-side
antivirus component, which may perform local
detection, but it can also request a server’s assistance
during the detection process. This setup is also
known as cloud-based malware detection. The
client-side component sends suspicious samples to a
server in the cloud, which performs a more in-depth
analysis, e.g., by executing the sample in a sandbox,
makes a decision, and informs the client. At the same
time, the server collects these submitted samples,
which can then be used for training machine learning
models.

Cloud-based malware detection coupled with ma-
chine learning has also been proposed for embedded
IoT devices (Sun et al., 2017; Hussain et al., 2020).
This is an advantageous combination for embedded
IoT devices, because resource-heavy analysis is per-
formed in the cloud and the resource-constrained de-
vices need to run only a light-weight client-side com-
ponent. The client-side component either forwards all
files to the cloud for analysis or applies a pre-trained
machine learning model to detect malware. Proposed
machine learning models include light-weight con-
volutional neural networks (Su et al., 2018), recur-
rent neural networks (HaddadPajouh et al., 2018),
random forest classifiers (Takase et al., 2020), fuzzy
and fast fuzzy pattern trees (Dovom et al., 2019).
Many existing works use static features (Ngo et al.,
2020), including function call graphs (Nguyen et al.,
2020), grey scale images of binaries (Karanja et al.,
2020), strings (Hwang et al., 2020), and instruction
opcodes (Nakhodchi et al., 2020).

2.2 SIMBIoTA

SIMBIoTA was proposed in (Tamás. et al., 2021).
It is a light-weight antivirus solution with limited re-
quirements for storage, computation, and bandwidth,
hence suitable for embedded IoT devices. SIMBIoTA
relies on a large malware database maintained on a
backend server. This malware database is assumed
to be continuously updated with samples obtained
from an intelligence network as described above. The
server computes the TLSH hash values of the samples
in its database, and pushes a subset of these TLSH
hashes to the client-side antivirus component on the

embedded IoT devices, where a light-weight algo-
rithm uses them to detect malware based on binary
similarity. Therefore, SIMBIoTA requires resource-
constrained embedded IoT devices to store only a
small database with a few TLSH hash values.

In (Tamás. et al., 2021), SIMBIoTA was evaluated
on a total of 47,937 malicious samples and a total of
14,119 benign samples for the ARM and MIPS archi-
tectures. In the experiments, the set of samples was
divided into two groups: the samples known to the
backend via the intelligence network, and the sam-
ples found only in the wild. The samples known to
the backend were used to construct the database of
TLSH hash values. Based on the metadata of mali-
cious samples available in VirusTotal2, the samples
were also put into so-called “weekly batches”, i.e.,
sets of samples that were first submitted to Virus-
Total on the same week. At the beginning of each
week, the database of TLSH hashes were updated and
the detection performance was measured in two ways.
First, we checked the true positive detection rate for
all samples in previous weeks’ weekly batches. Sec-
ond, we also submitted samples from the wild of the
next two weeks’ weekly batch to see SIMBIoTA’s de-
tection performance for new, previously unseen mal-
ware samples. The experiments measured a false pos-
itive detection rate of 0%, a true positive detection rate
above 90% for samples of previous weeks’ weekly
batches, and a true positive detection rate of ca. 90%
for the next two weeks’ weekly batches. Throughout
the experiments, fewer than 200 bytes were necessary
to update the TLSH hashes stored on the embedded
IoT device. By the end of the experiments, the storage
requirement on the embedded IoT device was 10 kB
in the case of ARM and 6.5 kB in the MIPS case.

Despite its remarkable features, SIMBIoTA has
a number of limitations as well. First, similar to
other malware detection solutions relying on static
features, analyzing obfuscated or encrypted samples
is challenging for SIMBIoTA. Second, as we show in
this paper, the bigger the database of similarity hash
values, the longer it takes for SIMBIoTA to decide
whether a given file is malicious or not. This can be
a challenge in IoT environments where embedded de-
vices must comply with real-time requirements, be-
cause the run time delay introduced by SIMBIoTA is
hard to design for. Last, even though a true positive
detection rate of 90% on average for new, previously
unseen malware samples is surprisingly good, exist-
ing literature suggests that machine learning-based
malware detection approaches can achieve even better
results.

