
INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 1

IoT Hacking – A Primer
Dorottya Papp, Kristóf Tamás, and Levente Buttyán

Abstract—The Internet of Things (IoT) enables many new
and exciting applications, but it also creates a number of new
risks related to information security. Several recent attacks on
IoT devices and systems illustrate that they are notoriously
insecure. It has also been shown that a major part of the
attacks resulted in full adversarial control over IoT devices, and
the reason for this is that IoT devices themselves are weakly
protected and they often cannot resist even the most basic attacks.
Penetration testing or ethical hacking of IoT devices can help
discovering and fixing their vulnerabilities that, if exploited,
can result in highly undesirable conditions, including damage
of expensive physical equipment or even loss of human life. In
this paper, we give a basic introduction into hacking IoT devices.
We give an overview on the methods and tools for hardware
hacking, firmware extraction and unpacking, and performing
basic firmware analysis. We also provide a survey on recent
research on more advanced firmware analysis methods, including
static and dynamic analysis of binaries, taint analysis, fuzzing,
and symbolic execution techniques. By giving an overview on
both practical methods and readily available tools as well as
current scientific research efforts, our work can be useful for
both practitioners and academic researchers.

Index Terms—IoT security, ethical hacking, penetration test-
ing, embedded firmware analysis, binary program analysis.

I. INTRODUCTION

THE Internet has grown beyond a network of laptops,
PCs, and large servers: it also connects millions of small

embedded devices. This new trend is called the Internet of
Things, or IoT in short, and it enables many new and exciting
applications. At the same time, however, it also creates a
number of new risks related to information security.

On the one hand, embedding computers into everyday ob-
jects and connecting them to the Internet exposes our physical
world to attacks originating from the cyber space. This means
that cyber attacks may have physical consequences, including
damage of physical equipment or even loss of human life.
Probably, the most famous example for this is the Stuxnet
worm [1], which was used in an attack targeting a uranium
enrichment plant in Iran to compromise embedded industrial
controllers and to physically damage the uranium centrifuges
that they controlled [2]. Another famous example is the proof-
of-concept attack on the Jeep Cherokee SUV [3], in which two
security researchers remotely took control over a vehicle while
it was running on the highway. Besides these famous cases,
there are many other examples for cyber attacks on network
connected embedded systems (essentially IoT applications),
where the consequences were or could have been highly
undesirable, including an attack on the Ukrainian power grid

The authors are affiliated with the CrySyS Lab at the Department of
Networked Systems and Services of the Budapest University of Technology
and Economics, e-mail: (see http://www.crysys.hu/).

Kristóf Tamás is currently with Ukatemi Technologies.
Manuscript received: February 2019; revised: May 2019.

that resulted in an hour long black-out in the city of Kiev [4],
an attack on a steel mill in Germany that resulted in “massive
damage to the system” [5], and a potential attack that installed
malware on pacemaker devices that could have resulted in a
fatality [6].

The other side of the coin is that embedded devices with no
or weak protection, when connected to the Internet, can put
Internet based services and the Internet infrastructure itself
at risk. Indeed, weakly protected WiFi routers, web cameras,
and other “smart” devices connected to the Internet are low
hanging fruits for attackers that they can use to build a massive
attack infrastructure. An example for this is the Mirai botnet
[7], which consists in millions of compromised IoT devices
and which was used in the largest DDoS (Distributed Denial
of Service) attack ever targeting the Domain Name System
of the Internet and making popular Internet based services
unavailable [8].

The general insecurity of the Internet of Things is a prob-
lem, and researchers have started to investigate what it stems
from and how to address it. In a recent survey [9], the authors
performed a comprehensive study on reported attacks and
defenses in the IoT domain with the goal of understanding
what goes wrong with existing IoT applications in terms of
security. They identified 5 major problem areas: unconditional
trust in the local network and in the physical environment an
IoT device is operating in, over-privileging mobile applications
used to control IoT devices, no or weak authentication, and
implementation flaws. The study found that a major part of the
attacks resulted in full adversarial control over IoT devices.
The reason for this is that IoT devices themselves are weakly
protected and they often cannot resist even the most basic
attacks.

Whether IoT devices can be made more resistant to attacks
in a cost efficient way is an open question and subject to
intense research. However, even if future devices will be more
secure, there are millions of devices already deployed, and
it is also important to understand the level of security that
they provide. This can usually be measured to some extent by
penetration testing or ethical hacking methods. Hacking IoT
devices can be fun, because it combines traditional hacking
methods with some hands-on physical experience, but more
importantly, it is also a very useful activity that can help
discovering and fixing vulnerabilities in IoT devices that, if
exploited, can result in highly undesirable conditions, as we
saw above.

In this paper, we give a basic introduction into hacking
IoT devices. We begin with giving an overview on hardware
hacking, as IoT hacking is often started by disassembling
the IoT device under study. The vulnerabilities that can be
exploited to gain full adversarial control over a device can
often be found in the device’s firmware. Therefore, we con-

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 2

tinue our introduction by explaining how the firmware can be
extracted from the devices and unpacked. Then, we briefly
summarize some basic firmware analysis methods and tools
that aim at identifying hard-coded secrets, misconfigurations
of the device, and simple bugs in scripts. Most of these tools
are open source and freely available on the Internet, and we
provide references to them. Finally, we complete our primer on
IoT hacking by providing a survey on more advanced analysis
methods, including static and dynamic analysis of binaries,
taint analysis, fuzzing, and symbolic execution. Advanced
binary analysis of embedded firmware is still an active area
of research, hence, instead of tools readily available on the
Internet as in the case of basic firmware analysis, advanced
methods are mainly described in scientific publications. Ac-
cordingly, we provide references to the most relevant papers
in this exciting research domain. We hope that this duality
(i.e., giving an overview both on practical methods and readily
available tools, as well as on current scientific research efforts)
makes our work useful for both practitioners and academic
researchers.

II. HARDWARE HACKING

In the IoT context, the IoT device being analyzed is often
physically accessible to the hacker, which allows him/her to in-
spect the hardware components of the device, including chips
and connectors soldered on the motherboard, and peripherals
attached to it. Inspection of the hardware can be carried out
in three phases:

1) Hardware reconnaissance without opening the de-
vice: In this phase, the main objective is to collect
publicly available information about the hardware at
hand, mainly from the Internet, as whatever informa-
tion is discovered in this phase can be used later in
the analysis. For instance, the serial or model number
printed on the device may allow for the identification
of data sheets or manuals on the Internet, which might
include important information about the device. Wireless
devices produced or used in the USA have an FCC ID
(Federal Communication Commission Identifier) printed
on them, which one can use to look up information on
different web sites1. These web pages usually contain
more information about the device than its data sheet,
including the labelled motherboard, I/O (Input/Output)
pins, test reports, and external and internal photos about
the device. For the later phases, it is vital to identify
the power requirements of the device and the needed
adapters. The most important information include the
level of amperage, the level of voltage, and the polarity.
From the data sheets and photos, or by visually exam-
ining the device, it is also important to identify whether
it has any kind of tamper protection, because opening a
tamper protected device can lead to irreversible damage
of the hardware. Finally, it might be possible to obtain
public information about some known vulnerabilities of
the device, which may be exploited without opening the
housing of the device.

