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Introduction

This document contains new research results in the field of security and privacy in wireless
ad hoc and sensor networks. Wireless ad hoc networks are self-organizing wireless networks of
end-user devices, where all networking services are provided by the devices themselves without
the help of any fixed infrastructure. Such networks will never replace the existing infrastructure
based Internet, but they can provide a new form of wireless access, which has some advantages
over traditional wireless access solutions. Wireless sensor networks represent a special applica-
tion area of ad hoc networking, where the devices are tiny sensors that also have computing
and wireless communication capabilities. The sensors collect measurement data from the en-
vironment, and send their data over multiple wireless hops to a set of few sink nodes, or base
stations, for further processing. From the networking point of view, sensor networks are often
considered to be self-organizing ad hoc networks.

While these new types of wireless networks have potentially useful applications, they also
represent an interesting challenge in terms of security. The most important challenges include
the lack of physical protection and the scarcity of resources. In many applications, such networks
are deployed in an environment where the devices simply cannot be protected by physical means.
In addition, providing tamper resistance for devices is expensive, and therefore, it is not a viable
option in applications where devices must be deployed in large quantities (e.g., sensors) and
hence unit cost must be kept very low. For this reason, we must assume that devices can be
compromised, and we must design our security mechanisms in such a way that they do not fail
in the presence of such compromised devices. For the same reason of economic viability, devices
in wireless ad hoc and sensor networks are usually constrained in terms of CPU power, memory,
communication range and speed, and available energy. Hence, our security mechanisms should
be designed with these resource limitations in mind.

The new security mechanisms that we propose in this document satisfy the above require-
ments: they can tolerate compromised nodes and they also respect the resource constraints of
the environment. We grouped our results into 5 thesis groups as follows:

In the first thesis group (Section 1), we study the problem of securing routing protocols in
wireless ad hoc networks. First, we present new attacks on existing routing protocols. Then, we
propose a mathematical framework in which security of routing can be precisely defined, and
routing protocols for wireless ad hoc networks can be proved to be secure in a rigorous manner.
Our framework is tailored for on-demand source routing protocols, but the general principles
are applicable to other types of protocols too. We also propose a new on-demand source routing
protocol, called endairA, and we demonstrate the usage of our framework by proving that it is
secure in our model.

In the second thesis group (Section 2), we study another aspect of routing in wireless ad
hoc networks, namely, the function of packet forwarding. As mentioned before, wireless ad hoc
networks are often assumed to be fully self-organizing, where the nodes have to forward packets
for each other in order to enable multi-hop communication. This requires the nodes to cooperate,
but nodes may behave selfishly and jeopardize the operation of the network. Here, we study if
cooperation can emerge spontaneously in static wireless ad hoc networks, without any explicit
incentive mechanism. We propose a model based on game theory to investigate equilibrium
conditions of packet forwarding strategies. We give the conditions under which cooperation can
exist sponatneously, and we perform simulations to estimate the probability that the conditions
for a cooperative equilibrium hold. We conclude that in static ad hoc networks – where the
relationships between the nodes are likely to be stable – cooperation is unlikely to emerge
spontaneously and it needs to be encouraged.

In the third thesis group (Section 3), we address the problem of wormhole attacks in wireless
networks. A wormhole is a fast out-of-band connection between two distant physical locations,

2



which is established by the attacker for the purpose of tunneling traffic between those two
locations. Wormholes can mislead neighbor discovery protocols, and they can have serious
negative effects on routing in ad hoc networks. To address this problem, we propose three new
wormhole detection mechanisms. Two of our mechanisms use a centralized approach applicable
in wireless sensor networks, and they are both based on statistical hypothesis testing. Both
mechanisms assume that the sensors send their neighbor list to the base station, and it is the base
station that runs the wormhole detection algorithm on the network graph that is reconstructed
from the received neighborhood information. Our third wormhole detection mechanism follows a
decentralized approach applicable in any ad hoc network, where pairs of nodes can detect locally
if they are connected via a wormhole by using our proposed authenticated distance bounding
protocol.

In the fourth thesis group (Section 4), we address the problem of pollution attacks in coding
based distributed storage systems proposed for wireless sensor networks. In a pollution attack,
the adversary maliciously alters some of the stored encoded packets, which results in the incorrect
decoding of a large part of the original data upon retrieval. We propose algorithms to detect and
recover from such attacks and we study the performance of the proposed algorithms in terms of
communication and computing overhead, and in terms of success rate. In contrast to existing
approaches to solve this problem, our approach is not based on adding cryptographic checksums
or signatures to the encoded packets; rather, we take advantage of the inherent redundancy in
such distributed storage systems.

Finally, in the fifth thesis group (Section 5), we study the problem of efficient privacy pre-
serving authentication in resource constrained environments, such as sensor networks or RFID
systems. More specifically, we improve an approach that was proposed earlier by others. This
approach uses key-trees, and its basic problem is that the level of privacy provided by the sys-
tem to its members decreases considerably if some members are compromised. We analyze this
problem, and show that careful design of the key-tree can help to minimize this loss of privacy.
First, we introduce a benchmark metric for measuring the resistance of the system to a single
compromised member. This metric is based on the well-known concept of anonymity sets. Then,
we show how the parameters of the key-tree should be chosen in order to maximize the system’s
resistance to single member compromise under some constraints on the authentication delay. In
the general case, when any member can be compromised, we give a lower bound on the level of
privacy provided by the system. We also present some simulation results that show that this
lower bound is sharp.
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1 Securing on-demand source routing in wireless ad hoc net-
works

THESIS GROUP 1. I propose new, previously unknown attacks on existing ad hoc network
routing protocols. I propose a novel modeling framework that allows for a precise definition of
routing security, and a corresponding proof technique that can be used to argue about the security
of rotuing protocols. I propose endairA, a new on-demand source routing protocol for ad hoc
networks and prove formally that it is secure in the proposed model. [C4, J1]

Routing is one of the most basic networking functions in wireless ad hoc networks. Hence,
an adversary can easily paralyze the operation of the network by attacking the routing protocol.
This has been realized by many researchers, and several “secure” routing protocols have been
proposed for ad hoc networks (see [23] for a survey). However, the security of those protocols
have been analyzed either by informal means only, or with formal methods that have never been
intended for the analysis of this kind of protocols (e.g., BAN logic [9]).

In this thesis group, we present new attacks on exisiting “secure” routing protocols, which
clearly demonstrate that flaws can be very subtle, and therefore, hard to discover by informal
reasoning. Hence, we advocate a more systematic approach to analyzing ad hoc routing proto-
cols, which is based on a rigorous mathematical model, in which precise definitions of security
can be given, and sound proof techniques can be developed.

Routing has two main functions: route discovery and packet forwarding. The former is
concerned with discovering routes between nodes, whereas the latter is about sending data
packets through the previously discovered routes. There are different types of ad hoc routing
protocols. One can distinguish proactive (e.g., OLSR [14]) and reactive (e.g., AODV [34] and
DSR [26]) protocols. Protocols of the latter category are also called on-demand protocols.
Another type of classification distinguishes routing table based protocols (e.g., AODV) and
source routing protocols (e.g., DSR). In this work, we focus on the route discovery part of on-
demand source routing protocols. However, in [1], we show that the general principles of our
approach are applicable to the route discovery part of other types of protocols too.

At a very informal level, security of a routing protocol means that it can perform its functions
even in the presence of an adversary whose objective is to prevent the correct functioning of
the protocol. Since we are focusing on the route discovery part of on-demand source routing
protocols, in our case, attacks are aiming at achieving that honest nodes receive “incorrect”
routes as a result of the route discovery procedure. We will make it more precise later what we
mean by an “incorrect” route.

Regarding the capabilities of the adversary, we assume that it can mount active attacks (i.e.,
it can eavesdrop, modify, delete, insert, and replay messages). However, we make the realistic
assumption that the adversary is not all powerful, by which we mean that it cannot eavesdrop,
modify, or control all communications of the honest participants. Instead, the adversary launches
its attacks from a few adversarial nodes that have similar communication capabilities to the nodes
of the honest participants in the network. This means that the adversary can receive only those
messages that were transmitted by one of its neighbors, and its transmissions can be heard only
by its neighbors. The adversarial nodes may be connected through proprietary, out-of-band
channels and share information. We further assume that the adversary has compromised some
identifiers, by which we mean that it has compromised the cryptographic keys that are used to
authenticate those identifiers. Thus, the adversary can appear as an honest participant under
any of these compromised identities.

The mathematical framework that we introduce is based on the so called simulation paradigm
[5, 36], which has already been used extensively for the analysis of key establishment protocols,
but we are the first who apply it in the context of ad hoc routing. We also propose a new on-
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demand source routing protocol, called endairA, and we demonstrate the usage of our framework
by proving that it is secure in our model.

1.1 New attacks on existing protocols

THESIS 1.1. I analysed two previously proposed secure ad hoc network routing protocols SRP
[33] and Ariadne [24]. As a result of this analysis, I discovered new, previously unknown attacks
against both protocols. More specifically, I discovered an attack on SRP, an attack on Ariadne
when used with MACs, an attack on Ariadne when used with digital signatures, and an attack
on an optimized version of Ariadne. In all of these attacks, the attacker is able to force the
acceptance of a non-existent route with the initiator of the route discovery procedure of the
routing protocol. [C4, J1]

Due to space limits, here we present only one of the discovered attacks. The interested reader
can find the description of the other attacks in [12] and [2].

Operation of the Ariadne protocol

Ariadne has been proposed in [24] as a secure on-demand source routing protocol for ad hoc
networks. Ariadne comes in three different flavors corresponding to three different techniques
for data authentication. More specifically, authentication of routing messages in Ariadne can
be based on TESLA [35], on digital signatures, or on MACs. We discuss Ariadne with digital
signatures.

The initiator of the route discovery generates a route request message and broadcasts it to its
neighbors. The route discovery message contains the identifiers of the initiator and the target,
a randomly generated request identifier, and a MAC computed over these elements with a key
shared by the initiator and the target. This MAC is hashed iteratively by each intermediate node
together with its own identifier using a publicly known one-way hash function. The hash values
computed in this way are called per-hop hash values. Each intermediate node that receives
the request for the first time re-computes the per-hop hash value, appends its identifier to the
list of identifiers accumulated in the request, and generates a digital signature on the updated
request. Finally, the signature is appended to a signature list in the request, and the request is
re-broadcast.

When the target receives the request, it verifies the per-hop hash by re-computing the initia-
tor’s MAC and the per-hop hash value of each intermediate node. Then it verifies all the digital
signatures in the request. If all these verifications are successful, then the target generates a
route reply and sends it back to the initiator via the reverse of the route obtained from the route
request. The route reply contains the identifiers of the target and the initiator, the route and the
list of digital signatures obtained from the request, and the digital signature of the target on all
these elements. Each intermediate node passes the reply to the next node on the route (towards
the initiator) without any modifications. When the initiator receives the reply, it verifies the
digital signature of the target and the digital signatures of the intermediate nodes (for this it
needs to reconstruct the requests that the intermediate nodes signed). If the verifications are
successful, then it accepts the route returned in the reply.

An attack on Ariadne

Let us consider Figure 1, which illustrates part of a configuration where the discovered attack
is possible. The attacker is denoted by A. Let us assume that S sends a route request towards
D. The request reaches V that re-broadcasts it. Thus, A receives the following route request
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Figure 1: Part of a configuration where an attack against Ariadne is possible

message:
msg1 = (rreq, S, D, id , hV, (. . . ,V), (. . . , sigV))

where id is the random request identifier, hV is the per-hop hash value generated by V, and sigV

is the signature of V. A does not re-broadcast msg1. Later, A receives another route request
from X:

msg2 = (rreq, S, D, id , hX, (. . . ,V,W,X),

(. . . , sigV, sigW, sigX))

From msg2, A knows that W is a neighbor of V. A computes hA = H(A,H(W, hV)), where
hV is obtained from msg1, and H is the publicly known hash function used in the protocol. A
obtains the signatures . . . , sigV, sigW from msg2. Then, A generates and broadcasts the following
request:

msg3 = (rreq, S, D, id , hA, (. . . ,V,W, A),

(. . . , sigV, sigW, sigA))

Later, D generates the following route reply and sends it back towards S:

msg4 = (rrep, D, S, (. . . ,V,W, A, . . .),

(. . . , sigV , sigW , sigA, . . .), sigD)

When A receives this route reply, it forwards it to V in the name of W. Finally, S will output
the route (S, . . . ,V,W, A, . . . ,D), which is a non-existent route.

1.2 The proposed analysis framework

THESIS 1.2. I propose a novel modeling framework that allows for a precise definition of
routing security and rigorous proofs about the security of routing protocols. This model is based
on the simulation paradigm known from the cryptographic literature, but I am the first to apply
it for the analysis of ad hoc network routing protocols. I define the elements of the model and
a corresponding proof technique that can be used in practice. Using the framework, I formally
define what security of the route discovery part of on-demand source routing protocols mean.
[J1]

The attacks we discovered clearly show that security flaws in ad hoc routing protocols can
be very subtle. Consequently, making claims about the security of a routing protocol based on
informal arguments only is dangerous. Hence, we propose a mathematical framework, which
allows us to define the notion of routing security precisely and to prove that a protocol satisfies
our definition of security. It is important to emphasize that the proposed framework is best
suited for proving that a protocol is secure (if it really is), but it is not directly usable to
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discover attacks against routing protocols that are flawed. We note, however, that such attacks
may be discovered indirectly by attempting to prove that the protocol is secure, and examining
where the proof fails.

Our framework is based on the simulation paradigm [5, 36]. In this approach, two models
are constructed for the protocol under investigation: a real-world model, which describes the
operation of the protocol with all its details in a particular computational model, and an ideal-
world model, which describes the protocol in an abstract way mainly focusing on the services
that the protocol should provide. One can think of the ideal-world model as a description of
a specification, and the real-world model as a description of an implementation. Both models
contain adversaries. The real-world adversary is an arbitrary process, while the abilities of the
ideal-world adversary are usually constrained. The ideal-world adversary models the tolerable
imperfections of the system; these are attacks that are unavoidable or very costly to defend
against, and hence, they should be tolerated instead of being completely eliminated. The pro-
tocol is said to be secure if the real-world and the ideal-world models are equivalent, where the
equivalence is defined as some form of indistinguishability (e.g., statistical or computational)
from the point of view of the honest protocol participants. Technically, security of the protocol
is proven by showing that the effects of any real-world adversary on the execution of the real
protocol can be simulated by an appropriately chosen ideal-world adversary in the ideal-world
model.

Configurations and plausible routes

We model the ad hoc network (in a given instance of time) as an undirected graph G(V,E),
where V is the set of vertices, and E is the set of edges. Each vertex represents either a single
non-adversarial node, or a set of adversarial nodes that can share information among themselves
by communicating via direct wireless links or via out-of-band channels. The former is called a
non-adversarial vertex, while the latter is called an adversarial vertex. The set of adversarial
vertices is denoted by V ∗, and V ∗ ⊂ V .

There is an edge between two non-adversarial vertices if the corresponding non-adversarial
nodes established a wireless link between themselves by successfully running the neighbor dis-
covery protocol. Furthermore, there is an edge between a non-adversarial vertex u and an
adversarial vertex v∗ if the non-adversarial node that corresponds to u established a wireless
link with at least one of the adversarial nodes that correspond to v∗. Finally, there is no edge
between two adversarial vertices in G. The rationale is that edges represent direct wireless
links, and if two adversarial vertices u∗ and v∗ were connected, then there would be at least
two adversarial nodes, one corresponding to u∗ and the other corresponding to v∗, that could
communicate with each other directly. That would mean that the adversarial nodes in u∗ and
v∗ could share information via those two connected nodes, and thus, they should belong to a
single vertex in G.