In this paper, we modify SIMBIoTA’s architecture

2https://www.virustotal.com/ (accessed: Jan 8, 2022)

https://www.virustotal.com/


to enable embedded IoT devices to take advantage of
machine learning-based malware detection. We call
the resulting system SIMBIoTA-ML. Specifically, we
replace the database of TLSH hash values with a
random forest classifier trained on TLSH hashes of
known malware and benign files. We show that this
modification can increase the true positive detection
rate by 5% on average, even for new, previously un-
seen malware samples. We also show that our trained
random forest classifier has a near-constant run time,
which allows IoT system developers to better estimate
and design for the delay introduced by the antivirus
solution.

3 ARCHITECTURE AND DESIGN
OF SIMBIOTA-ML

We now discuss our proposed solution to improve
SIMBIoTA with machine learning-based malware de-
tection. We discuss our modifications to SIMBIoTA’s
architecture in Section 3.1 and our design choices for
machine learning in Section 3.2. We call the resulting
antivirus solution SIMBIoTA-ML.

3.1 Architectural overview

The original architecture of SIMBIoTA consists of
both client-side and server-side components. Client-
side components are located on embedded IoT de-
vices and are responsible for protecting devices from
malware via a detection process. The detection pro-
cess takes as input the unknown file to be checked and
a database containing TLSH hash values of known
malware samples. The unknown file’s TLSH hash
value is then compared to the TLSH hash values in
the database in a pairwise manner. If the unknown
file is determined to be similar to a known malware
sample, it is considered malicious.

The task of server-side components is to keep the
database of TLSH hash values up-to-date. These
components are located on a backend server. The
backend maintains a malware database, which re-
ceives malicious samples from honeypots, malware
feeds, and malware analysis sandboxes via the intel-
ligence network. Samples in the malware database
are represented in a graph, where nodes are the TLSH
hash values of the samples, and an edge connects two
nodes if the corresponding TLSH hashes are simi-
lar enough according to some similarity metric. The
backend then computes a dominating set over this
graph and the TLSH hash values of the nodes in the
dominating set are sent to the client-side as an update.

Our main improvement to SIMBIoTA is to replace

the dominating set construction by machine learning.
The modified architecture is shown in Figure 1. On
embedded IoT devices, we replace the database of
TLSH hash values with a machine learning model.
Therefore, the modified detection process takes as in-
put the unknown file to be checked and the machine
learning model. The modified detection process ap-
plies the machine learning model to the unknown file
to decide whether the file is malicious or not. The ma-
chine learning model is trained on the backend using
both malicious and benign samples. Therefore, we
keep SIMBIoTA’s intelligence network and require it
to supply the backend with benign samples as well.
Benign samples could be received from IoT vendors
or from public software databases.

3.2 Design choices for machine learning

Machine learning models for malware detection must
be trained using features that represent important
qualities of executable files. In general, features can
be derived using static or dynamic program analy-
sis. Dynamic program analysis, i.e., monitoring a
program’s execution, however, leads to degraded per-
formance, which is a challenge in the IoT setting.
Therefore, we need features whose extraction is light-
weight and can be done statically.

TLSH (Oliver et al., 2013) hash values can be
considered static features because their calculation in-
volves only the processing of the raw bytes in the pro-
gram file. Moreover, TLSH has a light-weight calcu-
lation time in the range of milliseconds, which makes
it suitable in the context of malware detection on IoT
devices. More specifically, computing a TLSH hash
value involves the following steps:

1. Process the raw byte string using a sliding window
of size 5 to populate an array of bucket counts.

2. Calculate quartile points q1, q2, and q3 based on
the buckets’ values.

3. Construct the hash value’s header based on the
quartile points.

4. Construct the hash value’s body.

The first three bytes of the resulting TLSH hash value
is a header with following parts3:

• the first byte is a checksum value;

• the second byte stores the so-called L value, which
is calculated from the length of the original byte
sequence;

3The TLSH implementation at https://github.com/
trendmicro/tlsh (accessed: Jan 9, 2022) appends two extra
bytes to the beginning of the header for versioning purposes.

https://github.com/trendmicro/tlsh
https://github.com/trendmicro/tlsh


Figure 1: Architecture of SIMBIoTA-ML

• the two nibbles of the third byte are called the Q1
and Q2 ratios, and they are computed from the
quartile points q1 and q3, and the quartile points
q2 and q3, respectively.

The rest of the bytes are the binary representations of
the 128 buckets that TLSH uses during the construc-
tion of the hash value quantized to two bits.