1e.g., fccid.gov or fccid.io

2) Opening the housing of the device and inspecting
the motherboard: This phase usually requires more
electrical engineering knowledge. Most importantly, it
might be impossible to re-assemble the device into its
original state after dismantling. Therefore, photos and
notes have to be made and taken during the disman-
tling process. Once the device is open, the chips, pins,
and interfaces on it can be inspected. With the chip
identifiers found, a search on different web databases2

can determine the purpose of the chip (e.g. processor,
flash, RAM) and the function of its pins. In addi-
tion, the external communication interfaces, such as
UART (Universal Asynchronous Receiver-Transmitter)
or JTAG (Joint Test Action Group), are identified in
this phase, as well as signs of use of communication
protocols, such as SPI (Serial Peripheral Interface) or
I2C (Inter-Integrated Circuit).

3) Desoldering the chips form the motherboard (if
necessary): Sometimes, the pins of a chip cannot be
accessed without desoldering the chip from the moth-
erboard. For instance, to dump the content of a flash
chip, the chip might need to be desoldered from the
motherboard in order to solder it to an external adapter
with connectable pins.

At the end of this phase, profound knowledge is gained
about how the analyzed IoT device works at the hardware
level. The next stage could be dumping the firmware from the
device via SPI, gaining root access to the device via UART,
or looking for vulnerabilities using JTAG. We discuss these
techniques in the following sections.

A. The UART interface and protocol

UART (Universal Asynchronous Receiver-Transmitter) is
an asynchronous serial communication protocol. Being asyn-
chronous, no external clock is required for synchronization,
but communicating parties must agree on the speed of the
communication, the so called baud rate. The most common
baud rate values are 9600, 19200, 38400, 57600 and 115200
bps.

A hardware UART port has at least four pins: voltage (Vcc),
Ground (Gnd), Transmit (Tx), and Receive (Rx). The Tx pin
is used to transmit data from the device to another connected
device, while the Rx pin is used to receive data from the other
device. The communication is usually full duplex, meaning
that both parties can transmit bits at the same time.

In IoT devices, the UART protocol is used to display
debug information, or to configure or repair the device. For
instance, if the device has a software malfunction and its web
interface is unavailable, one approach to fix it is to make a
wired connection to the device through its UART port. From
the hacking point of view, UART can be used to collect
information about the device’s bootloader, operating system,
and configuration. The steps to connect to an IoT device are
the following:

2e.g., datasheets.com, arrow.com, datasheetcatalog.com, alldatasheet.com,
microchip.com

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 3

Fig. 1. UART ports on the TP-Link W8951ND router

Fig. 2. An UART-to-USB converter device

• Identifying UART ports and pinouts: After removing
the cover from the device, potential UART ports must
be identified. The pins might be explicitly labeled on the
motherboard or the four UART signals can be matched
to the pins. In order to identify the pins, the board can
be analyzed visually, or by using a multimeter or a logic
analyzer. Figure 1 shows part of the motherboard of the
TP-Link TD-W8951ND router where the UART pins are
visible.

• Connecting the UART pins to a computer: After having
identified the UART pins, the device has to be connected
to a computer. For this step, special hardware is needed
which can translate between USB and UART. These
devices are usually called USB-to-TTL or UART-to-USB
devices. An example is shown in Figure 2.

• Identifying the baud rate: In order to communicate with
the device, the correct baud rate has to be identified.This
can be done by trying the most common values manually.
Also, there are open source scripts available for this
purpose, such as baudrate.py3.

• Interacting with the device: Besides the baud rate, the
data frame configuration of the IoT device is also needed
for proper communication. That can be determined in
three ways: the vendor may have described it in the
product manual, it might have been posted on a forum on
the web, or it can be determined by trying the common
frame configurations exhaustively. Once everything has
been set, one can communicate with the device via UART
by using off-the-shelf programs such as: minicom4,
screen5, dterm6, picocom7, or serialclient8.
To interact with a serial port, root privileges are required.

3https://github.com/devttys0/baudrate
4https://help.ubuntu.com/community/Minicom
5https://www.gnu.org/software/screen/manual/screen.html
6http://www.knossos.net.nz/resources/free-software/dterm/
7https://github.com/npat-efault/picocom
8https://github.com/flagos/serialclient

After a successful connection, some devices may require
login credentials. Common username/password combinations
can be tried to gain access to the device nevertheless. In other
cases, UART connection to the device gives access to the boot-
loader, a command line interface (CLI) or a shell. However,
the received shell may be non-interactive, nevertheless, useful
information can be gathered about the device.

B. The SPI protocol

SPI (Serial Peripheral Interface) is a synchronous serial
communication bus protocol for short distance communica-
tion. SPI operates in a one-master-many-slaves setting, where
one master (usually the CPU) controls a Slave Select (SS) wire
for each slave. The master initiates communication with a slave
by pulling down its SS wire. Also, the master is responsible
for generating the clock signal. Like UART, SPI is also a full
duplex protocol. Even when one party has no output to send,
dummy data is sent on the affected line.

The communication takes place on four lines:

• Serial Clock (SCLK): The clock signal coming from the
master. The clock speed must not exceed the maximum
guaranteed clock speed of the selected slave.

• Master-Out-Slave-In (MOSI), sometimes Data In (DI):
Communication line for sending data from the master to
the selected slaves.

• Master-In-Slave-Out (MISO), sometimes Data Out (DO):
Communication line for sending data from the selected
slave to the master.

• Slave Select (SS): Signals to the slave that the master has
initiated communication with it.

From the hacker’s point of view, the SPI protocol is usually
used to dump the content of an EEPROM or a Flash Memory,
which typically implement the SPI protocol and store pro-
grams or persistent data.

Exploitation of SPI has similar steps to those of UART
exploitation: Firstly, the chip of interest has to be identified
and its pins must be matched to the lines described above.
Then, the chip has to be connected to a computer, which can
be done either with or without desoldering it. Communicating
with the chip without desoldering is made possible by special
clips such as the one shown in Figure 3. One challenge is
that communication with the chip requires it to be powered
up. Powering up the entire device is an option, but there can
be interference on the chip’s legs whenever the CPU tries
to communicate with it. If the data sheet specifies the exact
voltage level on which the chip should be used, the specified
power can be directly applied to the chip from a DC power
supply. If the legs are unreachable, then desoldering the chip
and soldering it to an SPI Flash or EEPROM adapter is the
only option left.

Communicating with the chip using the SPI protocol needs
an SPI-to-USB adapter or bridge, such as Bus Pirate9, a
multifunction tool capable of UART, SPI, I2C and JTAG com-

9https://www.sparkfun.com/products/12942

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 4

Fig. 3. SPI test clip

Fig. 4. JTAG interface

munications. Special software is also needed on the connected
computer, such as SPIFlash10, or flashrom11.

C. The JTAG interface

JTAG (named after the Joint Test Action Group which
specified it) is an industry standard for verifying designs and
testing printed circuit boards after manufacture. Essentially,
JTAG specifies the use of a dedicated port that implements a
serial communications interface for accessing different signals
on the board without requiring direct access to the system
address and data buses.