We assume that the adversary has compromised some identifiers, by which we mean that
the adversary has compromised the cryptographic keys that are necessary to authenticate those
identifiers. We assume that all the compromised identifiers are distributed to all the adversarial
nodes, and they are used in the neighbor discovery protocol and in the routing protocol. On the
other hand, we assume that each non-adversarial node uses a single and unique identifier, which
is not compromised. We denote the set of all identifiers by L, and the set of the compromised
identifiers by L∗.

Let L : V → 2L be a labelling function, which assigns to each vertex in G a set of identifiers
in such a way that for every vertex v ∈ V \ V ∗, L(v) is a singleton, and it contains the non-
compromised identifier ` ∈ L\L∗ that is used by the non-adversarial node represented by vertex
v; and for every vertex v ∈ V ∗, L(v) contains all the compromised identifiers in L∗.
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A configuration is a triplet (G(V,E), V ∗,L). Figure 2 illustrates a configuration, where the
solid black vertices are the vertices in V ∗, and each vertex is labelled with the set of identifiers
that L assigns to it. Note that the vertices in V ∗ are not neighboring.

Figure 2: Illustration of a configuration. Adversarial vertices u∗ and v∗ are represented by solid
black dots. Labels on the vertices are identifiers used by the corresponding nodes. Note that
adversarial vertices are not neighboring.

We make the assumption that the configuration is static (at least during the time interval
that is considered in the analysis). Thus, we view the route discovery part of the routing protocol
as a distributed algorithm that operates on this static configuration.

Now, we make it more precise what we mean by an existing route. If there was no adversary,
then a sequence `1, `2, . . . , `n (n ≥ 2) of identifiers would be an existing route given that each
of the identifiers `1, `2, . . . , `n are different, and there exists a sequence v1, v2, . . . , vn of vertices
in V such that (vi, vi+1) ∈ E for all 1 ≤ i < n and L(vi) = {`i} for all 1 ≤ i ≤ n. However,
the situation is more complex due to the adversary that can use all the compromised identifiers
in L∗. Essentially, we must take into account that the adversary can always extend any route
that passes through an adversarial vertex with any sequence of compromised identifiers. This
is a fact that our definition of security must tolerate, since otherwise we cannot hope that any
routing protocol will satisfy it. This observation leads to the following definition:

Definition 1.1 (Plausible route). Let (G(V,E), V ∗,L) be a configuration. A sequence `1, `2, . . . , `n
of identifiers is a plausible route with respect to (G(E, V ), V ∗,L) if each of the identifiers
`1, `2, . . . , `n is different, and there exists a sequence v1, v2, . . . , vk (2 ≤ k ≤ n) of vertices in
V and a sequence j1, j2, . . . , jk of positive integers such that

1. j1 + j2 + . . .+ jk = n,

2. {`Ji+1, `Ji+2, . . . , `Ji+ji} ⊆ L(vi) (1 ≤ i ≤ k), where Ji = j1 + j2 + . . . + ji−1 if i > 1 and
Ji = 0 if i = 1,

3. (vi, vi+1) ∈ E (1 ≤ i < k).

Intuitively, the definition above requires that the sequence `1, `2, . . . , `n of identifiers can
be partitioned into k sub-sequences of length ji (condition 1) in such a way that each of the
resulting partitions is a subset of the identifiers assigned to a vertex in V (condition 2), and in
addition, these vertices form a path in G (condition 3).

Real-world model
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Next, we need to define a computational model that can be used to represent the possible
executions of the route discovery part of the routing protocol. The real-world model that corre-
sponds to a configuration conf = (G(V,E), V ∗,L) and adversary A is denoted by Sys realconf ,A, and

it is illustrated on the left side of Figure 3. Sys realconf ,A consists of a set {M1, . . . ,Mn, A1, . . . , Am, H,C}
of interacting Turing machines, where the interaction is realized via common tapes. Each Mi

represents a non-adversarial vertex in V \ V ∗ (more precisely the corresponding non-adversarial
node), and each Aj represents an adversarial vertex in V ∗ (more precisely the corresponding
adversarial nodes). H is an abstraction of higher-layer protocols run by the honest parties,
and C models the radio links represented by the edges in E. All machines apart from H are
probabilistic.

Figure 3: Interconnection of the machines in Sys realconf ,A (on the left side) and in Sys idealconf ,A (on
the right side)

Each machine is initialized with some input data, which determines its initial state. In addi-
tion, the probabilistic machines also receive some random input (the coin flips to be used during
the operation). Once the machines have been initialized, the computation begins. The machines
operate in a reactive manner, which means that they need to be activated in order to perform
some computation. When a machine is activated, it reads the content of its input tapes, pro-
cesses the received data, updates its internal state, writes some output on its output tapes, and
goes back to sleep (i.e., starts to wait for the next activation). Reading a message from an input
tape removes the message from the tape, while writing a message on an output tape means that
the message is appended to the current content of the tape. Note that each tape is considered
as an output tape for one machine and an input tape for another machine. The machines are
activated in rounds by a hypothetic scheduler (not illustrated in Figure 3). In each round, the
scheduler activates the machines in the following order: A1, . . . , Am, H,M1, . . . ,Mn, C. In fact,
the order of activation is not important, apart from the requirement that C must be activated
at the end of the round. Thus, the round ends when C goes back to sleep.
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Machine C is intended to model the broadcast nature of radio communications. Its task is
to read the content of the output tape of each machine Mi and Aj and copy it on the input
tapes of all the neighboring machines, where the neighbor relationship is determined by the
configuration conf . Clearly, in order for C to be able to work, it needs to be initialized with
some random input, denoted by rC , and configuration conf .

Machine H models higher-layer protocols (i.e., protocols above the routing protocol) and
ultimately the end-users of the non-adversarial devices. H can initiate a route discovery process
at any machine Mi by placing a request (ci, `tar ) on tape req i, where ci is a sequence number
used to distinguish between different requests sent to Mi, and `tar ∈ L is the identifier of the
target of the discovery. A response to this request is eventually returned via tape res i. The
response has the form (ci, routes), where ci is the sequence number of the corresponding request,
and routes is the set of routes found. In some protocols, routes is always a singleton, in others
it may contain several routes. If no route is found, then routes = ∅.

In addition to req i and res i, H can access the tapes ext j . These tapes model an out-of-band
channel through which the adversary can instruct the honest parties to initiate route discovery
processes. The messages read from ext j have the form (`ini , `tar ), where `ini , `tar ∈ L are the
identifiers of the initiator and the target, respectively, of the route discovery requested by the
adversary. When H reads (`ini , `tar ) from ext j , it places a request (ci, `tar ) in req i where i is the
index of the machine Mi that has identifier `ini assigned to it (see also the description of how
the machines Mi are initialized). In order for this to work, H needs to know which identifier
is assigned to which machine Mi; it receives this information as an input in the initialization
phase.

The set of machines Mi (1 ≤ i ≤ n) represent the non-adversarial vertices in V \ V ∗. The
operation of Mi is essentially defined by the routing algorithm. Mi communicates with H via
its input tape req i and its output tape res i. Through these tapes, it receives requests from H
for initiating route discoveries and sends the results of the discoveries to H, as described above.

Mi communicates with the other protocol machines via its output tape out i and its input
tape ini. Both tapes can contain messages of the form (sndr , rcvr ,msg), where sndr ∈ L is the
identifier of the sender, rcvr ∈ L ∪ {∗} is the identifier of the intended receiver (∗ meaning a
broadcast message), and msg ∈ M is the actual protocol message. Here, M denotes the set of
all possible protocol messages, which is determined by the routing protocol under investigation.

When Mi is activated, it first reads the content of req i. For each request (ci, `tar ) received
from H, it generates a route request msg , updates its internal state according to the routing
protocol, and then, it places the message (L(Mi), ∗,msg) on out i, where L(Mi) denotes the
identifier assigned to machine Mi.

When all the requests found on req i have been processed, Mi reads the content of ini.
For each message (sndr , rcvr ,msg) found on ini, Mi checks if sndr is its neighbor and rcvr ∈
{L(Mi), ∗}. If these verifications fail, then Mi ignores msg . Otherwise, Mi processes msg and
updates its internal state. The way this is done depends on the particular routing protocol in
question.

The set of machines Aj (1 ≤ j ≤ m) represent the adversarial vertices in V ∗. Regarding its
communication capabilities, Aj is identical to any machine Mi, which means that it can read
from in∗j and write on out∗j much in the same way as Mi can read from and write on ini and
out i, respectively.

While its communication capabilities are similar to that of the non-adversarial machines, Aj
may not follow the routing protocol faithfully. In fact, we place no restrictions on the operation
of Aj apart from being polynomial-time in the security parameter (e.g., the key size of the
cryptographic primitives used in the protocol) and in the size of the network (i.e., the number of
vertices). This allows us to consider arbitrary attacks during the analysis. In particular, Aj may
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delay or delete messages that it would send if it followed the protocol faithfully. In addition, it
can modify messages and generate fake ones.

In addition, Aj may send out-of-band requests to H by writing on ext j as described above.
This gives the power to the adversary to specify who starts a route discovery process and towards
which target. Here, we make the restriction that the adversary initiates a route discovery only
between non-adversarial machines, or in other words, for each request (`ini, `tar) that Aj places
on ext j , `ini, `tar ∈ L \ L∗ holds.

Note that each Aj can write several requests on ext j , which means that we allow several
parallel runs of the routing protocol. On the other hand, we restrict each Aj to write on ext j
only once, at the very beginning of the computation (i.e., before receiving any messages from
other machines). This essentially means that we assume that the adversary is non-adaptive; it
cannot initiate new route discoveries as a function of previously observed messages.

As it can be seen from the description above, each Mi should know its own assigned identifier,
and those of its neighbors in G. Mi receives these identifiers in the initialization phase. Similarly,
each Aj receives the identifiers of its neighbors and the set L∗ of compromised identifiers.

In addition, the machines may need some cryptographic material (e.g., public and private
keys) depending on the routing protocol under investigation. We model the distribution of this
material as follows. We assume a function I, which takes only random input rI , and it produces
a vector I(rI) = (κpub , κ1, . . . , κn, κ

∗). The component κpub is some public information that
becomes known to all Aj and all Mi. κi becomes known only to Mi (1 ≤ i ≤ n), and κ∗ becomes
known to all Aj (1 ≤ j ≤ m). Note that the initialization function can model the out-of-band
exchange of initial cryptographic material of both asymmetric and symmetric cryptosystems.
In the former case, κpub contains the public keys of all machines, while κi contains the private
key that corresponds to the non-compromised identifier L(Mi), and κ∗ contains the private keys
corresponding to the compromised identifiers in L∗. In the latter case, κpub is empty, κi contains
the symmetric keys known to Mi, and κ∗ contains the symmetric keys known to the adversary
(i.e., all Aj).

Finally, all Mi and all Aj receive some random input in the initialization phase. The random
input of Mi is denoted by ri, and that of Aj is denoted by r∗j .

The computation ends when H reaches one of its final states. This happens when H re-
ceives a response to each of the requests that it placed on the tapes req i (1 ≤ i ≤ n). The
output of Sys realconf ,A is the sets of routes found in these responses. We will denote the output

by Out realconf ,A(r), where r = (rI , r1, . . . , rn, r
∗
1, . . . , r

∗
m, rC). In addition, Out realconf ,A will denote the

random variable describing Out realconf ,A(r) when r is chosen uniformly at random.

Ideal-world model

The ideal-world model that corresponds to a configuration conf = (G(V,E), V ∗,L) and
adversary A is denoted by Sys idealconf ,A, and it is illustrated on the right side of Figure 3. One can
see that the ideal-world model is very similar to the real-world one. Just like in the real-world
model, here as well, the machines are interactive Turing machines that operate in a reactive
manner, and they are activated by a hypothetic scheduler in rounds. The tapes work in the
same way as they do in the real-world model. There is only a small (but important) difference
between the operation of M ′i and Mi, and that of C ′ and C. Below, we will focus on this
difference.

Our notion of security is related to the requirement that the routing protocol should return
only plausible routes. The differences between the operation of M ′i and Mi, and C ′ and C, will
ensure that this requirement is always satisfied in the ideal-world model. In fact, the ideal-world
model is meant to be ideal exactly in this sense.

The main idea is the following: Since C ′ is initialized with conf , it can easily identify and
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mark those route reply messages that contain non-plausible routes. A marked route reply is
processed by each machine M ′i in the same way as a non-marked one (i.e., the machines ignore
the marker) except for the machine that initiated the route discovery process to which the
marked route reply belongs. The initiator first performs all the verifications on the route reply
that the routing protocol requires, and if the message passes all these verifications, then it also
checks if the message is marked as non-plausible. If so, then it drops the message, otherwise it
continues processing (e.g., returns the received route to H). This ensures that in the ideal-world
model, every route reply that contains a non-plausible route is caught and filtered out by the
initiator of the route discovery1.

Before the computation begins, each machine is initialized with some input data. This is
done in the same way as in the real-world model. The computation ends when H reaches one of
its final states. This happens when H receives a response to each of the requests that it placed
on the tapes req i 1 ≤ i ≤ n. The output of Sys idealconf ,A is the sets of routes returned in these

responses. We will denote the output by Out idealconf ,A(r), where r = (rI , r1, . . . , rn, r
∗
1, . . . , r

∗
m, rC).

Out idealconf ,A will denote the random variable describing Out idealconf ,A(r) when r is chosen uniformly
at random.

1.3 Definition of routing security

Now, we are ready to introduce our definition of secure routing:

Definition 1.2 (Statistical security). A routing protocol is said to be statistically secure if, for
any configuration conf and any real-world adversary A, there exists an ideal-world adversary
A′, such that Out realconf ,A

s
= Out idealconf ,A′ , where

s
= means “statistically indistinguishable” 2.

Intuitively, statistical security of a routing protocol means that the effect of any real-world
adversary in the real-world model can be simulated “almost perfectly” by an ideal-world adver-
sary in the ideal-world model. Since, by definition, no ideal-world adversary can achieve that a
non-plausible route is accepted in the ideal-world model, it follows that no real-world adversary
can exist that can achieve that a non-plausible route is accepted with non-negligible probability
in the real-world model, because if such a real-world adversary existed, then no ideal-world ad-
versary could simulate it “almost perfectly”. In other words, if a routing protocol is statistically
secure, then it can return non-plausible routes only with negligible probability in the real-world
model. This negligible probability is related to the fact that the adversary can always forge the
cryptographic primitives (e.g., generate a valid digital signature) with a very small probability.

1.4 Proof technique

In order to prove the security of a given routing protocol, one has to find the appropriate
ideal-world adversary A′ for any real-world adversary A such that Definition 1.2 is satisfied.
Due to the constructions of our models, a natural candidate is A′ = A. This is because for
any configuration conf , the operation of Sys realconf ,A can easily be simulated by the operation of

Sys idealconf ,A assuming that the two systems were initialized with the same random input r. In order

1Of course, marked route reply messages can also be dropped earlier during the execution of the protocol for
other reasons. What we mean is that if they are not caught earlier, then they are surely removed at latest by the
initiator of the route discovery to which they belong.

2Two random variables are statistically indistinguishable if the L1 distance of their distributions is negligibly
small. In fact, it is possible to give a weaker definition of security, where instead of statistical indistinguishability,
we require computational indistinguishability. Two random variables are computationally indistinguishable if
no feasible algorithm can distinguish their samples (although their distribution may be completely different).
Clearly, statistical indistinguishability implies computational indistinguishability, but not vice versa, therefore,
computational security is a weaker notion. Here, we will only use the concept of statistical security.
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to see this, let us assume for a moment that no message is dropped due to its plausibility flag
being false in Sys idealconf ,A. In this case, Sys realconf ,A and Sys idealconf ,A are essentially identical, meaning
that in each step, the state of the corresponding machines and the content of the corresponding
tapes are the same (apart from the plausibility flags attached to the messages in Sys idealconf ,A).

Since the two systems are identical, Out realconf ,A(r) = Out idealconf ,A(r) holds for every r, and thus, we

have Out realconf ,A
s
= Out idealconf ,A.