As an illustration, let us consider the following
prefix of a TLSH hash value, represented in hexadec-
imal format:

82 A4 02 13 79 E2 86 B1 E7 65 18 ...

The first byte of the header is a checksum, which has
the value of hexadecimal 82 in our example. This is
followed by the L value, which is hexadecimal A4 in
this case. Next come the Q1 and Q2 ratios, which
are hexadecimal 0 and 2, respectively, in the exam-
ple. The remaining bytes are the binary representa-
tions of the buckets turned into hexadecimal numbers.
As each bucket value is represented by two bits, the
next hexadecimal number 1, in the example, encodes
the 2-bit values 00 and 01 of the first two buckets.
Similarly, the next hexadecimal number 3 encodes the
2-bit values 00 and 11 of the next two buckets, etc.

We transform the TLSH hash value into 131 fea-
tures by splitting the hash value into smaller parts.
Specifically, we take from the header the L value, the
Q1 ratio, and the Q2 ratio. We then split the bytes
representing buckets into bit pairs, which gives us 128
2-bit features for the 128 buckets. We train a random
forest classifier over these extracted features. Choos-
ing a random forest classifier is advantageous because
it automatically filters non-predictive features.

4 EVALUATION

In this section, we compare SIMBIoTA-ML to SIM-
BIoTA and discuss their advantages and disadvan-
tages. Specifically, we discuss the experiment design
and the used data set in Section 4.1. Sections 4.2 and
4.3 present the true positive and false positive detec-
tion rates, respectively. We compare the two solu-
tions’ storage requirements in Section 4.4 and their
running times in Section 4.5.

4.1 Experiment design

We perform all experiments using the same data set
as used for the evaluation of SIMBIoTA. This dataset
is called CrySyS-Ukatemi benchmark dataset of IoT
malware 2021 (or CUBE-MALIoT-2021 for short).
The dataset consists of 29,209 malicious ARM sam-
ples and 18,715 malicious MIPS samples, which we
extended with 4,727 benign ARM samples and 9,392
benign MIPS samples for the purpose of our study.
For malicious samples, metadata is also available,
which details, among others, the date the sample was
first seen in the wild (i.e., submitted to VirusTotal).
We made CUBE-MALIoT-2021 publicly available4

for use by the IoT malware research community. To
the best of our knowledge, such a large dataset con-
taining raw binaries of IoT malware was not previ-
ously available publicly, and we hope that CUBE-
MALIoT-2021 will become a de facto benchmark
dataset in IoT malware detection, in order to satisfy
the need for the comparability and reproducibility of
results of different research groups.

4https://github.com/CrySyS/cube-maliot-2021 (ac-
cessed: Jan 9, 2022)

https://github.com/CrySyS/cube-maliot-2021


We also follow the same experiment design as
used in (Tamás. et al., 2021) for SIMBIoTA. The
timeline of the experiment is between January 1st,
2018 and September 15th, 2019, divided into weeks.
We assume that both SIMBIoTA and SIMBIoTA-ML
receive updates for their detection methods at the be-
ginning of each week. Malicious samples are orga-
nized into weekly batches based on the date they were
first seen, and each weekly batch is further divided
into two groups. The first group, which contains 10%
of that weekly batch’s samples and is called the in-
telligence part, is made available to the backend for
processing. These samples represent the knowledge
obtained by the antivirus company from the intelli-
gence network. The second group, called the wilder-
ness part, contains 90% of that weekly batch’s sam-
ples, and it is assumed to exist only in the wild and is
never revealed to the backend. The wilderness parts
of weekly batches are used to evaluate the antivirus
solutions’ true positive detection rate.

SIMBIoTA-ML also requires benign samples in
order to train the machine learning model on a bal-
anced data set. However, we have no metadata avail-
able for benign samples. Therefore, we randomly as-
sign benign samples to be part of either the training
or test sets for each architecture. In the case of ARM,
the training set contains 2,921 benign ARM samples,
and for MIPS, the corresponding training set contains
1,872 MIPS samples. Each week, we randomly select
the same number of benign samples from the training
sets as the number of malicious samples in the intelli-
gence part of that weekly batch. Selected benign sam-
ples are sent to SIMBIoTA-ML’s backend for training
the machine learning model. Samples in the test sets
are never revealed to the backend and are used to mea-
sure false positive detection rates.