JTAG has other higher level usage, namely debugging,
which makes it possible to set breakpoints, view register and
memory content, and dump the firmware. The beginning of the
workflow to exploit a device through JTAG is quite similar
to that of UART and SPI: identifying the JTAG pins (see
Figure 4 for an example), connecting the device to a computer
through JTAG and an adapter device like Bus Pirate mentioned
above, and interacting with the device. Interaction is handled
on the connected computer by an appropriate tool, such as
OpenOCD12.

OpenOCD uses special configuration files to communicate
with the devices. There are many build-in configuration files,
but new configurations can be created as well. However,
this requires special knowledge about the device, such as
its CPU architecture, endianness, TAP (Test Access Port)
controller configuration, clock speed, etc. After finding or
creating the configuration files, and connecting the device and
the computer, OpenOCD accepts telnet connections at port

10https://github.com/LowPowerLab/SPIFlash
11https://www.flashrom.org/Flashrom
12http://openocd.org

4444 and gdb connections at port 3333, which can be used
to interact with the device.

III. FIRMWARE EXTRACTION

The firmware is the low level code running on the IoT
device that handles access to its hardware components and
peripherals, and provides general services to higher level
programs, such as an application. In this paper, we consider
the operating system (if there is any) of the device as part of
its firmware, which is a quite common approach in the domain
of embedded systems.

The firmware usually consists of three main parts:
• Bootloader: A piece of low level code that initializes the

hardware and loads the main operating system. Basically,
it is the first program that is executed after switching a
device on or after a reset. The bootloader might execute
in two stages: in the first stage, only very basic code
runs which loads code for the second stage, loading the
operating system. This allows the second stage to be
updated, while the first stage remains static. Common
bootloaders used on embedded devices include Das U-
Boot13, MCU Boot14, RedBoot15, iBoot16, BareBox17,
Bootbase and CFE18. Bootloaders may have vulnerabili-
ties, which might be found by tools such as BootStomp19,
a bootloader bug finder for ARM architectures. Vulner-
abilities in a bootloader may be exploited by malware,
such as UbootKit [10], with the aim of loading a modified
operating system and applications, i.e., to compromise the
entire device.

• Operating system (OS): The operating system provides
an execution environment for applications. The OS kernel
is the core component of the operating system, which is
loaded and started by the bootloader. There is a wide
range of operating systems used in embedded devices,
ranging from more complex ones like Linux to less
complex ones like eCos. The most common operating
systems used by IoT devices are Linux20, VxWorks21,
eCos22, OpenWRT23, Junos OS24 and uCOS25. Like
the bootloader, the operating system might also contain
security holes, but finding these are not trivial either. We
discuss some of the approaches later in Section V.

• File system: The file system contains configuration files,
libraries, development environments, and application pro-
grams run by the device. Many IoT devices ship with web
servers on them, allowing for web based remote config-
uration of the device. Such applications are of particular

13https://www.denx.de/wiki/U-Boot
14https://github.com/runtimeco/mcuboot
15https://sourceware.org/redboot/
16https://www.theiphonewiki.com/wiki/IBoot_(Bootloader)
17https://www.barebox.org/
18https://en.wikipedia.org/wiki/Common_Firmware_Environment
19https://github.com/ucsb-seclab/BootStomp
20https://www.elinux.org/Main_Page
21https://www.windriver.com/products/vxworks/
22https://www.ecoscentric.com/ecos/index.shtml
23https://openwrt.org/
24https://www.juniper.net/us/en/products-services/nos/junos/
25https://www.micrium.com/rtos/

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 5

interest to hackers, because finding vulnerabilities in them
does not require special embedded systems background.
There are many different file systems for embedded
devices including SquashFS26, UBIFS27, YAFFS228, and
JFFS229.

A. Obtaining the Firmware

The firmware image of the IoT device can sometimes be
found on the vendor’s support page, although the image is
often only partial. The complete firmware contains the entire
file system, whereas a partial firmware image only contains
some part of it (typically updated binaries or configuration
files). However, even a partial firmware can reveal potential
security flaws in older devices, because it usually contains
updates that fix security holes. By comparing the updated files
with their old versions, the vulnerability fixed in the update
can be identified.

Even if the firmware image cannot be obtained from the ven-
dor’s support page, it may have already been made available
on the Internet by other parties. However, firmware images
obtained in this manner should be handled cautiously; they
might be modified or their version might be different from
the one on the device. The process is also time consuming,
but in case of success, the exact binary that is present on the
device can be obtained, potentially including the bootloader
and the OS kernel. If the firmware image cannot be found on
the Internet, it can be dumped from the device using the serial
communication protocols presented in Section II.

Some devices have over-the-air (OTA) firmware update
functionality, which can be initiated manually or automati-
cally. During the update, a new (partial) firmware image is
downloaded from the Internet, and hence, it can be captured
with sniffing or man-in-the-middle techniques.

Finally, the simplest IoT devices like smart plugs, smart
light bulbs, and smart locks usually come with mobile appli-
cation used to manage them. Often such a mobile application
contains a URL where the original firmware or firmware
update can be downloaded from, but which is not indexed
by search engines. Reverse engineering the mobile application
can provide the hacker with that URL.

B. Unpacking the firmware

The complete firmware image is usually packed into a single
compressed or archived file with the file system and the OS
kernel. The file also contains a license file or user manual and a
binary file. This binary file contains the firmware image, and is
sometimes encrypted. The files packed within the binary may
be further compressed or archived individually. In addition, the
file system component can be stored in a special format. All in
all, unpacking the firmware image usually requires to deal with
encryption, compression and archive formats, and file system
formats. The de facto standard tool used for unpacking is

26http://squashfs.sourceforge.net
27http://www.linux-mtd.infradead.org/doc/ubifs.html
28https://yaffs.net
29http://www.linux-mtd.infradead.org/doc/jffs2.html

called binwalk30, an advanced pattern matching tool capable
of analyzing and extracting the content of a firmware image
for a large number of different formats and encodings.

1) Dealing with encryption: Dealing with encryption is a
challenge. The encryption algorithm and the entire encryption
process might not be well-documented, and use proprietary
methods. Even if a standard encryption algorithm, such as
AES, is used, the keys are usually not readily available. The
keys may be stored in tamper resistant hardware on the device,
in which case, decrypting the firmware is near impossible.
However, if the keys are stored in regular persistent memory
which is not tamper resistant, then they can be extracted and
the firmware can be decrypted.

To figure out whether the firmware is encrypted or not,
entropy based analysis can be used, which is supported by
binwalk. For an encrypted image, the entropy is flat across
the entire binary and its value is close to 1. For a non-encrypted
image, the entropy is not flat, its value is usually lower than
1, and it contains fluctuations across the entire file (i.e., there
are sections with very low entropy values).

2) Dealing with compression: The different parts of the
firmware are usually compressed or archived. Compression
is used to save storage space, while archiving creates one
single file from several files and directories. Compression
and archives can be dealt with in almost the same way.
There are many compression methods and archive formats, but
binwalk can identify many of these methods and formats by
searching for their magic numbers in the binary.
binwalk can find out if the file is compressed or archived

even if the algorithm or format is unknown to the program,
however, it cannot extract the content. In this case, one can
try to find the decompression or extraction code in the non-
volatile memory of the device. This, however, is difficult and
requires deep technical skills.