However, if some route reply messages are dropped in Sys idealconf ,A due to their plausibility

flags being set to false, then Sys realconf ,A and Sys idealconf ,A may end up in different states and their

further steps may not match each other, since those messages are not dropped in Sys realconf ,A
(by definition, they have already successfully passed all verifications required by the routing
protocol). We call this situation a simulation failure. In case of a simulation failure, it might
be that Out realconf ,A(r) 6= Out idealconf ,A(r). Nevertheless, the definition of statistical security can still
be satisfied, if simulation failures occur only with negligible probability. Hence, when trying to
prove statistical security, one tries to prove that for any configuration conf and adversary A,
the event of dropping a route reply in Sys idealconf ,A due to its plausibility flag being set to false can
occur only with negligible probability.

Note that if the above statement cannot be proven, then the protocol can still be secure,
because it might be possible to prove the statement for another ideal-world adversary A′ 6= A.
In practice, however, failure of a proof in the case of A′ = A usually indicates a problem with
the protocol, and often, one can construct an attack by looking at where the proof failed.

1.5 endairA: a provably secure on-demand source routing protocol

THESIS 1.3. I propose a new on-demand source routing protocol for ad hoc networks, called
endairA, and I prove (Theorem 1.1), using the above defined mathematical framework, that it is
secure. [J1]

Inspired by Ariadne with digital signatures, we designed a routing protocol that can be
proven to be statistically secure according to the definition above. We call the protocol endairA
(which is the reverse of Ariadne), because instead of signing the route request, we propose that
intermediate nodes should sign the route reply. Here, we describe the operation of the basic
endairA protocol, and we prove it to be statistically secure.

The operation and the messages of endairA are illustrated in Figure 4. In endairA, the
initiator of the route discovery process generates a route request, which contains the identifiers
of the initiator and the target, and a randomly generated request identifier. Each intermediate
node that receives the request for the first time appends its identifier to the route accumulated
so far in the request, and re-broadcasts the request. When the request arrives to the target,
it generates a route reply. The route reply contains the identifiers of the initiator and the
target, the accumulated route obtained from the request, and a digital signature of the target
on these elements. The reply is sent back to the initiator on the reverse of the route found in
the request. Each intermediate node that receives the reply verifies that its identifier is in the
node list carried by the reply, and that the preceding identifier (or that of the initiator if there
is no preceding identifier in the node list) and the following identifier (or that of the target if
there is no following identifier in the node list) belong to neighboring nodes. Each intermediate
node also verifies that the digital signatures in the reply are valid and that they correspond to
the following identifiers in the node list and to the target. If these verifications fail, then the
reply is dropped. Otherwise, it is signed by the intermediate node, and passed to the next node
on the route (towards the initiator). When the initiator receives the route reply, it verifies if the
first identifier in the route carried by the reply belongs to a neighbor. If so, then it verifies all
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the signatures in the reply. If all these verifications are successful, then the initiator accepts the
route.

S → ∗ : (rreq, S, T, id , ())
A→ ∗ : (rreq, S, T, id , (A))
B → ∗ : (rreq, S, T, id , (A,B))
T → B : (rrep, S, T, (A,B), (sigT ))
B → A : (rrep, S, T, (A,B), (sigT , sigB))
A→ S : (rrep, S, T, (A,B), (sigT , sigB, sigA))

Figure 4: An example for the operation and messages of endairA. The initiator of the route
discovery is S, the target is T , and the intermediate nodes are A and B. id is a randomly gener-
ated request identifier. sigA, sigB, and sigT are digital signatures of A, B, and T , respectively.
Each signature is computed over the message fields (including the signatures) that precede the
signature.

The proof of the following theorem illustrates how the framework introduced in Section 1.2
can be used in practice.

Theorem 1.1. endairA is statistically secure if the signature scheme is secure against chosen
message attacks.

Proof. We provide only a sketch of the proof. We want to show that for any configuration
conf = (G(V,E), V ∗,L) and any adversary A, a route reply message in Sys idealconf ,A is dropped
due to its plausibility flag set to false with negligible probability.

In what follows, we will refer to non-adversarial machines with their identifiers. Let us
suppose that the following route reply is received by a non-adversarial machine `ini in Sys idealconf ,A:

msg = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p , . . . , sig`1))

Let us suppose that msg passes all the verifications required by endairA at `ini , which means
that all signatures in msg are correct, and `ini has a neighbor that uses the identifier `1. Let
us further suppose that msg has been received with a plausibility flag set to false, which means
that (`ini , `1, . . . , `p, `tar ) is a non-plausible route in conf . Hence, msg is dropped due to its
plausibility flag being false.

Recall that, by definition, adversarial vertices cannot be neighbors. In addition, each non-
adversarial vertex has a single and unique non-compromised identifier assigned to it. It follows
that every route, including (`ini , `1, . . . , `p, `tar ), has a unique meaningful partitioning, which is
the following: each non-compromised identifier, as well as each sequence of consecutive compro-
mised identifiers should form a partition.

Let P1, P2, . . . , Pk be the unique meaningful partitioning of the route (`ini , `1, . . . , `p, `tar ).
The fact that this route is non-plausible implies that at least one of the following two statements
holds:

� Case 1: There exist two partitions Pi = {`j} and Pi+1 = {`j+1} such that both `j and
`j+1 are non-compromised identifiers, and the corresponding non-adversarial vertices are
not neighbors.

� Case 2: There exist three partitions Pi = {`j}, Pi+1 = {`j+1, . . . , `j+q}, and Pi+2 =
{`j+q+1} such that `j and `j+q+1 are non-compromised and `j+1, . . . , `j+q are compromised
identifiers, and the non-adversarial vertices that correspond to `j and `j+q+1, respectively,
have no common adversarial neighbor.
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We show that in both cases, the adversary must have forged the digital signature of a non-
adversarial machine.

In Case 1, machine `j+1 does not sign the route reply, since it is non-adversarial and it detects
that the identifier that precedes its own identifer in the route does not belong to a neighboring
machine. Hence, the adversary must have forged sig`j+1

in msg .
In Case 2, the situation is more complicated. Let us assume that the adversary has not

forged the signature of any of the non-adversarial machines. Machine `j must have received

msg ′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p , . . . , sig`j+1
))

from an adversarial neighbor, say A, since `j+1 is compromised, and thus, a non-adversarial
machine would not send out a route reply message with sig`j+1

. In order to generate msg ′,
machine A must have received

msg ′′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p , . . . , sig`j+q+1
))

because by assumption, the adversary has not forged the signature of `j+q+1, which is non-
compromised. Since A has no adversarial neighbor, it could have received msg ′′ only from a
non-adversarial machine. However, the only non-adversarial machine that would send out msg ′′

is `j+q+1. This would mean that A is a common adversarial neighbor of `j and `j+q+1, which
contradicts the assumption of Case 2. This means that our original assumption cannot be true,
and hence, the adversary must have forged the signature of a non-adversarial machine.

It should be intuitively clear that if the signature scheme is secure, then the adversary can
forge a signature only with negligible probability, and thus, a route reply message in Sys idealconf ,A is
dropped due to its plausibility flag set to false only with negligible probability. Nevertheless, we
sketch how this could be proven formally. The proof is indirect. We assume that there exist a
configuration conf and an adversary A such that a route reply message in Sys idealconf ,A is dropped
due to its plausibility flag set to false with probability ε, and then, based on that, we construct
a forger F that can break the signature scheme with probability ε/n. If ε is non-negligible, then
so is ε/n, and thus, the existence of F contradicts with the assumption about the security of
the signature scheme.

The construction of F is the following. Let puk be an arbitrary public key of the signature
scheme. Let us assume that the corresponding private key prk is not known to F , but F has
access to a signing oracle that produces signatures on submitted messages using prk . F runs a
simulation of Sys idealconf ,A where all machines are initialized as described in the model, except that
the public key of a randomly selected non-adversarial machine `i is replaced with puk . During
the simulation, whenever `i signs a message m, F submits m to the oracle, and replaces the
signature of `i on m with the one produced by the oracle. This signature verifies correctly on
other machines later, since the public verification key of `i is replaced with puk . By assumption,
with probability ε, the simulation of Sys idealconf ,A will result in a route reply message msg such that
all signatures in msg are correct and msg contains a non-plausible route. As we saw above, this
means that there exists a non-adversarial machine `j such that msg contains the signature sig`j
of `j , but `j has never signed (the corresponding part of) msg . Let us assume that i = j. In this
case, sig`j is a signature that verifies correctly with the public key puk . Since `j did not sign
(the corresponding part of) msg , F did not call the oracle to generate sig`j . This means that F
managed to produce a signature on a message that verifies correctly with puk . Since F selected
`i randomly, the probability of i = j is 1

n , and hence, the success probability of F is ε/n.

Besides being provably secure, endairA has another significant advantage over Ariadne (and
similar protocols): it is more efficient, because it requires less cryptographic computation overall
from the nodes. This is because in endairA, only the processing of the route reply messages
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involves cryptographic operations, and a route reply message is processed only by those nodes
that are in the node list carried in the route reply. In contrast to this, in Ariadne, the route
request messages need to be digitally signed by all intermediate nodes; however, due to the way
a route request is propagated, this means that each node in the network must sign each and
every route request.

1.6 Summary

Attacks against ad hoc routing protocols can be subtle and difficult to discover by informal
reasoning about the properties of the protocol. We demonstrated this by presenting novel attacks
on exisiting rotuing protocols. We also show that it is possible to adopt rigorous techniques
developed for the security analysis of cryptographic algorithms and protocols, and apply them
in the context of ad hoc routing protocols in order to gain more assurances about their security.
We demonstrated this by proposing a simulation based framework for on-demand source routing
protocols that allows us to give a precise definition of routing security, to model the operation
of a given routing protocol in the presence of an adversary, and to prove (or fail to prove) that
the protocol is secure. We also proposed a new on-demand source routing protocol, endairA,
and we demonstrated the usage of the proposed framework by proving that it is secure in our
model. Originally, we developed endairA for purely illustrative purposes, however, it has some
noteworthy features that may inspire designers of future protocols. We focused on on-demand
source routing protocols, but similar principles can be applied to other types of protocols too.
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2 Cooperative packet forwading in wireless ad hoc networks

THESIS GROUP 2. I propose a model based on game theory to investigate equilibrium con-
ditions of packet forwarding strategies in static ad hoc networks. I prove theorems about the
equilibrium conditions for both cooperative and non-cooperative strategies. I perform simulations
to estimate the probability that the conditions for a cooperative equilibrium hold in randomly
generated network scenarios. By means of these simulations, I show that in static ad hoc net-
works cooperation does not emerge by itself, but it needs to be encouraged. This result formally
justifies the value of a huge body of research on mechanisms that aim at stimulating cooperation
among the nodes of ad hoc networks. [C6, J3]

In multi-hop wireless ad hoc networks, networking services are provided by the nodes them-
selves. As a fundamental example, the nodes must make a mutual contribution to packet
forwarding in order to ensure an operable network. If the network is under the control of a
single authority, as is the case for military networks and rescue operations, the nodes cooperate
for the critical purpose of the network. However, if each node is its own authority, cooperation
between the nodes cannot be taken for granted; on the contrary, it is reasonable to assume that
each node has the goal to maximize its own benefits by enjoying network services and at the
same time minimizing its contribution. This selfish behavior can significantly damage network
performance [10, 30].

Researchers have identified the problem of stimulating cooperation in ad hoc networks and
proposed several solutions to give nodes incentive to contribute to common network services.
These solutions are based on a reputation system [8, 31] or on a virtual currency [11, 40]. All
of these solutions are heuristics to provide a reliable cooperation enforcement scheme, assuming
that there is indeed a need for such mechnisms to stimulate cooperation. Other researchers, on
the other hand, have claimed that under specific conditions, cooperation may emerge without
incentive techniques [38, 39]. However, they have assumed a random connection setup, thus
abstracting away the topology of the network.

We aim at determining under which conditions cooperation without incentives can exist,
while taking the network topology into account. Indeed, in reality, the interactions between
nodes are not random, as they are determined by the network topology and the communication
pattern in the network. We focus on the most basic networking mechanism, namely packet
forwarding. We define a model in a game theoretic framework and identify the conditions under
which an equilibrium based on cooperation exists. As the problem is involved, we deliberately
restrict ourselves to a static configuration.

2.1 Game theoretic model of packet forwarding

THESIS 2.1. I define a model and a meta-model that allow for the study of strategic interactions
between the nodes in an ad hoc network. The model is based on game theory, and it essentially
consists in the definition of a forwarding game played by the source and the forwarders of a data
flow. The meta-model is based on automata theory, and it is used to study the properties of the
forwarding game. I introduce the important notions of dependecy graph and dependency loop.
[C6, J3]

System model

Connectivity graph: Let us consider an ad hoc network of n nodes. Let us denote the set
of all nodes by N . Each node has a given power range and two nodes are said to be neighbors
if they reside within the power range of each other. We represent the neighbor relationship
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between the nodes with an undirected graph, which we call the connectivity graph. Each vertex
of the connectivity graph corresponds to a node in the network, and two vertices are connected
with an edge if the corresponding nodes are neighbors.

Routes: Communication between two non-neighboring nodes is based on multi-hop relaying.
This means that packets from the source to the destination are forwarded by intermediate nodes.
For a given source and destination, the intermediate nodes are those that form the shortest path3

between the source and the destination in the connectivity graph. We call such a chain of nodes
(including the source and the destination) a route. We call the topology of the network with a
given set of communicating nodes a scenario.

Time: We use a discrete model of time where time is divided into slots. We assume that
both the connectivity graph and the set of existing routes remain unchanged during a time slot,
whereas changes may happen at the end of each time slot. We assume that the duration of
the time slot is much longer than the time needed to relay a packet from the source to the
destination. This means that a node is able to send several packets within one time slot. This
allows us to abstract away individual packets and to represent the data traffic in the network
with flows. We assume CBR flows, which means that a source node sends the same amount of
traffic in each time slot. Note, however, that this amount may be different for every source node
and every route.

Forwarding game

We model the operation of the network as a game, which we call the forwarding game.
The players of the forwarding game are the nodes. In each time slot t, each node i chooses
a cooperation level pi(t) ∈ [0, 1], where 0 and 1 represent full defection and full cooperation,
respectively. Here, defection means that the node does not forward traffic for the benefit of
other nodes, whereas cooperation means that it does. Thus, pi(t) represents the fraction of the
traffic routed through i in t that i actually forwards. Note that i has a single cooperation level
pi(t), which it applies to every route in which it is involved as a forwarder. We prefer to not
require the nodes to be able to distinguish the flows that belong to different routes, because this
would require identifying the source-destination pairs and applying a different cooperation level
to each of them; this would probably increase the computation at the nodes significantly.

Let us assume that in time slot t there exists a route r with source node s and ` intermediate
nodes f1, f2, . . . , f`. Let us denote by Ts(r) the constant amount of traffic that s wants to send
on r in each time slot. The throughput τ(r, t) experienced by the source s on r in t is defined
as the fraction of the traffic sent by s on r in t that is delivered to the destination. Since we are
studying cooperation in packet forwarding, we assume that the main reason for packet losses
in the network is the non-cooperative behavior of the nodes. In other words, we assume that
the network is not congested and that the number of packets dropped because of the limited
capacity of the nodes and the links is negligible. Hence, τ(r, t) can be computed as the product
of Ts(r) and the cooperation levels of all intermediate nodes:

τ(r, t) = Ts(r) ·
∏̀
k=1

pfk(t) (1)

In addition, we define the normalized throughput τ̂(r, t) as follows:

τ̂(r, t) =
τ(r, t)

Ts(r)
=
∏̀
k=1

pfk(t) (2)

3In other words, here, we abstract away the details of the routing protocol, and we model it as a function that
returns the shortest path between the source and the destination. If there are multiple shortest paths, then one
of them is selected at random.
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We will use the normalized throughput later as an input of the strategy function of s.
The payoff ξs(r, t) of s on r in t depends on the experienced throughput τ(r, t). In general,

ξs(r, t) = us(τ(r, t)), where the utility us is some non-decreasing function. We further assume
that us is concave, derivable at Ts(r), and us(0) = 0. We place no other restrictions on us. Note
that the utility function of different nodes may be different.