Note that our experiment design results in
SIMBIoTA-ML’s backend having less training data
available than what is usually the case in machine
learning. Researchers often use 80% of their data
sets for training purposes and use the remaining 20%
as the testing set. In our case, however, the backend
can only train on 10% of the malicious samples such
that we can compare its performance to that of SIM-
BIoTA. For SIMBIoTA-ML’s backend to have a bal-
anced data set, it has access to 61.78% of the benign
ARM samples and 19.93% of the benign MIPS sam-
ples.

The random forest classifier trained on the back-
end for SIMBIoTA-ML also needs to be configured.
Specifically, the number of decision trees that make
up the random forest has to be specified. This number
represents a trade-off between the detection capabil-
ity of the machine learning model and the memory

required to apply the model on the embedded IoT de-
vice. The more decision trees there are in the model,
the better the detection capability is. However, hav-
ing more decision trees also increases the model size,
increasing the amount of memory the embedded IoT
device must have in order to apply the model. We
set the number of decision trees to 10, which gave us
a good trade-off between the two conflicting require-
ments.

Our method of assigning benign samples to the
training and test sets introduces randomness into the
experiment. To balance this randomness, we repeat
the experiment 12 times and use traditional box plots
to present the results. The data points of our box plots
show the results of the 12 runs of our experiment for
each week.

4.2 True positive detection rate

We measured the true positive detection rate of SIM-
BIoTA and SIMBIoTA-ML with the wilderness parts
of weekly batches. In order to measure the perfor-
mance for existing malware, we submit the wilderness
parts of all previous weekly batches to the embedded
IoT device for detection. We also measure the perfor-
mance of new, previously unseen malware by submit-
ting the wilderness part of the current weekly batch to
the detection process. Note that we assume embed-
ded IoT devices to receive updates to their detection
processes at the beginning of each week. Therefore,
the wilderness part of the current weekly batch con-
tains samples that can be considered coming from the
future.

The measured true positive detection rate for
samples of the wilderness parts of previous weekly
batches is shown in Figure 2. The left-hand side
of the Figure shows the performance of SIMBIoTA
and the right-hand side shows the performance of
SIMBIoTA-ML. Both antivirus solutions show a
learning curve for both the MIPS and the ARM ar-
chitectures, i.e., their true positive detection rate im-
proves as time passes and more samples are made
available to the backend. However, SIMBIoTA-ML
consistently outperforms SIMBIoTA by having a true
positive detection rate above 95% throughout the
measurement.

Figure 3 shows the true positive detection rate for
the wilderness parts of current weeks for both SIM-
BIoTA and SIMBIoTA-ML. The left-hand side de-
picts the performance of SIMBIoTA and the right-
hand side shows the performance of SIMBIoTA-ML.
SIMBIoTA’s performance varies in time and it is only
by the second half of the experiment that its perfor-
mance reaches 90-95%. SIMBIoTA-ML also shows



Figure 2: Box plot of the true positive detection rate for samples of the past for SIMBIoTA and SIMBIoTA-ML

variations in its true positive detection rate but the
variation is smaller than that of SIMBIoTA, and per-
formance stays above and around 95% for the major-
ity of the experiment. Therefore, we conclude that
SIMBIoTA-ML outperforms SIMBIoTA in this re-
gard as well.

4.3 False positive detection rate

In order to measure the false positive detection rate
of SIMBIoTA and SIMBIoTA-ML, we conduct the
following experiment. In the case of SIMBIoTA, the
backend does not need benign samples due to the an-
tivirus solution’s design. Therefore, we submit all be-
nign samples to SIMBIoTA for detection. In the case
of SIMBIoTA-ML, however, the backend requires be-
nign samples in order to train the machine learning
model on a balanced dataset. As a result, SIMBIoTA-
ML’s backend has access to the benign samples in the
training set. Therefore, we only submit benign sam-
ples from the test set to SIMBIoTA-ML’s detection
process.

In our experiments, SIMBIoTA did not detect any
benign samples as malicious, hence achieved a false
positive rate of 0, which is consistent with the results

reported in (Tamás. et al., 2021). The same cannot be
said for SIMBIoTA-ML, however. Machine learning
classifiers have the tendency to sometimes misclassify
inputs and our random forest classifier is no excep-
tion. The weekly false positive detection rate on be-
nign samples is shown in Figure 4. In the case of be-
nign ARM samples, SIMBIoTA-ML’s false positive
detection rate stays below 1% on average through-
out the experiment. For benign MIPS samples, the
false positive detection rate goes slightly above 1%
on average at the beginning of the experiment. It then
steadily decreases as more and more benign MIPS
samples are revealed to the backend. As we discussed
in Section 4.1, our experiment design provides less
training data to the backend than what is usually rec-
ommended in literature. This is especially the case for
benign MIPS samples, because the data set is divided
into 19.93%-80.07% for training and testing, respec-
tively. Taking this into consideration, we conclude
that while SIMBIoTA-ML’s false positive detection
rate is higher than that of SIMBIoTA, it is still ac-
ceptable for malware detection.