3) Interpreting the file system: The file system becomes
available after identifying, extracting, and decrypting the
firmware image. It defines how files and directories are stored,
accessed, and retrieved. A file system is just a binary blob
in the firmware image, and its type can be identified based
on signatures, just like in case of compressions and archives,
but this method is typically more complex and less reliable
for file systems. Extracting the file system content requires
interpreting the structure, extracting the files, and placing them
in the host file system. binwalk can identify and unpack
many popular file systems, including those discussed at the
beginning of this section.

4) What if binwalk fails?: It might seem for the reader
that binwalk can unpack any firmware images. This is
indeed true for common Linux-based firmware images in most
of the cases. However, in case of special, proprietary firmware
formats, binwalk may fail, as such formats may not use
magic numbers or their extraction methods may be unknown
to binwalk. However, even in such cases, binwalk may
output useful information that can give clues regarding where
to look for special tools that might work.

30http://binwalk.org

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 6

IV. BASIC FIRMWARE ANALYSIS

This section covers some basic analysis methods and tools,
which can be used mainly on the non-binary parts of the
firmware (e.g. text based config files and scripts in the file sys-
tem). Analyzing the binary content requires advanced methods
and tools, which we will discuss in details in Section V.

The main goal of basic firmware analysis is to find hard-
coded secrets (e.g., passwords or keys) contained in non-
binary files, such as configuration files, password files, and
scripts (e.g., shell, Python, JavaScript, and Perl scripts, or
alike). More specifically, the potentially collectable informa-
tion include hard-coded credentials (e.g., username/password),
private keys, encryption keys, API (Application Programming
Interface) keys, access tokens, authentication cookies, and
sensitive URLs or IP addresses. The file system may also store
in readable format configuration files, lightweight database
files, and password files that may contain useful informa-
tion. In addition, it is also possible to figure out from the
configuration files and scripts what services the device runs
(e.g., telnet, ssh, ftp, http). Sometimes, basic firmware
analysis may also include identifying common configuration
errors in configuration files and exploitable programming bugs
in scripts.

Useful tools for analyzing non-binary files include the
following:
• grep/egrep: the de facto pattern matching tool on Linux.

It can be used to search for strings like ’passwd’, ’pass-
word’, ’telnet’, ’ssh’, ’secret’, etc. within all files in the
file system.

• find: a tool that can find files by their attributes (content,
name, permissions, type) with regular expressions.

• firmwalker31: a bash script that searches through the
file systems for all the above mentioned keywords (pass-
words, keys, URLs, etc.) using grep and find, and
saves the result in a text file.

• firmflaws32: a standalone Django web server, which uses
other basic analysis tools to extract and analyze the
contents of a firmware file. It expects a single packed
firmware image as input, and it tries to extract its content
(with binwalk) and analyze it.

A. Example: Basic analysis of the firmware of the D-Link
DWR-932 WiFi router (version 4.00b05 Revision D)

For illustration purposes, we present here the result of our
basic analysis of the firmware of the D-Link DWR-932 WiFi
router.

We ran firmwalker on the firmware, which found nearly
1500 files. Some of those files contained interesting strings.
We excluded the standard Linux binaries, and the HTML and
JavaScript files, and manually analyzed the remaining files.

The file system contained the /etc/passwd, the
/etc/shadow and the /etc/group files, which hold
information about the users, their passwords, and the groups,
respectively, on the system. Checking these files revealed that
the default root password was empty:

31https://github.com/craigz28/firmwalker
32https://github.com/Ganapati/firmflaws

$ cat /etc/shadow
root::17121:0:99999:7:::
...

Furthermore, the /etc/securetty file, which lists the
terminals on which root is allowed to login, contained the
serial console ttyS0, the USB dongle terminal ttyUSB0,
and the standard consoles from tty1 to tty63.

The file /etc/miniupnpd/miniupnpd.conf con-
tains the default UPnP (Universal Plug and Play) configura-
tion. UPnP was enabled on port 8201, with secure mode off
and possible connections from any port and any host:

$ cat /etc/miniupnpd/miniupnpd.conf
...
port=8201
...
enable_upnp=yes
...
secure_mode=no
...
allow 0-65535 0.0.0.0/0 0-65535

We also found the possible WPA (WiFi Protected Access)
passphrase 1234567890 and the possible WPS (WiFi Protected
Setup) pin code 12345670 in multiple configuration files.

We identified that Dropbear (a lightweight SSH service)
was present in the firmware, however, its automatic start was
commented out:

$ cat /etc/init.d/dropbear
...
#start-stop-daemon -S \
-x "$DAEMON" -- $KEY_ARGS \
-p "$DROPBEAR_PORT" $DROPBEAR_EXTRA_ARGS

Dnsmasq 2.55 (a lightweight DNS and DHCP server) was
also present and started automatically. However, versions
lower than 2.78 have serious known vulnerabilities33, although
they can only be exploited when Dnsmasq is configured as a
DHCPv6 server, which was not the case on this router.

V. ADVANCED FIRMWARE ANALYSIS

In this section, we give an overview on some advanced
techniques used for uncovering vulnerabilities in firmware.
As the presented techniques can focus on either the firmware
image or the binary executables stored on the filesystem, we
will refer to the analyzed piece of code simply as binary code.

Traditionally, analysis techniques can be categorized as
either static or dynamic analysis techniques. Static techniques
interpret instructions of the binary code and perform analysis
in an abstract domain. These techniques scale well and can
handle large code bases which makes them particularly use-
ful for analyzing whole firmware images. Additionally, they
require no test bed or platform. Coupled with the previous
advantage, static analysis is a natural choice for performing
large-scale analysis of firmware images [11]. However, with-
out runtime information, such techniques often produce false
positives, e.g. report vulnerable segments of code which cannot
be executed in real life.

33https://github.com/google/security-research-pocs/tree/master/
vulnerabilities/dnsmasq

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 7

On the other hand, dynamic techniques analyze code as it
runs on its intended platform. As a result, these techniques
have access to runtime information, which allows for more
precise results. However, dynamic techniques cannot provide
information on behavior which has not been observed. As a
result, these techniques are prone to false negatives, e.g. not all
vulnerabilities may be reported. Additionally, analysis requires
a test environment, which poses several challenges for IoT
devices.

The advantages and disadvantages of both categories are
complementary to each other and are often combined to
achieve better results. Static analysis techniques are usually
performed first, in order to focus dynamic analysis techniques
to potentially vulnerable parts of the analyzed piece of code. In
return, dynamic techniques can verify the results of static anal-
ysis and reduce false positives. As a result, the most advanced
analysis techniques in literature cannot be categorized as either
static or dynamic analysis, but instead inherit techniques from
both categories.

The remainder of this section is structured as follows. We
discuss the challenges of analyzing binary instructions in Sec-
tion V-A and those of test environments for dynamic analysis
techniques in Section V-B. Then, we discuss approaches to
quickly find potentially vulnerable components in Section V-C
and present three advanced analysis techniques: taint analysis
in Section V-D, fuzzing in Section V-E and symbolic execution
in Section V-F.