The payoff ηfj (r, t) of the j-th intermediate node fj on r in t is non-positive and represents
the cost for node fj to forward packets on route r during time slot t. It is defined as follows:

ηfj (r, t) = −Ts(r) · c · τ̂j(r, t) (3)

where c is the cost of forwarding one unit of traffic, and τ̂j(r, t) is the normalized throughput on
r in t leaving node j. For simplicity, we assume that the nodes have the same, fixed transmission
power, and therefore c is the same for every node in the network, and it is independent from r
and t. τ̂j(r, t) is computed as the product of the cooperation levels of the intermediate nodes
from f1 up to and including fj :

τ̂j(r, t) =

j∏
k=1

pfk(t) (4)

In our model, the payoff of the destination is 0. In other words, we assume that only the
source benefits if the traffic reaches the destination (information push). However, our model can
be applied in the reverse case: all our results also hold when only the destination benefits from
receiving traffic. An example of this case is a file download (information pull).

The total payoff πi(t) of node i in time slot t is then computed as

πi(t) =
∑

q∈Si(t)

ξi(q, t) +
∑

r∈Fi(t)

ηi(r, t) (5)

where Si(t) is the set of routes in t where i is the source, and Fi(t) is the set of routes in t where
i is an intermediate node.

Strategy space

In every time slot, each node i updates its cooperation level using a strategy function σi. In
general, i could choose a cooperation level to be used in time slot t, based on the information
it obtained in all preceding time slots. In order to make the analysis feasible, we assume that
i uses only information that it obtained in the previous time slot. More specifically, we assume
that i chooses its cooperation level pi(t) in time slot t based on the normalized throughput it
experienced in time slot t− 1 on the routes where it was a source:

pi(t) = σi([τ̂(r, t− 1)]r∈Si(t−1)) (6)

where [τ̂(r, t − 1)]r∈Si(t−1) represents the normalized throughput vector for node i in time slot
t− 1, each element of which is the normalized throughput experienced by i on a route where it
was source in t− 1. The strategy of a node i is then defined by its strategy function σi and its
initial cooperation level pi(0).

Note that σi takes as input the normalized throughput and not the total payoff received by
i in the previous time slot. The rationale is that i should react to the behavior of the rest of the
network, which is represented by the normalized throughput in our model.

There is an infinite number of possible strategies; here we highlight only a few of them for
illustrative purposes. In these examples, we assume that the input of the strategy function is a
scalar (i.e., a vector of length 1) denoted by in below.
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� Always Defect (AllD): A node playing this strategy defects in the first time slot, and then
uses the strategy function σi(in) = 0.

� Always Cooperate (AllC): A node playing this strategy starts with cooperation, and then
uses the strategy function σi(in) = 1.

� Tit-For-Tat (TFT): A node playing this strategy starts with cooperation, and then mim-
ics the behavior of its opponent in the previous time slot. The strategy function that
corresponds to the TFT strategy is σi(in) = in.

� Suspicious Tit-For-Tat (S-TFT): A node playing this strategy defects in the first time
slot, and then applies the strategy function σi(in) = in.

� Anti Tit-For-Tat (Anti-TFT): A node playing this strategy does exactly the opposite of
what its opponent does. In other words, after cooperating in the first time slot, it applies
the strategy function σi(in) = 1− in.

If the output of the strategy function is independent of its input, then the strategy is called a
non-reactive strategy (e.g., AllD or AllC). If the output depends on the input, then the strategy
is reactive (e.g., TFT or Anti-TFT).

Our model requires that each source be able to observe the throughput in a given time slot
on each of its routes. We assume that this is made possible with high enough precision by using
some higher level control protocol above the network layer.

2.2 Meta-model

We introduce a meta-model in order to formalize the properties of the packet forwarding game.
In the meta-model, we focus on the evolution of the cooperation levels of the nodes; all other
details of the model defined earlier (e.g., amounts of traffic, forwarding costs, and utilities) are
abstracted away. Unlike in the model, in the meta-model, we will assume that routes remain
unchanged during the lifetime of the network. In addition, we assume for the moment that each
node is the source of only one route (we will relax this assumption later). We emphasize that
all of our analytical results hold in the extended case as well.

Dependency graph

Let us consider a route r. The payoff received by the source on r depends on the cooperation
levels of the intermediate nodes on r. We represent this dependency relationship between the
nodes with a directed graph, which we call the dependency graph. Each vertex of the dependency
graph corresponds to a network node. There is a directed edge from vertex i to vertex j, denoted
by the ordered pair (i, j), if there exists a route where i is an intermediate node and j is the
source. Intuitively, an edge (i, j) means that the behavior (cooperation level) of i has an effect
on j. The concept of dependency graph is illustrated in Figure 5.

Game automaton

Now we define the automaton Θ that will model the unfolding of the forwarding game in
the meta-model. The automaton is built on the dependency graph. We assign a machine Mi

to every vertex i of the dependency graph and interpret the edges of the dependency graph as
links that connect the machines assigned to the vertices. Each machine Mi thus has some input
and some (possibly 0) output links.
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Figure 5: Representation of a network: (a) a graph showing 5 routes and (b) the corresponding
dependency graph.

The internal structure of the machine is illustrated in Figure 6. Each machine Mi consists
of a multiplication4 gate

∏
followed by a gate that implements the strategy function σi of node

i. The multiplication gate
∏

takes the values on the input links and passes their product to
the strategy function gate5. Finally, the output of the strategy function gate is passed to each
output link of Mi.

Figure 6: Internal structure of machine Mi.

The automaton Θ works in discrete steps. Initially, in step 0, each machine Mi outputs some
initial value xi(0). Then, in step t > 0, each machine computes its output xi(t) by taking the
values that appear on its input links in step t− 1.

Note that if xi(0) = pi(0) for all i, then in step t, each machine Mi will output the cooperation
level of node i in time slot t (i.e., xi(t) = pi(t)), as we assumed that the set of routes (and hence
the dependency graph) remains unchanged in every time slot. Therefore, the evolution of the
values (which, in fact, represent the state of the automaton) on the output links of the machines
models the evolution of the cooperation levels of the nodes in the network.

In order to study the interaction of node i with the rest of the network, we extract the gate
that implements the strategy function σi from the automaton Θ. What remains is the automaton
without σi, which we denote by Θ−i. Θ−i has an input and an output link; if we connect these

4The multiplication comes from the fact that the experienced normalized throughput for the source (which is
the input of the strategy function of the source) is the product of the cooperation levels of the forwarders on its
route.

5Note that here σi takes a single real number as input, instead of a vector of real numbers as we defined earlier,
because we assume that each node is source of only one route.
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Figure 7: The automaton that corresponds to the dependency graph of Figure 5.

to the output and the input, respectively, of σi (as illustrated in Figure 8), then we get back the
original automaton Θ. In other words, the automaton in Figure 8 is another representation of
the automaton in Figure 7, which captures the fact that from the viewpoint of node i, the rest of
the network behaves like an automaton: The input of Θ−i is the sequence xi = xi(0), xi(1), . . . of
the cooperation levels of i, and its output is the sequence yi = yi(0), yi(1), . . . of the normalized
throughput values for i.

Figure 8: Model of interaction between node i and the rest of the network represented by the
automaton Θ−i.

By using the system of equations that describe the operation of Θ, one can easily express
any element yi(t) of sequence yi as some function of the preceding elements xi(t − 1), xi(t −
2), . . . , xi(0) of sequence xi and the initial values xj(0) (j 6= i) of the machines within Θ−i. We
call such an expression of yi(t) the t-th input/output formula or the t-th i/o formula of Θ−i, for
short. It is important to note that the i/o formulae of Θ−i may involve any strategy function
σj where j 6= i, but they never involve σi. Considering again the automaton in Figure 7, and
extracting, for instance, σA, we can determine the first few i/o formulae of Θ−A as follows:

yA(0) = xC(0) · xE(0)

yA(1) = σC(xE(0)) · σE(xA(0))

yA(2) = σC(σE(xA(0))) · σE(xA(1))

yA(3) = σC(σE(xA(1))) · σE(xA(2))

. . . . . .
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Dependency loops

A dependency loop L of node i is a sequence (i, v1), (v1, v2), . . . , (v`−1, v`), (v`, i) of edges in
the dependency graph. The length of a dependency loop L is defined as the number of edges in
L, and it is denoted by |L|. The existence of dependency loops is important: if node i has no
dependency loops, then the cooperation level chosen by i in a given time slot has no effect on
the normalized throughput experienced by i in future time slots. In the example, nodes B and
D have no dependency loops.

Every node i has two types of dependency loops; these types depend on the strategies played
by the other nodes in the loop. If L is a dependency loop of i, and all other nodes j 6= i in L
play reactive strategies, then L is said to be a reactive dependency loop of i. If, on the contrary,
there exists at least one node j 6= i in L that plays a non-reactive strategy, then L is called a
non-reactive dependency loop of i.

2.3 Analytical results

THESIS 2.2. I determine the conditions for the existence of cooperative and non-cooperative
equilibria in the forwarding game. In particular, I prove the following [J3]:

� If a node is a forwarder on some route, but it has no dependency loop, then its best strategy
is to defect, i.e., to deny packet forwarding. (Theorem 2.1)

� If a node is a forwarder on some route, and it has only non-reactive dependency loops,
then its best strategy is to defect, i.e., to deny packet forwarding. (Theorem 2.2)

� If every node j (j 6= i) defects, then node i cannot have any reactive dependency loop,
and hence its best response is to defect. Consequently, every node defecting is a Nash
equilibrium of the forwarding game. (Corollary 2.1)

� Assuming that node i is a forwarder on at least one route, its best strategy is to cooperate,
i.e., to forward packets if (a) node i has a dependency loop with all of the sources for which
it forwards packets; and (b) all these dependency loops are reactive; and (c) the maximum
forwarding cost for node i on every route where it is a forwarder is smaller than its possible
future benefit averaged over all those routes. If all three conditions are satisfied, then node
i has an incentive to cooperate, since otherwise its defective behavior will negatively affect
its own future payoff. (Theorem 2.3)

� If conditions (a) and (c) described above hold for all nodes which act as a forwarder on
some route, then all nodes playing the Tit-for-Tat reactive strategy is a Nash equilibrium
in the forwarding game. (Corollary 2.2)

Our goal is to find possible Nash equilibria of packet forwarding strategies. In the next
section, we will investigate the probability of fulfillment of the conditions for possible Nash
equilibria in randomly generated scenarios. The existence of a Nash equilibrium based on co-
operation would mean that there are cases in which cooperation is “naturally” encouraged, i.e.
without using incentive mechanisms. In the following, we use the model and the meta-model
that we introduced earlier.

The goal of the nodes is to maximize the payoff that they accumulate over time. However,
the end of the game is unpredictable. Thus, we apply the standard technique used in the theory
of iterative games [4]. We model the finite forwarding game with an unpredictable end as an
infinite game where future payoffs are discounted. The cumulative payoff πi of a node i is
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computed as the weighted sum of the payoffs πi(t) that i obtains in each time slot t:

πi =

∞∑
t=0

[πi(t) · ωt] (7)

where 0 < ω < 1, and hence, the weights exponentially decrease with t. The discounting factor
ω represents the degree to which the payoff of each time slot is discounted relative to the previous
time slot.

Recall that Si(t) denotes the set of routes for which i is the source, and that Fi(t) denotes
the set of routes for which i is an intermediate node. As we assume that the routes remain
static, meaning that Si(t) and Fi(t) do not change over time, we will simply write Si and Fi
instead of Si(t) and Fi(t). In addition, since we assume that each node is a source on exactly
one route, Si is a singleton. We denote the single route in Si by ri, and the amount of traffic
sent by i on ri in every time slot by Ti. The cardinality of Fi will be denoted by |Fi|. For any
route r ∈ Fi, we denote the set of intermediate nodes on r upstream from node i (including
node i) by Φ(r, i). Moreover, Φ(r) denotes the set of all forwarder nodes on route r, and src(r)
denotes the source of route r. Finally, the set of nodes that are forwarders on at least one route
is denoted by Φ (i.e., Φ = {i ∈ N : Fi 6= ∅}).

Theorem 2.1. If a node i is in Φ, and it has no dependency loops, then its best strategy is AllD
(i.e., to choose cooperation level 0 in every time slot).

Proof. Node i wants to maximize its cumulative payoff πi defined in (7). In our case, πi(t) can
be written as:

πi(t) = ξi(ri, t) +
∑
r∈Fi

ηi(r, t)

= ui(Ti · yi(t))−
∑
r∈Fi

Tsrc(r) · c ·
∏

k∈Φ(r,i)

xk(t)

Given that i has no dependency loops, yi(t) is independent of all the previous cooperation levels
xi(t

′) (t′ < t) of node i. Thus, πi is maximized if xi(t
′) = 0 for all t′ ≥ 0.

Theorem 2.2. If a node i is in Φ, and it has only non-reactive dependency loops, then its best
strategy is AllD.

Proof. The proof is similar to the proof of Theorem 2.1. Since all dependency loops of i are
non-reactive, its experienced normalized throughput yi is independent of its own behavior xi.
This implies that its best strategy is full defection.

From this theorem, we can easily derive the following corollary.

Corollary 2.1. If every node j (j 6= i) plays AllD, then the best response of i to this is AllD.
Hence, every node playing AllD is a Nash equilibrium.

If the conditions of Theorems 2.1 and 2.2 do not hold, then we cannot determine the best
strategy of a node i in general, because it very much depends on the particular scenario (depen-
dency graph) in question and the strategies played by the other nodes.

Now, we will show that, under certain conditions, cooperative equilibria do exist in the
network. In order to do so, we first prove the following lemma:
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Lemma 2.1. Let us assume that node i is in Φ, and let us consider a route r ∈ Fi. In addition,
let us assume that there exists a dependency loop L of i that contains the edge (i, src(r)). If all
nodes in L (other than i) play the TFT strategy, then the following holds:

yi(t+ δ) ≤
∏

k∈Φ(r,i)

xk(t) (8)

where δ = |L| − 1.

Proof. Let L be the following sequence of edges in the dependency graph: (v0, v1), (v1, v2), . . . ,
(vδ, vδ+1), where vδ+1 = v0 = i and v1 = src(r). We know that each node is the source of a
single route; let us denote by rvj (0 < j ≤ δ + 1) the route, on which vj is the source. It follows
that rv1 = r. In addition, we know that the existence of edge (vj , vj+1) (0 ≤ j ≤ δ) in the
dependency graph means that vj is a forwarder on rvj+1 . The following holds for every node vj
(0 ≤ j ≤ δ):

xvj (t) ≥
∏

k∈Φ(rvj+1 ,vj)

xk(t) ≥
∏

k∈Φ(rvj+1 )

xk(t) = yvj+1(t) (9)

Furthermore, since every node except for v0 = vδ+1 = i plays TFT, we have the following for
every 0 < j ≤ δ:

xvj (t+ 1) = yvj (t) (10)

Using (9) and (10) in an alternating order, we get the following:

xv0(t) ≥
∏

k∈Φ(rv1 ,v0)

xk(t) ≥ yv1(t) = xv1(t+1) ≥ yv2(t+1) = xv2(t+2) ≥ . . . ≥ yvδ+1
(t+δ) (11)

By substituting i for v0 and vδ+1, and r for rv1 , we get the statement of the lemma:

xi(t) ≥
∏

k∈Φ(r,i)

xk(t) ≥ . . . ≥ yi(t+ δ) (12)

Figure 9: Example to illustrate the propagation of behavior as expressed formally in Lemma 2.1.