Figure 3: Box plot of the true positive detection rate for previously unseen samples for SIMBIoTA and SIMBIoTA-ML

Figure 4: Box plot of the false positive detection rate for benign samples in the test set for SIMBIoTA-ML



4.4 Storage requirement

Throughout our experiments, we measured the
amount of storage necessary to hold SIMBIoTA’s
database of similarity hashes and SIMBIoTA-ML’s
machine learning model. In the case of SIMBIoTA,
each similarity hash is 35 bytes, therefore, the total
amount of storage necessary is 35 times the number
of entries in the database. In the case of SIMBIoTA-
ML, our implementation for the random forest classi-
fier uses the scikit-learn5 Python module. In order to
measure the amount of storage necessary to hold the
model, we used the pickle6 module to transform the
Python object into a byte string that could be written
to disk and later reloaded into memory. We then cal-
culated the length of the byte string to get the number
of bytes necessary to represent the object.

The storage requirements for both SIMBIoTA and
SIMBIoTA-ML are shown in Figure 5. While the
storage requirements of both antivirus solutions in-
crease over time, SIMBIoTA-ML’s requirements are
orders of magnitude higher, going form ca. 40 KB to
ca. 150 KB by the end of our experiment. By contrast,
SIMBIoTA’s database of similarity hashes require less
than 10 KB of storage throughout the experiment.
Therefore, we may conclude that SIMBIoTA-ML is
not fit for very low-end embedded devices, which typ-
ically have only tens of kilobytes of RAM and a few
hundred kilobytes of Flash memory (Ojo et al., 2018).
However, such devices usually do not have an oper-
ating system and they do not handle files, therefore,
they are not really in the scope of our work. On the
other hand, middle-range and high-end embedded de-
vices with megabytes of memory available would be
able to use SIMBIoTA-ML.

4.5 Run time performance

The last aspect by which we compare SIMBIoTA
and SIMBIoTA-ML is their run time performance.
Specifically, we measure the time it takes for both so-
lutions’ detection process to decide whether a submit-
ted file is malicious or not. We performed this mea-
surement on a non-real time Linux operating system,
therefore, small fluctuations in the measurements are
possible due to task scheduling in the system.

The run time performance of SIMBIoTA and
SIMBIoTA-ML for determining that a submitted file
is malicious is shown in Figure 6. SIMBIoTA’s per-
formance microseconds as it only needs to calculate
the difference between TLSH hashes and compare the

5https://scikit-learn.org/stable/ (accessed: Jan 11, 2022)
6https://docs.python.org/3/library/pickle.html (ac-

cessed: Jan 11, 2022)

result to a threshold value. However, SIMBIoTA has
to do the comparison in a pair-wise fashion, i.e., it has
to compare the TLSH hash value of the unknown file
to each similarity hash value in its database individ-
ually. It is therefore not surprising that as the size of
the database increases, so does the run time of the de-
tection process. This is also the explanation for the
growing difference between the minimum and maxi-
mum run time we measured. Depending on where the
similar hash value is located in the database of simi-
larity hashes, SIMBIoTA’s detection process needs to
perform a different number of comparisons before a
decision can be made. Unfortunately, in application
areas where the delay caused by an antivirus product
is of importance, e.g., due to real time requirements,
this is an undesirable feature.

SIMBIoTA-ML requires more time to apply the
machine learning model: its run time performance is
a little above 1 ms. While this would result in a larger
delay in real systems than that caused by SIMBIoTA,
this delay is near constant. This is advantageous from
the system operator’s standpoint because this delay is
easy to take into consideration during system design
and operation.

The run time performance of SIMBIoTA and
SIMBIoTA-ML for determining that a submitted file
is benign is shown in Figure 7. The run time delay that
SIMBIoTA’s detection process would cause on a real
system is even higher in this case. The reason for this
is that in order for SIMBIoTA’s detection process to
make a decision about an unknown benign file, it has
to compare the file’s TLSH hash value to all the sim-
ilarity hash values in its database. SIMBIoTA-ML’s
detection process, however, always applies the same
machine learning model to every file, therefore, the
run time performance is the same for both malware
and benign files.