A. Challenges of analyzing binary instructions

In order to start analysis, the entry point of the binary has
to be determined. This is easy for applications in known file
formats (e.g. ELF for Linux-based systems), but challenging
for proprietary formats and the firmware image itself. [12]
overcame this challenge by analyzing jump tables in the image
and starting analysis from multiple potential addresses.

In addition, precise analysis requires context sensitivity, i.e.,
all call and return sites have to be recovered accurately. While
certain architectures have specific instructions for calling and
returning from functions, other architectures can achieve the
same semantics with indirect jumps. As an example, let us
consider the ARM platform, in which the program counter
(pc) is a general purpose register and the return address is
stored in the link register (lr). The following (non-exhaustive)
list of instructions all result in returns from functions:

; Push-pop pair
push lr
pop pc

; Unconditional jump
bx lr ; Used in functions where

; lr is not stored on the stack

; Direct program counter manipulation
mov pc, lr

; Bitwise operations
orr r15, r14, r14 ; pc (r15) = lr (r14)

; bitwise-OR lr (r14)

While dynamic analysis tools have runtime information
available and can accurately compute the call and return
addresses, static analysis techniques are hampered in such
scenarios. Additionally, there are proprietary architectures in
the IoT ecosystem with unknown calling conventions, which
makes streamlining tools a challenge [13].

The IoT ecosystem is a heterogeneous ecosystem with many
architectures, platforms and firmware. This setting presents
several challenges for interpreting binary code and performing
static analysis. Firstly, compiler optimization heavily affects
the resulting binary code and as a result, the same source code
can be compiled into syntactically different, but semantically
equivalent binary instructions. Secondly, the different archi-
tectures and calling conventions present in the IoT ecosystem
make it hard to detect that two sets of instructions compute
the same semantic result. Thirdly, depending of the toolchain
used to compile a piece of code, the resulting binaries may
differ as well.

To overcome these challenges and provide platform indep-
dence, static analysis techniques are typically not performed
on the binary instructions but rather on an intermediate rep-
resentation (IR). The instructions of an IR are often at a
higher level than the binary instructions, however, they still
lack the same semantic information found in source code.
Popular intermediate representations include VEX of valgrind
[14], TCG of QEMU [15] and the LLVM bitcode [16].

B. Setting up a test environment

Dynamic analysis techniques require an analysis environ-
ment in which the analyzed code can be run. If analysis has
access to the underlying hardware or device, those could be
used as the environment. However, most platforms do not
ship with the tools required to turn the device into a test
bed. As a result, significant engineering work is required
before analysis can take place. If analysis has no access to the
underlying hardware, there are multiple approaches to emulate
the platform or certain parts.

Hardware emulation emulates all hardware elements of
the underlying platform, including all its peripherals and
interrupt handling system. This approach works well for
well-understood platforms (e.g. QEMU [15]). However, the
platform may be customized without accessible documentation
which makes adapting existing emulators near infeasible.
Vendors may develop accurate system emulators as part of the
development lifecycle to enable firmware developers to work
parallel to hardware developers. However, such emulators are
usually unavailable to the public and often lack support for
code instrumentation necessary for many security analysis
techniques.

Even if the hardware is unavailable, the kernel could still be
recovered from the firmware image. Emulating the recovered
kernel can give more accurate analysis results. However, the
kernel may be customized to the platform, hampering generic
emulators. [17] overcame this limitation by leveraging the real
device to handle I/O operations, signals and interrupts.

If the kernel cannot be recovered, the file system can still be
booted with a generic kernel [18], assuming that the original

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 8

kernel is based on a generic, available kernel. Applications on
the device can be analyzed, but analysis will not yield precise
results if they rely on a customized kernel.

If analysis concerns only a single binary application from
the file system and the kernel is not customized, then a generic
environment can be emulated for the analyzed application,
constraining its access to objects present on the original file
system. In case of Linux-based IoT platforms, this approach
relies on the Linux kernel’s ability to call an interpreter to
execute an ELF (Executable and Linkable Format) executable
for a foreign architecture.

C. Finding potentially vulnerable components

Many vendors in the IoT ecosystem reuse open source
components, e.g. the Linux kernel for firmware images, which
are customized during the development process [19]. Security
vulnerabilities in final products may come from the original
code, as was the case with the Heartbleed vulnerability34, or
introduced to the product during development. Either way, the
IoT ecosystem is left with potentially tens of thousands devices
with similar vulnerabilities. Significant effort has been put
into finding similar components based on known vulnerable
functions. The main challenge in this area is the sheer number
of devices and firmware images to cover.

In order to perform efficient searches, similarity metrics
and bug patterns are required. Similarity metrics often include
structural features [20], [21], [22], [23] such as the number
of instructions, string and numeric constants or the structure
of the control flow graph (CFG). However, such metrics face
challenges when vulnerable components must be matched
in a cross-platform manner. As discussed before, different
platforms and toolchains can produce vastly different binary
code, even if the original source code is the same.

To handle the heterogeneity of the ecosystem, similarity
metrics capturing semantic information are required. Existing
approaches include checking input-output pairs computed over
higher-level representations, e.g. blocks of IR instructions [24]
and conditional formulas [25]. Recently, machine learning
algorithms have also been leveraged in order to quickly find
code similar to a known vulnerable component [26], [27], [28].

D. Taint analysis

Taint analysis is a technique to detect vulnerabilities re-
sulting from improper data sanitization, i.e. data derived from
untrusted input is used in a security sensitive operation. The
starting points of the analysis are called sources and denote
program points where untrusted, user-controlled data can enter
the analyzed piece of code, e.g. by reading environmental
variables or reading from the standard input. The end points of
the analysis are called sinks and denote security sensitive op-
erations which can be utilized by attackers to carry out attacks,
e.g. jump instructions for circumventing intended control flow.
During analysis, the untrustworthiness of data is signaled by
tainting it and then propagating the taint throughout the code

34https://www.wired.com/2014/04/heartbleed-embedded/ Last visited:
04.02.2019

Fig. 5. Main Components of Fuzzing Tools

according to a taint propagation policy. Vulnerabilities are
detected, if a sink performs operations on tainted data. Note,
however, that program integrity may have been violated before
detection. Taint analysis has been successfully used to identify
security-related crashes [29], [30] and recognizing protocol
parser code in firmware images [31].

The technique can be performed in either static or dynamic
ways. Static taint analysis [32] considers all possible execution
paths starting from sources to sinks but faces the challenge
of accurately identifying and analyzing data flows. Challenges
arise from indirect memory accesses, indirect calls and pointer
aliasing, when the same memory chunck is pointed to by
different names. However, if the device cannot be emulated
accurately, taint analysis can only be performed in a static
manner.

Dynamic taint analysis [33], on the other hand, analyzes a
single execution path and as a result, is able to handle scenarios
challenging for static variants. However, certain challenges still
remain. Undertainting is the error arising from the improper
handling of certain information flows. Since taint analysis
inherently deals with data paths, adding data dependencies to
the taint propagation policy is obvious. However, information
flow may occur through control dependencies as well, which
cannot be computed in pure dynamic analysis as it requires
considering multiple execution paths.