As an example, let us consider Figure 9, which illustrates a dependency loop of length 5 (i.e.,
δ = 4). According to Lemma 2.1, if nodes v1, v2, v3, and v4 play TFT, then the normalized
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throughput enjoyed by node i in time slot t+ 4 is upper bounded by its own cooperation level
in time slot t. Intuitively, this means that if node i does not cooperate, then this defection
“propagates back” to it on the dependency loop. The delay of this effect is given by the length
of the dependency loop.

Theorem 2.3. Assuming that node i is in Φ, the best strategy for i is full cooperation in each
time slot, if the following set of conditions holds:

1. for every r ∈ Fi, there exists a dependency loop Li,src(r) that contains the edge (i, src(r));

2. for every r ∈ Fi,
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
> Tsrc(r) · c (13)

where u′i(Ti) is the value of the derivative6 of ui(τ) at τ = Ti, and δi,src(r) = |Li,src(r)| − 1;
and

3. every node in Φ (other than i) plays the TFT strategy.

Proof. In this proof we will express the maximum possible value of the total payoff for node i
in general. Then we will show that the maximum corresponds to the case in which node i fully
cooperates. First, we introduce the linear function f(τ) = u′i(Ti)·τ+ui(Ti)−u′i(Ti)·Ti. Function
f is the tangent of function ui at τ = Ti. Note that due to the fact that ui is non-decreasing
and concave, we have that f(τ) ≥ ui(τ) for all τ ; in addition, we have equality at τ = Ti (i.e.,
f(Ti) = ui(Ti)).

By definition, the total payoff πi of node i is the following:

πi =
∞∑
t=0

ξi(ri, t) +
∑
r∈Fi

ηi(r, t)

ωt
=

∞∑
t=0

ui(Ti · yi(t))−∑
r∈Fi

Tsrc(r) · c ·
∏

k∈Φ(r,i)

xk(t)

ωt (14)

Because of Condition 1 and Condition 3, we can use Lemma 2.1 to obtain the following inequality
for every r ∈ Fi: ∏

k∈Φ(r,i)

xk(t) ≥ yi(t+ δi,src(r)) (15)

which leads to the following upper bound on πi:

πi ≤
∞∑
t=0

ui(Ti · yi(t))−∑
r∈Fi

Tsrc(r) · c · yi(t+ δi,src(r))

ωt (16)

Since the first term of the right side of (16), ui(Ti ·yi(t)), is independent of r, the following holds:

ui(Ti · yi(t)) =
∑
r∈Fi

ui(Ti · yi(t))
|Fi|

(17)

6Recall the assumption that ui is derivable at Ti.

26



By substituting the right side of (17) into (16), we get the following:

πi ≤
∞∑
t=0

∑
r∈Fi

ui(Ti · yi(t))
|Fi|

−
∑
r∈Fi

Tsrc(r) · c · yi(t+ δi,src(r))

ωt
=

∑
r∈Fi

[ ∞∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt −
∞∑
t=0

Tsrc(r) · c · yi(t+ δi,src(r)) · ωt
]

(18)

Let us consider the first term of (18). We will now split up the summation that goes from t = 0
to∞ into two summations such that one goes from t = 0 to δi,src(r)−1, and the other goes from
t = δi,src(r) to∞. Then, we shift the index in the second sum in such a way that the summation
goes from t = 0 to ∞ again:

∞∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt

=

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt +

∞∑
t=δi,src(r)

ui(Ti · yi(t))
|Fi|

· ωt

=

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt +

∞∑
t=0

ui(Ti · yi(t+ δi,src(r)))

|Fi|
· ωt+δi,src(r) (19)

By writing (19) back into (18), we get the following:

πi ≤
∑
r∈Fi

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt

+

∞∑
t=0

[
ui(Ti · yi(t+ δi,src(r)))

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt
]

(20)

Let us consider the first term of (20). Since the utility function ui is non-decreasing and yi(t) ≤ 1,
we get the following:

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt ≤
δi,src(r)−1∑

t=0

ui(Ti)

|Fi|
· ωt

=
ui(Ti)

|Fi|
· 1− ωδi,src(r)

1− ω
(21)

Now let us consider the second term of (20). By using the fact that f(τ) ≥ ui(τ) for all τ , we
get the following:
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∞∑
t=0

[
ui(Ti · yi(t+ δi,src(r)))

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt

≤
∞∑
t=0

[
f(Ti · yi(t+ δi,src(r)))

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt

=
∞∑
t=0

[
u′i(Ti) · Ti · yi(t+ δi,src(r)) + ui(Ti)− u′i(Ti) · Ti

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt

=

∞∑
t=0

[
ui(Ti)− u′i(Ti) · Ti

|Fi|
· ωδi,src(r) +

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· yi(t+ δi,src(r))

]
· ωt

=
ui(Ti)− u′i(Ti) · Ti

|Fi|
· ω

δi,src(r)

1− ω
+
∞∑
t=0

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· yi(t+ δi,src(r)) · ωt

≤ ui(Ti)− u′i(Ti) · Ti
|Fi|

· ω
δi,src(r)

1− ω
+

∞∑
t=0

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· ωt

=
ui(Ti)− u′i(Ti) · Ti

|Fi|
· ω

δi,src(r)

1− ω
+

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· 1

1− ω

=
ui(Ti)

|Fi|
· ω

δi,src(r)

1− ω
−
Tsrc(r) · c

1− ω

where in the transition from (22) to (22), we used Condition 2 and the fact that yi(t+δi,src(r)) ≤
1. By using (21) and (22) in (20), we get the following:

πi ≤
∑
r∈Fi

[
ui(Ti)

|Fi|
· 1− ωδi,src(r)

1− ω
+
ui(Ti)

|Fi|
· ω

δi,src(r)

1− ω
−
Tsrc(r) · c

1− ω

]

=
1

1− ω
·
∑
r∈Fi

[
ui(Ti)

|Fi|
− Tsrc(r) · c

]

=
1

1− ω
·

ui(Ti)− c ·∑
r∈Fi

Tsrc(r)


Now let us consider what payoff is achieved by node i if it fully cooperates in every time

slot. In this case, since all the other nodes play TFT, every node will always fully cooperate,
and hence, every node will experience a normalized throughput equal to 1 in each time slot.
This can easily be derived from the i/o formulae describing the behavior of the nodes, which
take a simple form due to the simplicity of the strategy function of the TFT strategy. As a
consequence, we have that yi(t) = 1 for every t, and xk(t) = 1 for every k and for every t. In
this case expression 14 becomes:

πi =

∞∑
t=0

ui(Ti · yi(t))−∑
r∈Fi

Tsrc(r) · c ·
∏

k∈Φ(r,i)

xk(t)

ωt
=

1

1− ω
·

ui(Ti)− c ·∑
r∈Fi

Tsrc(r)


This means that by fully cooperating, the payoff of node i reaches the upper bound expressed
in (22); in other words, there is no better strategy for node i than full cooperation.
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We have derived necessary conditions for spontaneous cooperation from Theorem 2.1 and 2.2.
The fulfillment of the three conditions of Theorem 2.3 is sufficient for cooperation to be the best
strategy for node i. We now discuss these three conditions one by one. Condition 1 requires that
node i has a dependency loop with all of the sources for which it forwards packets. Condition 2
means that the maximum forwarding cost for node i on every route where i is a forwarder
must be smaller than its possible future benefit averaged over the number of routes where i is
a forwarder. Finally, Condition 3 requires that all forwarding nodes in the network (other than
node i) play TFT. This implies that all the dependency loops of node i are reactive. We note
that the reactivity of the dependency loops can be based on other reactive strategies, different
from TFT (for example Anti-TFT), but in that case the analysis becomes very complex. The
analysis of the case when every node plays TFT is made possible by the simplicity of the strategy
function σ(x) = x, which belongs to the TFT strategy. If all three conditions of Theorem 2.3 are
satisfied, then node i has an incentive to cooperate, since otherwise its defective behavior will
negatively affect its own payoff. However, as we will show later, Condition 1 is a very strong
requirement that is virtually never satisfied in randomly generated scenarios.

Both the AllC and TFT strategies result in full cooperation if the conditions of Theorem 2.3
hold. However, node i should not choose AllC, because AllC is a non-reactive strategy, and this
might cause other nodes to change their strategies to AllD, as we will show later. Hence, we can
derive the following corollary for cooperative Nash equilibria.

Corollary 2.2. If the first two conditions of Theorem 2.3 hold for every node in Φ, then all
nodes playing TFT is a Nash equilibrium.

In the next subsection, we study Condition 1 of Theorem 2.3, more specifically, the proba-
bility that it is satisfied for all nodes in randomly generated scenarios. Now, we briefly comment
on Condition 2. As it can be seen, the following factors make Condition 2 easier to satisfy:

� Steep utility functions: The steeper the utility function of node i is, the larger the value
of its derivative is at τ = Ti, which, in turn, makes the left side of (13) larger.

� Short dependency loops: In Condition 2, δi,src(r) + 1 is the length of any dependency loop
of node i that contains the edge (i, src(r)). Clearly, we are interested in the shortest of
such loops, because the smaller δi,src(r) is, the larger the value of ωδi,src(r) is, which, in turn,
makes the left side of (13) larger. It is similarly advantageous if ω is close to 1, which
means, in general, that the probability that the game will continue is higher and thus
possible future payoffs count more.

� Small extent of involvement in forwarding: The left side of (13) is increased if the cardi-
nality of Fi is decreased. In other words, if node i is a forwarder on a smaller number of
routes, then Condition 2 is easier to satisfy for i.

2.4 Simulation results

THESIS 2.3. I show by means of simulations that the probability of satisfying all conditions
for the existence of a cooperative equilibrium is very small in practice. In particular, among
1000 randomly generated scenarios, there was not any scenario that satisfied the condition that
requires that all forwarder nodes have dependecy loops with all the source nodes whose traffic
they are forwarding. Hence, in practice, with high probability, there will be some nodes in the
network whose best best strategy is defecting. Yet, I also show by means of simulation that the
behavior of these defectors affects only a fraction of the nodes in the network; hence, local subsets
of cooperating nodes are not excluded. [J3]

29



We have run a set of simulations to determine the probability that the conditions of our
theorems and their corollaries hold. In particular, our goal is to estimate the probability that
the first condition of Theorem 2.3 holds for every node in randomly generated scenarios7. In
addition, we also estimate the probability that the condition of Theorem 2.1 does not hold for
any of the nodes in randomly generated scenarios.

In our simulations, we randomly place nodes on a toroid8 area. Then, for each node, we
randomly choose a number of destinations and we determine a route to these destinations using
a shortest path algorithm. If several shortest paths existed to a given destination, then we
randomly choose a single one. From the routes, we build up the dependency graph of the
network. The simulation parameters are summarized in Table 1.

Table 1: Parameter values for the simulation
Parameter Value

Number of nodes 100, 150, 200

Distribution of the nodes random uniform

Area type Torus

Area size 1500x1500m, 1850x1850m, 2150x2150m

Radio range 200 m

Number of destinations per node 1-10

Route selection shortest path

Note that we increase the network size and the simulation area in parallel in order to keep
the node density at a constant level. All the presented results are the mean values of 1000
simulation runs.

In the first set of simulations, we investigate the probability that the first condition of
Theorem 2.3 holds for every node. Among the 1000 scenarios that we generated randomly, we
observed that there was not a single scenario in which the first condition of Theorem 2.3 was
satisfied for all nodes. Thus, we conclude that the probability of a Nash equilibrium based on
TFT as defined in Corollary 2.2 is very small.

In the second set of simulations, we investigate the proportion of random scenarios, where
cooperation of all nodes is not excluded by Theorem 2.1. Figure 10 shows the proportion
of scenarios, where each node in Φ has at least one dependency loop as a function of the
number of routes originating at each node. We can observe that for an increasing number of
routes originating at each node, the proportion of scenarios, where each node has at least one
dependency loop, increases as well. Intuitively, as more routes are introduced in the network,
more edges are added to the dependency graph. Hence, the probability that a dependency loop
exists for each node increases. Furthermore, we can observe that the proportion of scenarios in
which each node has at least one dependency loop decreases, as the network size increases. This
is due to the following reason: the probability that there exists at least one node for which the
condition of Theorem 2.1 holds increases as the number of nodes increases.

Figure 10 shows that the proportion of scenarios, where cooperation of all nodes is not
excluded by Theorem 2.1 becomes significant only for cases in which each node is a source of a
large number of routes. This implies that the necessary condition expressed by Theorem 2.1 is

7The second condition of Theorem 2.3 is a numerical one. Whether it is fulfilled or not very much depends
on the actual utility functions and parameter values (e.g., amount of traffic and discounting factor) used. Since,
by appropriately setting these parameters, the second condition of Theorem 2.3 can always be satisfied, in our
analysis, we make the optimistic assumption that this condition holds for every node in Φ.

8We use this area type to avoid border effects. In a realistic scenario, the toroid area can be considered as an
inner part of a large network.
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a strong requirement for cooperation in realistic settings (i.e., for a reasonably low number of
routes per node).

Figure 10: Proportion of scenarios, where each node that is a forwarder has at least one depen-
dency loop.

Now let us consider the case, in which the nodes for which Theorem 2.1 holds begin to play
AllD. This non-cooperative behavior can lead to an “avalanche effect” if the nodes iteratively
optimize their strategies: nodes that defect can cause the defection of other nodes. We examine
this avalanche effect in a simulation setting as follows.

Let us assume that each node is a source on one route. First, we identify the nodes in the
set of forwarders Φ that have AllD as the best strategy due to Theorem 2.1. We denote the set
of these defectors by Z0. Then, we search for sources that are dependent on the nodes in Z0.
We denote the set of these sources by Z+

0 . Since the normalized throughput of the nodes in Z+
0

is less than or equal to the cooperation level of any of their forwarders (including the nodes in
Z0), their best strategy becomes AllD, as well, due to Theorem 2.2. Therefore, we extend the
set Z0 of defectors, and obtain Z1 = Z0 ∪ Z+

0 . We extend the set Zk of defectors iteratively in
this way until no new sources are affected (i.e., Zk ∪ Z+

k = Zk). The remaining set Φ \ Zk of
nodes is not affected by the behavior of the nodes in Zk (and hence the nodes in Z0); this means
that they are potential cooperators. Similarly, we can investigate the avalanche effect when the
nodes are sources of several routes. In that case, we take the pessimistic assumption that the
defection of a forwarder causes the defection of its sources. Then, we can iterate the search for
the nodes that are affected by defection in the same way as above.

In Figure 11, we present the proportion of scenarios, where there exists a subset of nodes
that are not affected by the defective behavior of the initial AllD players. We can see that this
proportion converges rapidly to 1 as the number of routes originating at each node increases.
The intuitive explanation is that increasing the number of routes per source (i.e., adding edges
to the dependency graph) decreases the probability that Theorem 2.1 holds for a given node.
Thus, as the number of routes per sources increases the number of forwarders that begin to play
AllD decreases and so does the number of nodes affected by the avalanche effect.

Additionally, we present in Figure 12 the proportion of forwarder nodes that are not affected
by the avalanche effect. The results show that if we increase the number of routes originating
at each node, the average number of unaffected nodes increases rapidly. For a higher number
of routes per node, this increase slows down, but we can observe that the majority of the nodes
are not affected by the defective behavior of the initial AllD players.
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Figure 11: Proportion of scenarios, where at least one node is not affected by the defective
behavior of the initial nodes.

Figure 12: Average proportion of forwarder nodes that are not affected by the avalanche effect.