5 CONCLUSION

In this paper, we proposed SIMBIoTA-ML, a light-
weight, machine learning-based malware detection
approach for embedded IoT devices. Our work was
inspired by SIMBIoTA (Tamás. et al., 2021), which
uses TLSH hashes to detect malware based on bi-
nary similarity of unknown files to known malicious
binaries. The key difference between SIMBIoTA-
ML and SIMBIoTA is that we use TLSH hashes
as feature vectors to train a random forest classi-
fier, instead of directly measuring the TLSH simi-
larity of files, and by doing so, we achieve a bet-
ter malware detection performance than that of SIM-
BIoTA. More specifically, we showed via an exten-

https://scikit-learn.org/stable/
https://docs.python.org/3/library/pickle.html


Figure 5: Box plot of the storage requirements for SIMBIoTA and SIMBIoTA-ML

sive experiment on a large dataset of real IoT mal-
ware and benign files that SIMBIoTA-ML consis-
tently achieves a higher true positive detection rate
than SIMBIoTA, while, at the same time, it also has
a higher, but still acceptable, false positive detection
rate. In terms of storage requirements, SIMBIoTA is
superior to SIMBIoTA-ML, but SIMBIoTA-ML can
still be hosted by mid-range and high-end embedded
devices with megabytes of memory. Finally, we also
showed that the run time delay SIMBIoTA introduces
into the operation of an embedded IoT device is not
constant, making it hard to design for. In contrast,
SIMBIoTA-ML introduces a near-constant, although
somewhat increased, delay into the operation of the
embedded IoT device, which is advantageous when
the device has to satisfy real-time constraints.

ACKNOWLEDGEMENTS

The presented work was carried out within the SETIT
Project (2018-1.2.1-NKP-2018-00004), which has
been implemented with the support provided from
the National Research, Development and Innovation
Fund of Hungary, financed under the 2018-1.2.1-NKP

funding scheme. The research was also supported by
the Ministry of Innovation and Technology NRDI Of-
fice within the framework of the Artificial Intelligence
National Laboratory Program. The authors would like
to thank Zoltán Iuhos for his help in implementing the
experiments.

REFERENCES

Abbas, M. F. B. and Srikanthan, T. (2017). Low-complexity
signature-based malware detection for IoT devices. In
Batten, L., Kim, D. S., Zhang, X., and Li, G., editors,
Applications and Techniques in Information Security,
pages 181–189, Singapore. Springer Singapore.

Alasmary, H., Khormali, A., Anwar, A., Park, J., Choi, J.,
Abusnaina, A., Awad, A., Nyang, D., and Mohaisen,
A. (2019). Analyzing and detecting emerging Internet
of Things malware: A graph-based approach. IEEE
Internet of Things Journal, 6(5):8977–8988.

Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman,
J. A., Invernizzi, L., Kallitsis, M., Kumar, D., Lever,
C., Ma, Z., Mason, J., Menscher, D., Seaman, C., Sul-
livan, N., Thomas, K., and Zhou, Y. (2017). Under-
standing the Mirai botnet. In 26th USENIX Security



Figure 6: Box plot of the run time of the detection process for “malicious” decision for SIMBIoTA and SIMBIoTA-ML

Symposium (USENIX Security 17), pages 1093–1110,
Vancouver, BC. USENIX Association.

Cozzi, E., Vervier, P.-A., Dell’Amico, M., Shen, Y., Bigle,
L., and Balzarotti, D. (2020). The tangled genealogy
of IoT malware. In Annual Computer Security Appli-
cations Conference (ACSAC2020), Austin, USA.

Dovom, E. M., Azmoodeh, A., Dehghantanha, A., Newton,
D. E., Parizi, R. M., and Karimipour, H. (2019). Fuzzy
pattern tree for edge malware detection and catego-
rization in IoT. Journal of Systems Architecture, 97:1
– 7.

Gibert, D., Mateu, C., and Planes, J. (2020). The rise of
machine learning for detection and classification of
malware: Research developments, trends and chal-
lenges. Journal of Network and Computer Applica-
tions, 153:102526.