Overtainting (also known as taint spread), on the other
hand, is the error of marking values tainted when they are
derived from a taint source. For example, the ARM instruction
eor r0,r1,r1 computes the bitwise exclusive OR on r1
and itself and then stores the result in r0. No matter the value
of r1, the result will always be 0. However, if the value of r1
is tainted and the taint propagation policy does not exclude the
example scenario, analysis will incorrectly consider the result
tainted as well.

E. Fuzzing

The main idea behind fuzzing [34] is to supply randomly
generated input values to the analyzed piece of code and then
observe how it reacts. Since the input value is random, there is
a high chance that it does not conform with the specification
and will trigger anomalies in the code [35], [36], [37].

Figure 5 shows the high-level overview of the main compo-
nents of fuzzing tools. The generator is tasked with generating

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 9

the random inputs used during analysis. There are three main
types of strategies for input generation:

• Mutation-based strategy: Inputs are generated as a
mutation of valid initial inputs. Initial inputs have to be
specified at the beginning of the fuzzing process. This
strategy is easy to set up even without a priori knowledge
about the analyzed code, but has a low chance to pass
validation checks.

• Generation-based strategy: Requires knowledge of pro-
gram input, usually in the form of a configuration file.
Generated random inputs confirm with the configuration
file and are able to pass validation checks in programs,
reaching deeper code.

• Evolutionary strategy: A feedback loop is used to
supply the generator with information regarding execution
behavior as well as results of other program analysis tech-
niques. This allows for more fine-grained input generation
and can greatly increase code coverage.

State-of-the-art fuzzing tools, like VUzzer [38], afl [39], or
PULSAR [40], usually deploy evolutionary strategies.

The delivery mechanism receives the generated random
inputs and supplies it to the analyzed binary. Depending on
the input, different types of delivery mechanisms are needed,
e.g. messages received over the network have to be delivered
to the analyzed binary in a way that is different from the user
behavior-based inputs on the embedded web server’s graphical
interface.

The monitoring system plays a crucial role in observing the
output of the analyzed binary and detecting faulty behavior.
In case of IoT devices, implementing a monitoring system
is especially challenging because many traditional signals of
faulty behavior are not present on these devices. What is
more, the effects of memory corruption are often less visible
because the analyzed piece of code may become unresponsive
or produce late crashes [41]. There are two main approaches to
implementing the monitoring system. Active probing requires
special inputs to the code to check liveness. This approach was
demonstrated in [42], where heartbeat messages were sent to
the analyzed device over UDP. Passive probing, on the other
hand, retrieves information about the execution state without
alteration.

Fuzzing IoT devices presents unique challenges. In tradi-
tional IT settings, many instances of the same software can be
started and fuzzed in parallel. For embedded devices, a large
number of the same physical device is needed as many of them
do not have the necessary memory and computational power,
resulting in increased costs. Emulating the device could be a
solution, however, there could be infrastructural limits to the
number of devices that can be emulated in parallel. What is
more, after a bug is triggered in the device, a clean state has
to be restored, which often means a full reboot, slowing the
process down.

Additionally, many tools require source code instrumenta-
tion to implement the feedback loop or the monitoring system.
In the IoT ecosystem, the source code is often not available.
Even when it is, a comprehensive toolchain would be required
to recompile it into binary code. As a solution, dynamic binary

Fig. 6. Example ARM Instructions For Demonstrating Symbolic Execution

instrumentation was proposed and is implemented in many
tools, e.g. valgrind [14], Pin [43] or DynamoRIO [44].

F. Symbolic execution

Symbolic execution is an emerging technique for finding
vulnerabilities in IoT firmware images and applications [45].
This technique uses special symbols, symbolic variables, as
values instead of concrete values to explore execution paths.
Throughout this section, we demonstrate symbolic execution
through the example ARM instructions in Figure 6. The
code snippet calls getpid() and executes the instruction
at 0x10508 only if the process ID is less than 200.

The first step of the analysis is the introduction of symbolic
variables. Initially, symbolic variables are unconstrained repre-
senting the fact that a certain register or memory location may
contain anything. In our example, consider the return value of
getpid() an unconstrained symbolic variable.

The potential values of symbolic variables are refined at in-
struction which results in a control flow transitions. If multiple
addresses can be followed, execution splits into multiple in-
stances (forks). Each instance follows a potential control flow
transition and places constraints upon the symbolic variables.
The constraints represent the fact that the actual value held in
the register or memory location had to satisfy the condition
encoded into the branch. In our example, two execution paths
are possible. On Path A, the constraint added to the path
condition tells that the symbolic variable held in r0 has to
be less than 200. On Path B, the added constraint is for the
symbolic variable to be greater or equal to 200. The constraints
collected on an execution path are collectively referred to as
the path condition. Note, that the path condition is taken into
consideration at forks as previously added constraints may
limit the available execution paths.

When an execution path terminates, the path condition can
be solved by a Satisfiability Modulo Theory solver to acquire
concrete values for the symbolic variables. The concrete values
can then be used as test cases: assuming deterministic code,
real-life execution of the analyzed piece of code will follow the
same execution path as symbolic analysis did. In our example,
for Path A, the solver could return any number below 200, e.g.
100. For Path B, it will return a value greater or equal to 200,
e.g. 200. These concrete values can then be used to construct
concrete test cases for both paths, maximizing code coverage
automatically.

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 10

The concepts of symbolic analysis present multiple chal-
lenges for its real-life applications. As the subject has been
discussed in multiple surveys [33], [46], we only give short
descriptions of certain challenges as they are encountered
during binary analysis.

Firstly, as analysis spawns two instances at each branch,
the number of execution paths available for analysis grows
exponentially, presenting serious scalability issues. There are
many program constructs frequently used which result in expo-
nential growth in the number of paths: symbolic loop guards,
symbolic indices, etc. For binary code, symbolic offsets in
memory and symbolic jump addresses can further complicate
analysis. There two existing approaches to mitigate the issue:

• Mixed concrete and symbolic execution: The analyzed
code is segmented into two parts: interesting instructions
are analyzed over the symbolic domain, while uninterest-
ing instructions are analyzed as if they were executed
by the CPU. Segmentation can be determined by the
tool: before an instruction is analyzed, the engine can
check whether any of the operands is symbolic. If there
is such an operand, the instruction is analyzed over
the symbolic domain, otherwise it is analyzed over the
concrete domain. However, given the complexity of some
firmware images, the search space still remains too large
for the mixed approach. In such cases, program slices can
be computed over the firmware image to limit the scope
of the analysis [12].

• Path selection: Unless the number of symbolic variables
is kept at a minimum, the symbolic domain of the mixed
approach may still remain too large to cover. As tools can-
not hope to explore all execution paths, certain execution
paths must be prioritized or abandoned according to some
criterion. There have been numerous proposed criteria
[47] for different application domains, but no universally
effective method has been proposed yet.