2.5 Summary

We have presented a game theoretic model to investigate the conditions for cooperation in
wireless ad hoc networks, in the absence of incentive mechanisms. Because of the complexity of
the problem, we have restricted ourselves to a static network scenario. We have then derived
conditions for cooperation from the topology of the network and the existing communication
routes. We have introduced the concept of dependency graph, based on which we have been able
to prove several theorems. As one of the results, we have proven that cooperation solely based
on the self-interest of the nodes can in theory exist. However, our simulation results show that
in practice, the conditions of such cooperation are virtually never satisfied. We conclude that
with a very high probability, there will be some nodes that have AllD as their best strategy and
therefore, these nodes need an incentive to cooperate. We have also shown that the behavior
of these defectors affects only a fraction of the nodes in the network; hence, local subsets of
cooperating nodes are not excluded.
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3 Wormhole detection in wireless sensor networks

THESIS GROUP 3. I propose three new mechanisms for detecting wormhole attacks in ad
hoc and sensor networks. Two of these mechanisms are based on statistical hypothesis testing
and they produce probabilistic results. For these mechanisms, I use simulations to study their
detection performance. The third proposed mechanism is based on the principles of distance
bounding. I analyze the properties of this mechanism, in particular its resistance to attacks
aiming at shortening estimated distances by means of informal reasoning. [C2, C5]

Wireless sensor networks (WSNs) consist of a large number of sensors that monitor the
environment, and a few base stations that collect the sensor readings. The sensors are usually
battery powered and limited in computing and communication resources, while the base stations
are considered to be more powerful. In order to reduce the overall energy consumption of the
sensors, it is conceived that the sensors send their readings to the base station via multiple
wireless hops. Hence, in a wireless sensor network, the sensor nodes are responsible not only
for the monitoring of the environment, but also for forwarding data packets towards the base
station on behalf of other sensors.

In order to implement the above described operating principle, the sensors need to be aware
of their neighbors, and they must also be able to find routes to the base station. An adversary
may take advantage of this, and may try to control the routes and to monitor the data packets
that are sent along these routes. One way to achieve this is to set up a wormhole in the
network. A wormhole is an out-of-band connection, controlled by the adversary, between two
physical locations in the network. The two physical locations representing the two ends of the
wormhole can be at any distance from each other; however, the typical case is that this distance
is large. The out-of-band connection between the two ends can be a wired connection or it can
be based on a long-range, directional wireless link. The adversary installs radio transceivers at
both ends of the wormhole. Then, she transfers packets (possibly selectively) received from the
network at one end of the wormhole to the other end via the out-of-band connection, and there,
re-injects the packets into the network.

Wormholes affect route discovery mechanisms that operate on the connectivity graph. For
instance, many routing protocols search for the shortest paths in the connectivity graph. With
a well placed wormhole, the adversary can achieve that many of these shortest paths go through
the wormhole. This gives a considerable power to the adversary, who can monitor a large
fraction of the network traffic, or mount a denial-of-service attack by permanently or selectively
dropping data packets passing through the wormhole so that they never reach their destinations.
Therefore, in most of the applications, wormhole detection is an important requirement.

The wormhole attack is also dangerous in other types of wireless applications where direct,
one-hop communication and physical proximity play an important role. An example is a wireless
access control system for buildings, where each door is equipped with a contactless smart card
reader, and they are opened only if a valid contactless smart card is presented to the reader.
The security of such a system depends on the assumption that the personnel carefully guard
their cards. Thus, if a valid card is present, then the system can safely infer that a legitimate
person is present as well, and the door can be opened. Such a system can be defeated if an
adversary can set up a wormhole between a card reader and a valid card that could be far away,
in the pocket of a legitimate user: The adversary can relay the authentication exchange through
the wormhole and gain unauthorized access. The feasibility of this kind of attack has been
demonstrated in [27].

Wormhole detection mechanisms fall into two classes: the centralized mechanisms and the
decentralized ones. In the centralized approach, data collected from the local neighborhood of
every node are sent to a central entity (e.g., the base station in case of sensor networks). The
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central entity uses the received data to construct a model of the entire network, and tries to detect
inconsistencies in this model that are potential indicators of wormholes. In the decentralized
approach, each node constructs a model of its own neighborhood using locally collected data;
hence no central entity is needed. However, decentralized wormhole detection mechanisms often
require special assumptions, such as tightly synchronized clocks, knowledge of geographical
location, or existence of special hardware, e.g., directional antennas.

In this thesis group, we propose three mechanisms for wormhole detection in wireless sensor
networks. Two of these are centralized mechanisms and the third one is a decentralized mecha-
nism. Both proposed centralized mechanisms are based on hypothesis testing and they provide
probabilistic results. The first mechanism, called the Neighbor Number Test (NNT), detects the
increase in the number of the neighbors of the sensors, which is due to the new links created
by the wormhole in the network. The second mechanism, called the All Distances Test (ADT),
detects the decrease of the lengths of the shortest paths between all pairs of sensors, which is
due to the shortcut links created by the wormhole in the network. Both mechanisms assume
that the sensors send their neighbor list to the base station, and it is the base station that runs
the algorithms on the network graph that is reconstructed from the received neighborhood infor-
mation. The decentralized detection mechanism that we propose is based on an authenticated
distance bounding protocol.

3.1 System and adversary models

We assume that the system consists of a large number of sensor nodes and a few base stations
placed on a two dimensional surface. We assume that the base stations have no resource limita-
tions, and they can run complex algorithms. We assume that the sensors have a fixed radio range
r, and two sensors are neighbors, if they reside in the radio range of each other. We assume that
the sensors run some neighbor discovery protocol, and they can determine who their neighbors
are. We also assume that the sensors send their neighborhood information to the closest base
station regularly in a secure way. By security we mean confidentiality, integrity, and authentic-
ity; in other words, we assume that the adversary cannot observe and change the neighborhood
information sent to the base stations by the sensors, neither can it spoof sensors and fabricate
false neighborhood updates. This can be ensured by using cryptographic techniques. Note that
the neighborhood information can be piggy-backed on regular data packets. In addition, as
sensor networks tend to be rather static, sending only the changes in the neighborhood since
the last update would reduce the overhead significantly. The base stations can pool the received
neighborhood information together, and based on that, they can reconstruct the graph of the
sensor network. We assume that the node density is high enough so that the network is always
connected.

We assume that the adversary can set up a wormhole in the system. The wormhole is a
dedicated connection between two physical locations. There are radio transceivers installed at
both ends of the wormhole, and packets that are received at one end can be sent to and re-
transmitted at the other end. In this way, the adversary can achieve that nodes that otherwise
do not reside in each other’s radio range can still hear each other and establish a neighbor
relationship (i.e., they can run the neighbor discovery protocol). This means that the adversary
can introduce new, otherwise non-existing links in the network graph that is constructed by the
base stations based on the received neighborhood information.

The wormhole is characterized by the distance between the two locations that it connects
and the radio ranges of its transceivers. We assume that the receiving and the sending ranges
of both transceivers are the same, and we will call this range the radius of the wormhole. The
radius of the wormhole is not necessarily equal to the radio range of the sensors.

In principle, the adversary can drop packets carrying neighborhood information that are sent
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to the base stations via the wormhole. However, consistently missing neighborhood updates can
be detected by the base stations and they indicate that the system is under attack. Therefore,
we assume that the adversary does not drop the neighborhood updates. In addition, by the
assumptions made earlier, it cannot alter or fabricate them either.

THESIS 3.1. I propose two centralized wormhole detection mechanisms for wireless sensor
networks based on a statistical hypothesis testing approach. Both mechanisms require the nodes
to send their neighbor list to a central base station, which reconstructs the network topology graph
and identifies inconsistences caused by wormholes. The first mechanism (Neighbor number test)
identifies distortions in the node degree distribution in the network, while the second mechanism
(All distances test) identifies distortions in the distribution of the length of the shortest paths
in the network. Both mechanisms use the χ2–test as hypothesis testing method, and I describe
how the parameters should be determined for it. Furthermore, I show by means of simulations,
that the Neighbor number test effectively detects wormholes if the wormhole’s radio range is
comparable to the nodes’ radio range, but its detection accuracy is not acceptable, when the
wormhole’s radio range is significantly smaller than the nodes’ radio range. Moreover, I show
that the All distances test performs better than the Neighbor number test in general, and it can
detect wormholes with small radio ranges, although detection accuracy depends very much on
the node density in the network. [C2]

3.2 Neighbor number test (NNT)

Our first detection mechanism is based on the fact that by introducing new links into the
network graph, the adversary increases the number of neighbors of the nodes within its radius.
If the distribution of the placement of the nodes is given, then it is possible to compute the
hypothetical distribution of the number of neighbors. Then, the base stations can use statistical
tests to decide if the network graph constructed from the neighborhood information that is
received from the sensors corresponds to this hypothetical distribution. In order to illustrate
this idea, let us consider the example depicted in Figure 13, where the dark bars correspond
to the hypothetical distribution of the number of neighbors, and the light bars show the actual
distribution in the network graph reconstructed from the sensors’ neighborhood updates. One
can see that the probability of higher neighbor numbers (15-20) is increased with respect to the
hypothetical distribution, and the idea of the proposed mechanism is to detect this increase by
using statistical tests.

Based on the above observations, the NNT algorithm is given as follows:

1. The base station computes the expected histogram of the neighbor numbers using the
hypothetical distribution of the number of neighbors.

2. The base station collects the neighborhood updates from the sensors, constructs the net-
work graph, and computes the histogram of the real neighbor numbers in the graph.

3. The base station compares the two histograms with the χ2–test.

4. If the computed χ2 number is larger than a preset threshold that corresponds to a given
significance level, then a wormhole is indicated.

Computing the parameters for the χ2–test

Assuming that the sensors are placed uniformly at random on the plane, the probability of
two nodes being neighbors is

q =
r2 · π
T
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Figure 13: Hypothetical (dark) and real (light) distributions of the number of neighbors

where r is the radio range of the sensor nodes and T is the size of the area where the sensor
network is deployed. The probability p(k) of having exactly k neighbors is

p(k) =

(
N

k

)
· qk · (1− q)N−k

where N+1 is the total number of nodes in the network. Let us partition the set {0, 1, 2, . . .} into
subsets B1, B2, · · · , Bm, such that e(i) = (N + 1)

∑
k∈Bi p(k) be larger than 5 (a requirement

needed by the χ2–test [7]). The χ2 number is then computed using the following formula:

χ2 =
∑
∀i

r(i)− e(i)
e(i)

where r(i) is the real number of nodes with number of neighbors in Bi. If χ2 is below the
threshold that corresponds to a given significance level (this threshold can be looked up in
published tables of χ2 values), then the hypothesis is accepted, and no wormhole is indicated.
Otherwise the hypothesis is rejected, and a wormhole is indicated.

3.3 All distances test (ADT)

Our second detection mechanism is based on the fact that the wormhole shortens the paths in
the network, or more precisely, it distorts the distribution of the length of the shortest paths
between all pairs of nodes. This is illustrated by the example depicted in Figure 14, where the
dark bars represent the hypothetical distribution of the length of the shortest paths and the
light bars represent the real distribution. As it can be seen, the two distributions are different,
and in the real distribution, shorter paths are more likely than in the hypothetical one. The
idea is to detect this difference with statistical tests.

The ADT algorithm is very similar to the NNT algorithm:

1. The base station computes the histogram of the length of the shortest paths between all
pairs of nodes in the hypothetical case when there is no wormhole in the system using the
knowledge of the distribution of the node placement.
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Figure 14: Hypothetical (dark) and real (light) distributions of the length of the shortest paths
between all pairs of nodes

2. The base station collects the neighborhood information from the sensors, and computes
the histogram of the length of the shortest paths in the real network.

3. The base station compares the two histograms with the χ2–test.

4. If the computed χ2 number is larger than a preset threshold that corresponds to a given
significance level, then a wormhole is indicated.

Computing the parameters for the χ2–test

In this case, we were not able to derive a close formula that describes the hypothetical
distribution of the length of the shortest paths. Instead, we propose to estimate that distribution
by randomly placing nodes on the plane according to the distribution of the node placement, and
compute the lengths of the shortest paths between all pairs of nodes in the resulting graph. We
propose to repeat the experience many times and average the normalized histograms obtained
in these experiences. Once the hypothetical distribution is estimated in this way, the χ2–test
can be used in a similar way as we described above.

3.4 Simulation results

In order to evaluate the effectiveness of the proposed centralized mechanisms, we built a sim-
ulator that places 300 sensor nodes uniformly at random on a 500 m × 500 m flat area with
one base station in the middle, and it also places a wormhole randomly in the same area. The
simulator permits us to set three parameters: the radio range of the sensors, the radius of the
wormhole, and the distance between the affected areas at the two ends of the wormhole.
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We chose two extreme values for the radio range of the sensor nodes: 40 m and 70 m. The
expected neighbor number is 5.9 in the 40 m case, and 18.5 in the 70 m case. Then, we split up
the range between 5.9 and 18.5 evenly into 5 intervals to get the six radio range values that we
used in our simulations (see Table 2).

Number of nodes 300

Extent of territory 500 m × 500 m

Number of simulation runs 100

Radio range of sensor nodes 40 m, 47 m, 54 m, 60 m, 65 m, 70 m

Radio range of the wormhole 16 m, 50 m

Distance between the affected areas 20 m, 50 m, 100 m, 200 m, 300 m, 400 m
at the two end wormhole

Table 2: Simulation parameters

We set the radius of the wormhole to 16 m or to 50 m (see Table 2). These two values
have been selected in such a way that the number of nodes affected by the wormhole differs
significantly in the two cases. When the radius of the wormhole is 16 m, one node is affected
(falls in the wormhole’s range) on both ends of the wormhole on average, whereas when the
radius of the wormhole is 50 m, 9.4 nodes are affected on both ends on average.

Finally, we varied the distance between the affected areas at the two ends of the wormhole
between 20 m and 400 m (see Table 2).

A given combination of the possible parameter values define a test case. For each test
case we run 100 simulations and averaged the results. For each radio range setting, we first
determined the rate of the false positive alarms (i.e., the percentage of the simulation runs
where the algorithms indicate a wormhole when there is no wormhole in the system). Then,
we placed wormholes with different parameters in the system and determined the accuracy of
both of our centralized wormhole detection mechanisms (i.e., the percentage of simulation runs
where the wormhole is detected when there is indeed a wormhole in the system). The results
are presented below.

Results of the neighbor number test (NNT)

The results of the NNT algorithm are shown on Figures 15 and 16. Figure 15(a) shows
the accuracy of the detection as a function of the radio range of the sensors when the radius of
the wormhole is 50 m. As it can be seen, the detection accuracy decreases as the sensors’ radio
range increases. The reason is that in the case of larger radio ranges, the sensors have more
real neighbors, and therefore, the increase in the number of neighbors caused by the wormhole
becomes less significant, and consequently, more difficult to detect. We can also observe that
the detection accuracy is better when the areas affected by the wormhole are more distant from
each other, although increasing this distance above 100 m has no real influence on the results.
In fact, if the distance between the affected areas is smaller than the radio range of the sensors,
then it is possible that two affected nodes that do not belong to the same affected areas are
already real neighbors, and therefore, the wormhole does not create a new link between them.
In other words, the larger the distance between the affected areas is, the higher the probability is
that the wormhole introduces new links into the graph, and by doing so it increases the number
of neighbors of the affected nodes.

Figure 15(b) shows the accuracy of the detection as a function of the radio range of the
sensors when the radius of the wormhole is 16 m. It is clear from the figure that the NNT
algorithm does not work in this case, as the accuracy of the detection is unacceptably low. The
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(a) (b)

Figure 15: Detection accuracy plotted against the radio range of the sensor nodes. The different
curves belong to different distances between the areas affected by the wormhole with a radius
of 50 m (a) and 16 m (b)

huge difference between the performance in the 50 m case and that in the 16 m case can be
explained with the large difference in the number of the affected nodes in the two cases. As we
described earlier, when the radius of the wormhole is 16 m, on average one node is affected at
both ends on the wormhole. Hence, practically, such a wormhole creates a single new link in the
graph, which is extremely difficult detect with statistical techniques. On the other hand, as the
average number of affected nodes is around 10 at both ends of the wormhole when the radius is
50 m, the number of new links introduced in the graph is around 100. More importantly, around
20 nodes out of the total of 300 have around 10 more neighbors due to the wormhole, and this
can be detected by the NNT algorithm.