Goyal, M., Sahoo, I., and Geethakumari, G. (2019). Http
botnet detection in IoT devices using network traffic
analysis. In 2019 International Conference on Recent
Advances in Energy-efficient Computing and Commu-
nication (ICRAECC), pages 1–6.

HaddadPajouh, H., Dehghantanha, A., Khayami, R., and
Choo, K.-K. R. (2018). A deep recurrent neural net-
work based approach for Internet of Things malware
threat hunting. Future Generation Computer Systems,
85:88 – 96.

Hussain, F., Hussain, R., Hassan, S. A., and Hossain, E.
(2020). Machine learning in IoT security: Current so-

lutions and future challenges. IEEE Communications
Surveys & Tutorials, 22(3):1686–1721.

Hwang, C., Hwang, J., Kwak, J., and Lee, T. (2020).
Platform-independent malware analysis applicable to
Windows and Linux environments. Electronics, 9(5).

Karanja, E. M., Masupe, S., and Jeffrey, M. G. (2020).
Analysis of Internet of Things malware using image
texture features and machine learning techniques. In-
ternet of Things, 9:100153.

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shab-
tai, A., Breitenbacher, D., and Elovici, Y. (2018). N-
BaIoT — network-based detection of IoT botnet at-
tacks using deep autoencoders. IEEE Pervasive Com-
puting, 17(3):12–22.

Nakhodchi, S., Upadhyay, A., and Dehghantanha, A.
(2020). A Comparison Between Different Machine
Learning Models for IoT Malware Detection, pages
195–202. Springer International Publishing, Cham.

Ngo, Q.-D., Nguyen, H.-T., Le, V.-H., and Nguyen, D.-H.
(2020). A survey of iot malware and detection meth-
ods based on static features. ICT Express, 6(4):280–
286.

Nguyen, H., Ngo, Q., and Le, V. (2020). A novel graph-
based approach for IoT botnet detection. Int. J. Inf.
Sec., 19(5):567–577.

Ojo, M. O., Giordano, S., Procissi, G., and Seitanidis, I. N.
(2018). A review of low-end, middle-end, and high-
end IoT devices. IEEE Access, 6:70528–70554.



Figure 7: Box plot of the run time of the detection process for “benign” decision for SIMBIoTA and SIMBIoTA-ML

Oliver, J., Cheng, C., and Chen, Y. (2013). TLSH – A Lo-
cality Sensitive Hash. In 2013 Fourth Cybercrime and
Trustworthy Computing Workshop, pages 7–13, Syd-
ney NSW, Australia. IEEE.

Shobana, M. and Poonkuzhali, S. (2020). A novel ap-
proach to detect IoT malware by system calls using
deep learning techniques. In 2020 International Con-
ference on Innovative Trends in Information Technol-
ogy (ICITIIT), pages 1–5.

Soliman, S. W., Sobh, M. A., and Bahaa-Eldin, A. M.
(2017). Taxonomy of malware analysis in the IoT.
In 2017 12th International Conference on Computer
Engineering and Systems (ICCES), pages 519–529.

Su, J., Vasconcellos, D. V., Prasad, S., Sgandurra, D., Feng,
Y., and Sakurai, K. (2018). Lightweight classifica-
tion of IoT malware based on image recognition. In
2018 IEEE 42nd Annual Computer Software and Ap-
plications Conference (COMPSAC), volume 02, pages
664–669.

Sun, H., Wang, X., Buyya, R., and Su, J. (2017).
CloudEyes: Cloud-based malware detection with re-
versible sketch for resource-constrained Internet of
Things (IoT) devices. Software: Practice and Experi-
ence, 47(3):421–441.

Takase, H., Kobayashi, R., Kato, M., and Ohmura, R.
(2020). A prototype implementation and evaluation
of the malware detection mechanism for IoT devices

using the processor information. International Jour-
nal of Information Security, 19.

Tamás., C., Papp., D., and Buttyán., L. (2021). SIMBIoTA:
Similarity-based malware detection on IoT devices. In
Proceedings of the 6th International Conference on
Internet of Things, Big Data and Security - IoTBDS,,
pages 58–69. INSTICC, SciTePress.

Ucci, D., Aniello, L., and Baldoni, R. (2019). Survey of ma-
chine learning techniques for malware analysis. Com-
puters & Security, 81:123 – 147.

Ye, Y., Li, T., Adjeroh, D., and Iyengar, S. S. (2017). A
survey on malware detection using data mining tech-
niques. ACM Computing Surveys, 50(3).