Secondly, symbolic analysis engines have to model the
execution environment of the analyzed code. In case of binary
code, the engine has to posses knowledge about the potential
registers a given platform can use, it has to model the memory
and it must also be able to model the side effects certain
instructions have (e.g. by setting flags) as well as interrupts
[47] and hardware interactions [48]. In order to achieve
platform independence, tools can leverage the intermediate
representations discussed in Section V-A.

Finally, symbolic execution can only reason about code it
analyzes, it cannot reason about unseen code. This challenge
arises when specific binary applications are analyzed separated
from the firmware image’s filesystem and/or kernel and it is
known as the environment problem. Unseen code (e.g. library
functions, system calls) can have significant side effects on
the analyzed program, which must be taken into consideration
for precise analysis. One widely used solution is to create
summary functions for such code to model its side effects.
Several symbolic analysis tools (e.g. KLEE [49], EXE [50],
angr [51]) implement this approach.

VI. CONCLUSION

In this paper, we gave a basic introduction into hacking IoT
devices. We first introduced some details on the interfaces and
the protocols at the hardware level that can be useful in a pen-
etration testing context, and we explained how these interfaces
can be identified in the device and how the protocols can be
used for interacting with the device. Next, we summarized the
methods and tools for extracting the firmware of the device and
unpacking it for further analysis. We also gave an overview
on some basic firmware analysis methods and tools that can
be used to find hard-coded passwords and keys, to identify
erroneous configuration settings, and to find simple bugs in
scripts. Finally, we dealt with some more advanced analysis
methods that can be used to discover vulnerabilities in the
binary programs that belong to the firmware. Binary program
analysis is still an active area of research, so we surveyed the
most relevant scientific publications in the domain, including
papers on static and dynamic analysis of binaries, taint analysis
techniques, fuzzing, and symbolic execution of programs.

We deliberately restricted ourselves to hardware hacking
and the analysis of the device’s firmware, as vulnerabilities
in the firmware can lead to full adversarial control over the
device. We note, however, that penetration testing can be
extended to the wireless interfaces of and protocols used by
the device, to the applications running on the device, including
web servers and remote access tools, to the mobile application
that may be provided to remotely configure and control the
device, and to the cloud end-points that the device may connect
and send data to.

Ethical hacking of IoT devices is fun and useful at the
same time. However, it is a relatively new area of research
that still needs to mature. We expect that similarly to the
best practice guides and standards for penetration testing
of networks and web based applications, best practices and
standards for IoT hacking will emerge and evolve in the near
future. In particular, standards for security testing industrial
IoT systems as well as autonomous and connected vehicles
are needed in order to integrate the security testing activity
into the development life cycle of those systems, and hence, to
increase trust in them. In the home IoT area, best practices for
security testing can encourage vendors to pay more attention
to security, and ultimately, raise the bar for attackers to a level
that is acceptable by home users.

ACKNOWLEDGEMENT

The work of Dorottya Papp and Levente Buttyán has
been supported by the SETIT Project35 (Security Enhancing
Technologies for the Internet of Things).

REFERENCES

[1] N. Falliere, L. O’Murchu, and E. Chien, “W32.Stuxnet dossier,” Syman-
tec Technical Report version 1.4., 2011.

[2] R. Langner, “To kill a centrifuge – a technical analysis of what
Stuxnet creators tried to achieve,” online: http://www.langner.com/en/
wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf, 2013.

35Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the
support provided from the National Research, Development and Innovation
Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme.

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 11

[3] A. Greenberg, “Hackers remotely kill a Jeep on the highway – with me
in it,” Wired, July 2015.

[4] ——, “Crash Override: the malware that took down a power grid,”
Wired, June 2017.

[5] K. Zetter, “A cyberattack has caused confirmed physical damage for the
second time ever,” Wired, January 2015.

[6] L. H. Newman, “A new pacemaker hack puts malware directly on the
device,” Wired, August 2018.

[7] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai botnet,”
in Proceedings of the Usenix Security Symposium, 2017.

[8] G. M. Graff, “How a dorm room minecraft scam brought down the
internet,” Wired, December 2017.

[9] N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong, F. Qian,
X. Wang, K. Chen, Y. Tian, C. A. Gunter, K. Zhang, P. Tague, and Y.-H.
Lin, “Understanding IoT security through the data crystal ball: Where
we are now and where we are going to be,” online: https://arxiv.org/pdf/
1703.09809.pdf, March 2017.

[10] J. Yang, C. Geng, B. Wnag, Z. Liu, C. Li, J. Gao, G. Liu, and
W. Yang, “UbootKit: a worm attack for the bootloader of IoT devices,”
in BlackHat Asia Conference, 2018.

[11] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis, “A
large-scale analysis of the security of embedded firmwares.” in USENIX
Security Symposium, 2014, pp. 95–110.

[12] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.” in Network and Distributed Systems Security
Symposium (NDSS), 2015.

[13] M. C. Ang Cui and S. J. Stolfo, “When firmware modifications attack:
A case study of embedded exploitation,” in Network and Distributed
System Security Symposium (NDSS), 2013.

[14] N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07. New
York, NY, USA: ACM, 2007, pp. 89–100. [Online]. Available:
http://doi.acm.org/10.1145/1250734.1250746

[15] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIX Association,
2005, pp. 41–41. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1247360.1247401

[16] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic,
“Formalizing the llvm intermediate representation for verified program
transformations,” in Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’12. New York, NY, USA: ACM, 2012, pp. 427–440. [Online].
Available: http://doi.acm.org/10.1145/2103656.2103709

[17] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares.” in Network and Distributed Systems Security Symposium
(NDSS), 2014.

[18] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in Network and
Distributed Systems Security Symposium (NDSS), 2016.

[19] M. Liu, Y. Zhang, J. Li, J. Shu, and D. Gu, “Security analysis of vendor
customized code in firmware of embedded device,” in Security and
Privacy in Communication Networks, R. Deng, J. Weng, K. Ren, and
V. Yegneswaran, Eds. Cham: Springer International Publishing, 2017,
pp. 722–739.

[20] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code.” in Network and
Distributed Systems Security Symposium (NDSS), 2016.

[21] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 480–491.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978370

[22] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi, L. Wang, and
A. Hanna, “Binarm: Scalable and efficient detection of vulnerabilities
in firmware images of intelligent electronic devices,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, C. Giuffrida,
S. Bardin, and G. Blanc, Eds. Cham: Springer International Publishing,
2018, pp. 114–138.

[23] H. Lin, D. Zhao, L. Ran, M. Han, J. Tian, J. Xiang, X. Ma, and
Y. Zhong, “Cvssa: Cross-architecture vulnerability search in firmware
based on support vector machine and attributed control flow graph,”
in 2017 International Conference on Dependable Systems and Their
Applications (DSA), Oct 2017, pp. 35–41.

[24] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in 2015 IEEE Symposium
on Security and Privacy, May 2015, pp. 709–724.

[25] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Henderson, and
H. Yin, “Extracting conditional formulas for cross-platform bug
search,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’17. New
York, NY, USA: ACM, 2017, pp. 346–359. [Online]. Available:
http://doi.acm.org/10.1145/3052973.3052995

[26] Y. Li, W. Xu, Y. Tang, X. Mi, and B. Wang, “Semhunt: Identifying
vulnerability type with double validation in binary code.” in 29th
International Conference on Software Engineering and Knowledge En-
gineering (SEKE), 2017, pp. 491–494.