Figure 16 shows the percentage of the false positive alarms as a function of the radio range
of the sensors. As it can be seen, the NNT algorithm performs quite well regarding the false
positive alarms. Indeed, the percentage of the false positive alarms is determined by the selected
significance level of the χ2–test, which in our case was 0.025.

Figure 16: Percentage of false positive wormhole detections plotted against the radio range of
sensor nodes

In summary, the NNT algorithm detects the wormhole reasonably well if the radius of the
wormhole is comparable to or larger than the radio range of the sensors, but it performs very
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badly if the radius of the wormhole is small. We note, however, that a smaller wormhole radius
has smaller effect on the system in terms of the number of sensors that send measurement data to
the base station through the wormhole. In order to illustrate this, we constructed the minimum
spanning tree rooted at the base station, and counted the number of shortest paths between
the base station and the sensors that contain a link created by the wormhole. The result is
shown in Figure 17. As it can be seen, when the radius of the wormhole is 16 m, the number
of concerned paths is between 0 and 50, whereas in the case of a 50 m radius, the number of
concerned paths is between 100 and 200. Thus, the adversary can monitor the measurements of
more sensors when the radius of the wormhole is larger, but in that case, it can also be detected
more accurately by the NNT algorithm.

Figure 17: The effect of the wormhole on the number of the controlled shortest paths plotted
against the radius of the wormhole

Results of the all distances test (ADT)

The results of the ADT algorithm are shown on Figures 18 and 19. Figure 18(a) shows
the accuracy of the detection as a function of the sensors’ radio range when the radius of the
wormhole is 50 m, whereas Figure 18(b) shows the same when the radius of the wormhole is
16 m. Similar to the NNT algorithm, the ADT algorithm performs better when the radius of the
wormhole is larger. However, unlike the NNT algorithm, the ADT algorithm is not completely
unusable in the case when the radius of the wormhole is 16 m. Rather, its performance depends
on the distance between the areas affected by the wormhole: the higher this distance is, the more
accurate the detection is. Moreover, when the distance between the affected areas is 400 m, the
accuracy is close to 100% . The explanation for this is quite obvious: a longer wormhole reduces
the length of the shortest paths between more distant nodes, and thus overall, it represents a
larger decrease in the average length of the shortest paths between all pairs of nodes.

Regarding the percentage of the false positive alarms (Figure 19), the ADT algorithm per-
forms quite well except for small radio ranges.

3.5 Mutual Authenticated Distance-bounding

THESIS 3.2. I propose a decentralized wormhole detection mechanism that uses a new dis-
tance bounding protocol that features mutual authentication of the protocol participants and a
commitment phase that prevents attacks aiming at shortening the estimated distance between
the participants. I show by informal reasoning that the protocol is suitable for the purpose of
wormhole detection, as wormholes typically make distances appear shorter than they really are.
[C5]

The main idea of distance-bounding is simple but very powerful. It is based on the facts that
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Figure 18: Detection accuracy plotted against the radio range of the sensor nodes. The different
curves belong to different distances between the areas affected by the wormhole with a radius
of 50 m (a) and 16 m (b)

Figure 19: Percentage of false positive wormhole detections plotted against the radio range of
the sensor nodes

electro-magnetic waves propagate nearly with the speed of light and with current technology it
is easy to measure local timings with nanosecond precision. The distance bounding technique
essentially consists of a series of rapid bit exchanges between the two nodes. Each bit sent by
the first node is considered to be a challenge for which the other node is required to send a one
bit response immediately. By locally measuring the time between sending out the challenges
and receiving the responses, the first node can estimate its real physical distance to the other
node, assuming that the messages travel with the speed of light and the processing delay at the
other node is negligible.

Note that the estimated distance is only an upper bound on the real distance between the
nodes, because the second node could be closer, but it can delay the responses in order to
appear to be further. Even if the nodes are trusted for not delaying their responses, an active
adversary can delay the messages between the parties, and hence, the estimated distance will
still be just an upper bound on the real distance. However, in the case of a wormhole attack,
the adversary’s goal is not to make the two nodes believe that they are far away from each
other. On the contrary, the adversary wants the two nodes to believe that they are within each
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other’s range, when in reality they are not. In order to achieve that the estimated distance is
smaller than the nodes’ real distance, the adversary should arrange that the messages travel
faster than the speed of light, which is impossible. Thus, distance-bounding can be used for
wormhole detection.

We slightly modify the above described distance-bounding technique such that it allows
both nodes to measure the distance between them simultaneously and it uses symmetric key
cryptographic primitives for authentication purposes. In order for this to work, it is assumed that
each pair of nodes share a symmetric key. We call the resulting protocol Mutual Authenticated
Distance-bounding, or shortly MAD.

Let x and y denote the two nodes in the protocol, and let their shared key be kxy. We will
denote the message authentication function controlled by the key kxy by mackxy . The operation
of the protocol is summarized in Figure 20, and it is explained as follows:

� Initialization phase:
Both x and y generate uniformly at random two numbers. The numbers of x are denoted
by r and r′, and the numbers of y are denoted by s and s′. Numbers r and s are ` bits
long, and r′ and s′ are `′ bits long (i.e., r, s ∈ {0, 1}` and r′, s′ ∈ {0, 1}`′) Both x and y
compute a commitment to the generated numbers by using a collision resistant one-way
hash function H: cx = H(r||r′) and cy = H(s||s′). Finally, x sends cx to y and y sends
cy to x. Note that the random numbers can be generated and the commitments can be
computed well before running the protocol.

� Distance-bounding phase:
Let the bits of r and s be denoted by ri and si (i = 1, 2, . . . , `), respectively. The following
two steps are repeated ` times, for i = 1, 2, . . . , `:

– x sends bit αi to y immediately after it received βi−1 from y (except for α1 which is
sent without receiving any bit from y), where α1 = r1 and αi = ri ⊕ βi−1 for i > 1;

– y sends bit βi = si ⊕ αi to x immediately after it received αi from x.

x measures the times between sending αi and receiving βi, and y measures the times
between sending βi and receiving αi+1. From the measured times, they both estimate
their distance.

� Authentication phase:
Node x computes the bits si = αi ⊕ βi, and the MAC

µx = mackxy(x||y||r1||s1|| . . . ||r`||s`)

Similarly, y computes the bits r1 = α1 and ri = αi ⊕ βi−1 for i > 1, and the MAC

µy = mackxy(y||x||s1||r1|| . . . ||s`||r`)

Finally, x sends r′||µx to y and y sends s′||µy to x. Node x verifies that the commitment
cy and the MAC µy of y are correct, and y verifies that the commitment cx and the MAC
µx of x are correct.

In the above protocol, the MAC ensures the authenticity of the exchange: both x and y can
believe that they ran the distance-bounding phase with the other, and thus, the distance that
they estimate is really the distance between x and y. Committing to r and s in the initialization
phase ensures that the protocol is successful only if exactly the bits of r and s are exchanged.
As r and s are random, an adversary cannot try to cheat x by predicting the bits of s and
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x y

generate random numbers generate random numbers

r ∈ {0, 1}`, r′ ∈ {0, 1}`
′

s ∈ {0, 1}`, s′ ∈ {0, 1}`
′

compute commitment cx = H(r||r′) compute commitment cy = H(s||s′)
cx−→
cy←−

— start of distance-bounding phase —
the bits of r are r1, r2, . . . , r` the bits of s are s1, s2, . . . , s`

α1 = r1
α1−→
β1←− β1 = s1 ⊕ α1

· · ·
αi = ri ⊕ βi−1

αi−→ measure delay between βi−1 and αi

measure delay between αi and βi
βi←− βi = si ⊕ αi
· · ·

α` = r` ⊕ β`−1
α`−→ measure delay between β`−1 and α`

measure delay between α` and β`
β`←− β` = s` ⊕ α`

— end of distance-bounding phase —

compute MAC compute MAC
si = αi ⊕ βi (i = 1, . . . , `) r1 = α1 and ri = αi ⊕ βi−1 (i = 2, . . . , `)

µx = mackxy (x||y||r1||s1|| . . . ||r`||s`) µy = mackxy (y||x||s1||r1|| . . . ||s`||r`)
r′||µx−→
s′||µy←−

verify cy and µy verify cx and µx

Figure 20: The Mutual Authenticated Distance-bounding (MAD) protocol.

responding earlier than y, and similarly it cannot cheat y either. More precisely, the probability
that such an attack succeeds is 2−` and hence decreases exponentially in `.

The advantage of MAD is that it does not require the localization of the nodes or the
synchronization of their clocks. MAD still requires, however, special hardware in the nodes
in order to quickly switch the radio from receive mode into send mode. In addition, it needs
a special medium access control protocol that allows for the transmission of bits without any
delay.

3.6 Summary

In this thesis group, we have studied the problem of wormhole detection in wireless sensor
networks. We proposed two centralized wormhole detection mechanisms that are based on hy-
pothesis testing, and that provide probabilistic results. The first mechanism, called the Neighbor
Number Test (NNT), detects the increase in the number of the neighbors of the sensors, which
is due to the new links created by the wormhole in the network. The second mechanism, called
the All Distances Test (ADT), detects the decrease of the lengths of the shortest paths between
all pairs of sensors, which is due to the shortcut links created by the wormhole in the network.
Both mechanisms assume that the sensors send their neighbor list to the base station, and it is
the base station that runs the algorithms on the network graph constructed from the received
neighborhood information.

We investigated the effectiveness of the two proposed mechanisms by means of simulation.
Our results show that both mechanisms can detect the wormhole with high accuracy when the
radius of the wormhole is comparable to the radio range of the sensors. In addition, the ADT
algorithm performs better than the NNT algorithm when the radius of the wormhole is small
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(compared to the radio range of the sensors). In terms of false alarms, both algorithms perform
reasonably well.

We also proposed a decentralized wormhole detection mechanism that combines the idea of
distance-bounding and mutual authentication of nodes. Distance-bounding allows the nodes that
run the protocol to estimate the real physical distance between them, therefore, the approach
can be used for detecting wormholes. In addition, the advantage of the proposed approach is
that, unklike other decentralized approaches, it does not require the localization of the nodes or
the synchronization of their clocks.
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4 Securing coding based distributed storage in wireless sensor
networks

THESIS GROUP 4. I propose a new algorithm to detect pollution attacks in coding based
distributed storage schemes, and two new algorithms to recover from such attacks. I measure
the performance of the proposed algorithms in terms of success rate and communication and
computing overhead. My results show that the first recovery algorithm can be used in practice
in small to medium sized networks (10-60 source nodes and 100-600 storage nodes), while the
second recovery algorithm scales up to larger systems (100 source nodes and 1000 storage nodes).
[C1, J2]

In many wireless sensor network (WSN) applications, there are multiple, distributed sources
that generate data that must be stored efficiently in multiple storage nodes, each having con-
strained communication, computation, and storage capabilities. Using the principles of network
coding [3, 20, 21, 29] and storing encoded data instead of raw data, one can increase the efficiency
of the system. Suppose we have k source nodes and n storage nodes. Instead of storing raw data
packets, each storage node stores a linear combination of a subset of the k data packets. Ran-
dom coding techniques (distributed erasure codes, fountain codes) introduced in [16, 17, 18, 19]
ensure that, for appropriately selected parameters, a collector node can reconstruct all the k
data packets with high probability by downloading the encoded packets from any k storage
nodes and solving a system of linear equations (s.l.e.). Thus, the collector node can retrieve the
required data from k nearby nodes, which results in decreased energy consumption, and hence,
longer network lifetime. Note that these are primary design criteria in WSNs.

While coding may increase the efficiency of distributed storage systems in a benign environ-
ment, it has a potential problem in hostile environments, where an adversary may attack the
storage nodes. In particular, the problem that we are interested in in this thesis group is the so
called pollution attack, whereby the adversary modifies some of the stored encoded data, which
results in erroneous decoding of a large part of the original data upon retrieval. Note that these
coding schemes mix (typically, linearly combine) blocks of the original data, therefore, a single
corrupted encoded block can affect the decoding of multiple data blocks. This amplification
effect of the pollution attack is particularly annoying and undesirable.

An approach to prevent the pollution attack is to require the source nodes to digitally sign
[28] (or hash [22]) the data blocks before they are injected in the system. However, the digital
signature scheme must have some homomorphic properties that allows for the combination
of signed data blocks. Unfortunately, homomorphic signature schemes are computationally
expensive, and they need a public key infrastructure (PKI) for the management of the signature
verification keys. These problems hinder their usage in practical applications; in particular, due
to the large computational complexity they cannot be used in sensor networks.

Our main contribution is a novel non-cryptographic approach to counteract pollution attacks
in coding based distributed storage systems in WSNs. Compared to other approaches in the
same vein, we do not add redundancy to the data packets, but rather, we take advantage of the
inherent redundancy provided by the coding scheme itself that is designed for the distributed
storage system. To the best of our knowledge, our proposal is the first error detection/correction
method that does not require any new functionality at the source nodes or at the storage nodes.

Our proposal is more practical than the approach based on homomorphic digital signatures.
First of all, we need neither a PKI, nor any cryptographic key management scheme, as we do
not use cryptography at all. The practical value of this feature should not be underestimated.
Second, while our approach also requires intensive computational effort, this is required only
for the entity that retrieves information from the distributed storage system. In wireless sensor
networks, where the computational overhead really matters, this entity is typically the base sta-
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tion, which is usually assumed to be powerful enough. In contrast to this, in the approach based
on homomorphic digital signatures, the source nodes and the storage nodes need to perform
intensive computation, and those are typically resource constrained sensor nodes.

In order to measure the performance of our algorithms, we calculate the probability of
success together with the complexity of the algorithms. Two complexity measures are considered:
the computational complexity, measured in the number of s.l.e.’s that need to be solved, and
the communication complexity, measured in the number of encoded packets that need to be
downloaded when data is retrieved from the distributed storage system. We propose an attack
detection algorithm that has optimal communication and computational complexity in the given
system model. We also propose a recovery algorithm with very low computational complexity,
and another recovery algorithm with optimal communication complexity, which has also feasible
computational complexity for small to medium size practical systems.

4.1 System and adversary models

System model

The general model of the distributed storage systems that we consider in this work is taken
from [17] and it is illustrated in Figure 21. The system consists of k source nodes, n storage
nodes, and one or more collector nodes. Note that these are roles, and therefore, the sets of
source nodes, storage nodes, and collector nodes may overlap. Only the collector node is assumed
to be a powerful computer (base station), while source and storage nodes may be low capacity
devices.

Figure 21: System model

Each source node i generates a data block Xi, and transfers it to some randomly selected
subset of the storage nodes. Each storage node j computes a random linear combination of all
the data blocks that it receives; the result is a single code block Yj . Formally, we can write
that Yj = XGj , where X = (X1, X2, . . . , Xk) is the row vector of all the data blocks, and Gj =
(g1j , g2j , . . . , gkj)

T is a column vector, the non-zero elements of which are the random coefficients
used in the linear combination. Here, gij ∈ GF (q) for all i = 1, 2, . . . , k and j = 1, 2, . . . , n, and
for some q. Each storage node j stores the pair Zj = (Gj , Yj), which represents the equation
Yj = XGj . The entire system is represented by the system of linear equations (s.l.e.) Y = XG,
where Y = (Y1, Y2, . . . , Yn) is the row vector of all code blocks, and G = (G1, G2, . . . , Gn) is
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a k × n matrix that contains the coefficient vectors in its columns. Matrix G is also called
generator matrix.