[27] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: A
semantic learning based vulnerability seeker for cross-platform binary,”
in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE 2018. New York,
NY, USA: ACM, 2018, pp. 896–899. [Online]. Available: http:
//doi.acm.org/10.1145/3238147.3240480

[28] J. Gao, X. Yang, Y. Fu, Y. Jiang, H. Shi, and J. Sun, “Vulseeker-pro:
Enhanced semantic learning based binary vulnerability seeker with
emulation,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 803–808. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3275524

[29] K. Eom, J. Paik, S. Mok, H. Jeon, E. Cho, D. Kim, and J. Ryu,
“Automated crash filtering for arm binary programs,” in 2015 IEEE 39th
Annual Computer Software and Applications Conference, vol. 2, July
2015, pp. 478–483.

[30] H. Jeon, S. Mok, and E. Cho, “Automated crash filtering using inter-
procedural static analysis for binary codes,” in 2017 IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), vol. 1,
July 2017, pp. 614–623.

[31] Y. Zheng, K. Cheng, Z. Li, S. Pan, H. Zhu, and L. Sun, “A lightweight
method for accelerating discovery of taint-style vulnerabilities in embed-
ded systems,” in Information and Communications Security, K.-Y. Lam,
C.-H. Chi, and S. Qing, Eds. Cham: Springer International Publishing,
2016, pp. 27–36.

[32] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang,
“Dtaint: Detecting the taint-style vulnerability in embedded device
firmware,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), June 2018, pp. 430–441.

[33] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, 2018.

[34] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity,
vol. 1, no. 1, p. 6, Jun 2018. [Online]. Available: https://doi.org/10.
1186/s42400-018-0002-y

[35] Z. Wang, Y. Zhang, and Q. Liu, “Rpfuzzer: A framework for discovering
router protocols vulnerabilities based on fuzzing,” KSII Transactions on
Internet and Information Systems, vol. 7, no. 8, pp. 1989–2009, 2013.

[36] W. Frisby, B. Moench, B. Recht, and T. Ristenpart, “Security analysis of
smartphone point-of-sale systems,” in Proceedings of the 6th USENIX
Conference on Offensive Technologies, ser. WOOT’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 3–3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2372399.2372403

[37] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in 2010 IEEE
Symposium on Security and Privacy, May 2010, pp. 447–462.

[38] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in Network and Dis-
tributed System Security Symposium (NDSS), 2017.

[39] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/, last
visited: Feb 7, 2019.

[40] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful black-box fuzzing of proprietary network protocols,” in
Security and Privacy in Communication Networks, B. Thuraisingham,
X. Wang, and V. Yegneswaran, Eds. Cham: Springer International
Publishing, 2015, pp. 330–347.

INFOCOMMUNICATIONS JOURNAL, VOL. ??, NO. ??, ??? 2019 12

[41] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing embed-
ded devices,” in Network and Distributed System Security Symposium
(NDSS), 2018.

[42] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions
in iot through app-based fuzzing,” in Network and Distributed System
Security Symposium (NDSS), 2018.

[43] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’05. New York,
NY, USA: ACM, 2005, pp. 190–200. [Online]. Available: http:
//doi.acm.org/10.1145/1065010.1065034

[44] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’03. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 265–275. [Online]. Available:
http://dl.acm.org/citation.cfm?id=776261.776290

[45] I. Pustogarov, T. Ristenpart, and V. Shmatikov, “Using program analysis
to synthesize sensor spoofing attacks,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
ser. ASIA CCS ’17. New York, NY, USA: ACM, 2017, pp. 757–770.
[Online]. Available: http://doi.acm.org/10.1145/3052973.3053038

[46] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security
and Privacy, May 2010, pp. 317–331.

[47] D. Davidson, B. Moench, S. Jha, and T. Ristenpart, “Fie on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,”
in Proceedings of the 22Nd USENIX Conference on Security, ser.
SEC’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 463–478.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2534766.2534806

[48] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: system-
wide security testing of real-world embedded systems software,” in
27th {USENIX} Security Symposium ({USENIX} Security 18), 2018,
pp. 309–326.

[49] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[50] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“Exe: Automatically generating inputs of death,” ACM Trans. Inf. Syst.
Secur., vol. 12, no. 2, pp. 10:1–10:38, Dec. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1455518.1455522

[51] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
in 2016 IEEE Symposium on Security and Privacy (SP), May 2016, pp.
138–157.

Dorottya Papp received the MSc degree in Com-
puter Science in 2016 from the Budapest University
of Technology and Economics (BME) and she is
currently pursuing the Ph.D. degree under the su-
pervision of Dr. Levente Buttyán. She joined the
Laboratory of Cryptography and System Security
(CrySyS Lab) during her undergraduate studies at
BME. Since 2015, she has also taken part in research
projects at the Austrian Institute of Technology
(AIT). Her research interests include security assur-
ance, program analysis and security testing of binary

programs. She is involved in research projects in the domain of embedded
systems and the Internet of Things.

Kristóf Tamás received the B.Sc. and M.Sc. de-
grees (Diploma with Honours) in Computer Science
from the Budapest University of Technology and
Economics (BME) in 2017 and 2019, respectively.
As a student, he has done research on identifying
malicious web pages with static analysis and on
penetration testing the Internet of Things under the
supervision of Dr. Levente Buttyán. After grad-
uation, he remained an associate member of the
Laboratory of Cryptography and Systems Security
(CrySyS Lab) and a member of the Lab’s talent

management program. He also has a leading role in the university’s Capture-
The-Flag (CTF) team, called c0r3dump. Kristóf Tamás currently works at
Ukatemi Technologies Kft. - a CrySyS Lab spin-off company - as a junior
security engineer and penetration tester.

Levente Buttyán received the M.Sc. degree in
Computer Science from the Budapest University of
Technology and Economics (BME) in 1995, and
earned the Ph.D. degree from the Swiss Federal
Institute of Technology - Lausanne (EPFL) in 2002.
In 2003, he joined the Department of Networked
Systems and Services at BME, where he currently
holds a position as an Associate Professor and
leads the Laboratory of Cryptography and Systems
Security (CrySyS Lab). He has done research on the
design and analysis of secure protocols and privacy

enhancing mechanisms for wireless networked embedded systems (including
wireless sensor networks, mesh networks, vehicular communications, and
RFID systems). He was also involved in the analysis of some high profile
targeted malware, such as Duqu, Flame, MiniDuke, and TeamSpy. His current
research interest is in security of cyber-physical systems (including industrial
automation and conrtrol systems, modern vehicles, cooperative intelligent
transport systems, and the Internet of Things in general). Levente Buttyán
played instrumental roles in various national and international research
projects, published 150+ refereed journal articles and conference/workshop
papers, and co-authored multiple books and patents. Besides research, he
teaches courses on applied cryptography and IT security at BME and at
the Aquincum Institute of Technology (AIT Budapest), and he leads a talent
management program in IT security in the CrySyS Lab. He also co-founded
multiple spin-off companies, notably Tresorit, Ukatemi Technologies, and
Avatao.