For appropriately selected values of k and q, any k × k submatrix of G is non-singular with
high probability. According to [17], the probability of non-singularity is at least (1− k

q )c2(k),
where c2(k) → 1, if k → ∞. Larger values of q increase the probability of successful decoding,
but makes the overhead of storage higher. [17] also shows that storage nodes required to store
O(ln k) coefficients. E.g. if k = 100 and q = 220, the probability of singularity is ≈ 10−4, while
the average overhead of a storage node is 92 bits. Therefore, the collector node can reconstruct
all the data blocks with high probability by downloading the equations from any k storage
nodes and solving the obtained s.l.e. for X. In the rest of this presentation, we assume that this
property of G holds.

In fact, each data block Xi can itself be a column vector of m symbols (x1i, x2i, . . . , xmi)
T,

where x`i ∈ GF (q) for all i = 1, 2, . . . , k and ` = 1, 2, . . . ,m. In that case, each code block
Yj is also a column vector (y1j , y2j , . . . , ymj)

T of m symbols in GF (q). The linear combination

Yj = XGj is computed in a symbol-by-symbol manner, meaning that y`j =
∑k

i=1 x`igij for all
j = 1, 2, . . . , n and ` = 1, 2, . . .m. Thus, one can think of X and Y in the s.l.e. Y = XG as
matrices of size m× k and m× n, respectively.

Adversary model

We assume that the adversary has access to t storage nodes, and she can observe and modify
the equations stored by them. This means that if the adversary has access to storage node j,
then she can modify both Gj and Yj stored by node j. Let G∗ = G + ∆G and Y ∗ = Y + ∆Y
be the modified generator matrix and the modified code block vector after an attack, where the
modifications made by the adversary are contained in matrix ∆G and vector ∆Y . We further
allow the adversary to compromise the communication links of the t storage nodes. It gives more
possibility to the adversary, but does not extend the possible effect of the attack. For simplicity,
we refer to nodes that store modified data as compromised nodes, and not distinguish them
upon the way of modification.

Note that the adversary has no access to the source nodes, rather she aims at compromising
the output of the storage system. The rationale behind this assumption is that storage nodes are
exposed to attacks for an extended period of time, whereas the source nodes must be attacked
during the limited time period of data generation. Data distribution from the source nodes to
the storage nodes typically takes place on a wireless channel, that is exposed to various attacks.
Accordingly, our applied model of adversary is realistic in most cases.

Recall that when reconstructing the data blocks, the collector node chooses the k storage
nodes, from which it downloads the k linear equations, randomly. Therefore, the adversary has
no information on which storage nodes will be chosen when she performs the attack. At the
same time, the collector node does not know which storage nodes are compromised. In the
sequel, we will assume without loss of generality that the adversary randomly chooses the t
storage nodes to be compromised, and the collector node downloads the equations of the first
k storage nodes, where the order of the storage nodes is defined randomly by the collector
node. Thus, the set of equations downloaded by the collector node is Z∗1..k = (G∗1..k, Y

∗
1..k), where

G∗1..k = (G∗1, G
∗
2, . . . , G

∗
k) and Y ∗1..k = (Y ∗1 , Y

∗
2 , . . . , Y

∗
k ).

Let us now investigate the effect of an attack. The collector node solves the s.l.e. Y ∗1..k =
XG∗1..k for X, and obtains the result X∗ = Y ∗1..k(G

∗
1..k)

−1. Let us suppose for the moment that the
adversary modifies only the code blocks, meaning that G∗ = G. In this case, X∗ = Y ∗1..k(G1..k)

−1.
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The modification induced by the attack in the decoded data blocks can be computed as follows:

∆X = X∗ −X
= Y ∗1..k(G1..k)

−1 −X
= (Y1..k + ∆Y1..k)(G1..k)

−1 −X
= ∆Y1..k(G1..k)

−1

where in the last step we used that Y1..k(G1..k)
−1 = X. This means that (a) if a given row of

∆Y1..k contains only zeros, then the corresponding row of ∆X will contain only zeros too, and
(b) a non-zero element in a given row of ∆Y1..k will affect the entire corresponding row in ∆X.
Thus, a modification made by the adversary in a given row in any of the first k code blocks will,
in general, affect all decoded data blocks, but the effect will be limited to the corresponding
row.

Now, let us suppose that the adversary modifies only the coefficient vectors, meaning that
Y ∗ = Y . In this case, X∗ = Y1..k(G

∗
1..k)

−1. If at least one of the first k coefficient vectors
has been modified by the adversary, then G∗1..k 6= G1..k, and thus, (G∗1..k)

−1 can be completely
different from (G1..k)

−1. Therefore, in general, such a modification affects all decoded data
blocks in every row.

If the adversary modifies both the coefficient vectors and the code blocks, then these effects
are combined. In the general case, the modification induced by the attack on the decoded data
blocks can be derived as follows:

X + ∆X = (Y1..k + ∆Y1..k)(G
∗
1..k)

−1

(X + ∆X)G∗1..k = Y1..k + ∆Y1..k

X∆G1..k + ∆XG∗1..k = ∆Y1..k

∆X = (∆Y1..k −X∆G1..k)(G
∗
1..k)

−1

where in the second step we used that G∗1..k = G1..k + ∆G1..k and XG1..k = Y1..k.
The above formulas imply the following observation. If ∆Y1...k is controlled by the adversary,

meaning that all downloaded equations are from compromised nodes, the value of ∆X can be
chosen by the adversary. The adversary can reconstruct X from the contents of the nodes, so
she is able to enforce arbitrary X∗ = X + ∆X solution by loading Y ∗i = X∗i Gi as the modified
content of the i-th compromised storage node. As a result, the adversary can not only destroy
the original data block vectors, but she can also enforce a particular value. This scenario may
occur, if t ≥ k.

Actually, these observations illustrate the amplification effect of the pollution attack: a
small amount of modifications in the stored coded information can result in a large amount
of modifications in the decoded data. In the worst case all data blocks are entirely destroyed.
This is highly non-desirable, and requires the development of some countermeasures. Below, we
address this problem by proposing mechanisms to detect and recover from such attacks.

4.2 Attack detection

THESIS 4.1. I propose a new algorithm to detect pollution attacks in coding based distributed
storage schemes. The algorithm is optimal in terms of communication overhead and computing
complexity, and its false negative detection rate can be made negligibly small by appropriate
parameter selection. Its false positive detection rate is t

n−k , where k is the number of source
nodes, n is the number of storage nodes, and t is the number of compromised storage nodes.
Hence, the false positive detection rate is not negligible, but false alarms can be handled with the
recovery algortihms that I propose later in this thesis group. [C1, J2]
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Principle

The basic idea of our attack detection mechanism is the following: We observe that it is very
unlikely that the adversary will compromise all the first k equations. Indeed, the probability
of this event is around (t/n)k. Thus, some parts of Y ∗1..k and G∗1..k are not controlled by the
adversary, and for this reason, she cannot enforce a particular solution X∗ = Y ∗1..k(G

∗
1..k)

−1.
Indeed, X∗ will be a random vector in most of the cases, except if all the first k equations are
intact, in which case X∗ = X will hold.

Now, suppose that we have an additional intact equation: Yk+1 = XGk+1 (i.e., the collector
downloaded Zk+1 = (Gk+1, Yk+1)). If X∗ is random, then it will not satisfy the additional intact
equation with high probability, while it will satisfy it with probability 1 if X∗ = X. Thus, we
can detect if the decoded data block vector X∗ is polluted with the help of an additional intact
equation.

Algorithm

The proposed attack detection algorithm works in the following way: The collector downloads
the first k equations Z∗1..k and computes X∗ = Y ∗1..k(G

∗
1..k)

−1. Then, the collector downloads the
next equation Z∗k+1. If Y ∗k+1 = X∗G∗k+1, then no attack is detected (and the collector accepts
X∗ as the correct solution). Otherwise, if Y ∗k+1 6= X∗G∗k+1, an attack is signaled.

Analysis

In this subsection, we investigate the complexity of the attack detection algorithm, as well
as its false negative and false positive error probabilities.

Complexity: We measure the communication complexity in the number of downloaded equa-
tions and the computational complexity in the number of s.l.e.’s that we need to solve. Thus,
the communication complexity of the proposed attack detection algorithm is k+ 1, and its com-
putational complexity is 1. As the collector needs to download k equations and solve one s.l.e.
in any case, the incurred overhead of the attack detection is extremely small: 1 more equation
to download.

Probability of a false negative decision: Let us assume for the moment that the adversary
does not modify the coefficient vectors, meaning that G∗ = G. As we saw earlier, in this case,
the collector obtains the solution X∗ = X + ∆Y1..kG

−1
1..k = X + ∆X.

If we further assume that the additional equation that we use for detection is intact, then
we have Z∗k+1 = Zk+1 = (Gk+1, Yk+1). In this case, the false negative error probability, denoted
by Pfneg , can be computed as follows:

Pfneg = Pr{Yk+1 = X∗Gk+1|∆Y1..k 6= 0}
= Pr{Yk+1 = (X + ∆X)Gk+1|∆Y1..k 6= 0}
= Pr{∆XGk+1 = 0|∆Y1..k 6= 0} (22)

where in the last step we used that Yk+1 = XGk+1.
Recall that if ∆Y1..k has a non-zero element in the i-th row (and G1..k is intact), then ∆X

also has some non-zero elements in the i-th row. Otherwise, if the i-th row of ∆Y1..k contains
only zeros, then the i-th row of ∆X contains only zeros too.

We can write the i-th element of ∆XGk+1 as

k∑
`=1

∆xi`g`(k+1) (23)
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By the argument above, (23) is a non-trivial linear combination of the elements of Gk+1. How-
ever, the elements of Gk+1 are chosen randomly, therefore, the probability of (23) being 0 is
equal to 1/q.

From this, it follows that

Pfneg =
1

qt′
(24)

where t′ is the number of rows in ∆Y1..k that contain non-zero elements. Clearly, in order to
maximize the error probability (and hence minimize the success probability) of the detection,
the adversary must make all modifications to the code blocks in a single row9.

Next, we keep the assumption that the adversary does not modify the coefficient vectors
(hence G∗ = G), but we assume that the code block of the additional equation that we use for
detection is attacked, meaning that Z∗k+1 = (Gk+1, Y

∗
k+1) = (Gk+1, Yk+1 + ∆Yk+1). In this case,

a simple derivation similar to the previous case can be used to arrive to the following result:

Pfneg = Pr{∆XGk+1 = ∆Yk+1|∆Y1..k 6= 0} (25)

Recall from the previous discussion that the i-th row of ∆X contains only zeros if the i-th
row of ∆Y1..k contains only zeros. In this case, the i-th element of ∆XGk+1 must be a zero too.
Thus, if the i-th element in ∆Yk+1 is not zero, then the above error probability is 0 (i.e., we
can detect the attack even though the additional equation used for detection is not intact). On
the other hand, if ∆Yk+1 contains zeros in every row where ∆Y1..k contains only zeros, then due
to the randomness of Gk+1, we get again that Pfneg = 1/qt

′
, where t′ is the number of rows in

∆Y1..k that contain non-zero elements.
Finally, let us consider the general case when the adversary may modify both the coefficient

vectors and the code blocks, hence ∆G 6= 0 and ∆Y 6= 0. Recall that if ∆G1..k 6= 0, then the
solution X∗ = Y ∗1..k(G

∗
1..k)

−1 obtained from the first k equations is a random vector. It follows
that the equation Y ∗k+1 = X∗G∗k+1 holds with probability around 1/qm, and thus

Pfneg = Pr{Y ∗k+1 = X∗G∗k+1|∆G1..k 6= 0} ≈ 1

qm
(26)

The conclusion of this analysis is that the probability Pfneg of false negative detection is
maximized if the adversary makes modifications only in a single row of the code block matrix
Y and leaves the coefficient matrix G intact. In this case, Pfneg = 1/q. Hence, if q is chosen
sufficiently large, then the probability of not detecting a pollution attack can be made negligible.

Probability of a false positive decision: Let us assume that the first k equations downloaded
by the collector node are intact, meaning that Z∗1..k = Z1..k. Thus, the collector computes
the correct solution X∗ = Y ∗1..k(G

∗
1..k)

−1 = Y1..k(G1..k)
−1 = X. If the additional equation

downloaded for attack detection is also intact (i.e., Z∗k+1 = Zk+1), then no attack is detected as
Y ∗k+1 = Yk+1 = XGk+1 = X∗G∗k+1. Thus, an attack may be signaled only in the case when the
additional equation is not intact. From this, a good approximation of the probability of a false
positive decision, denoted by Pfpos , is the following:

Pfpos ≈ Pr{∆Zk+1 6= 0|∆Z1..k = 0} (27)

Given that the first k equations are intact, the probability that the (k + 1)-st equation is

9Note that if the code blocks contain standard error detection elements, such as a CRC checksum, then at
least 2 rows must be changed by the adversary in every attacked code block. Consequently, in that case, we have
that Pfneg ≤ 1/q2.
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also intact is (
n− k − 1

t

)
(
n− k
t

) =
n− k − t
n− k

(28)

where t is the number of randomly chosen storage nodes that are attacked by the adversary.
From this, we get that

Pfpos = 1− n− k − t
n− k

=
t

n− k
(29)

While Pfpos is not negligible, false positive decisions do not have serious effects. Indeed, when
the attack detection algorithm signals an attack, the recovery procedures described in the next
section are executed. These procedures try to recover the original data block vector, and as we
will see, they succeed in a few steps when the number of attacked equations is small (which is
the true by definition in case of a false positive decision of the attack detection algorithm).

4.3 Recovery from attack

Principle

When the collector node detects that the originally downloaded set S = Z∗1..k of equations is
polluted, it can download more equations and use them to clean the polluted set S. The basic
idea of cleaning is the following: Let us denote the set of equations downloaded for cleaning by
C, and let e be an additional equation. We use the equations in C to replace a subset of size |C|
of the equations in S. We denote the resulting new set of equations by S′. Then, we run our
attack detection mechanism on S′ with equation e used for testing. In other words, we solve the
s.l.e. corresponding to S′ and check if the solution satisfies equation e. If no attack is detected,
then we accept the obtained solution as the correct data block vector. Otherwise, we take S
again, replace another subset of size |C| of its equations, and run the attack detection again.
We repeat these steps until either the cleaning succeeds or all possible subsets of size |C| of set
S has been replaced.

Note that if e is intact, C contains only intact equations, and the number of the attacked
equations in S is not greater than |C|, then the above described procedure eventually succeeds,
because eventually we will replace all the attacked equations in S by the intact equations in C.
In case of failure, either e is attacked, or C contains an attacked equation, or the number of
attacked equations in S is greater than |C|. In this case, we may download another set C ′ of
equations such that |C ′| > |C|, as well as another testing equation e′, and try the cleaning of S
again.

In the rest of this subsection, we propose two specific recovery algorithms based on the
principle described above. As we will see, the first algorithm is optimized for communication
complexity, however, its computational complexity does not scale well with k. Nevertheless, it
may still be usable for smaller systems. The second algorithm that we propose has improved
computational complexity, however, in general, it has a higher communication complexity than
the first algorithm has, and it can recover only from attacks where the number of the compro-
mised storage nodes is limited.

THESIS 4.2. I propose a new algorithm aiming at the recovery from pollution attacks in coding
based distributed storage schemes. The algorithm is using a cleaning set whose size is iteratively
increased. The success probability of the algorithm is 1, if t < n − k, and 0 otherwise, where
k is the number of source nodes, n is the number of storage nodes, and t is the number of
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compromised storage nodes. Hence, as k can be an order of magnitude smaller than n, n− k is
close to n, and thus, the algorithm is successful even if a large fraction of the storage nodes is
attacked. The communication complexity of the algorithm is approximately kp+1

1−p , where p = t/n.
The computational complexity of the algorithm is exponential (see expressions (31) and (33),
and Figure 22), but my numerical analysis shows that it can still work in practice for small to
medium size systems (i.e., 10-50 source nodes, 100-600 storage nodes, and tolerating 50-10% of
compromised storage nodes). [C1, J2]

Algorithm 1

The basic idea of our first algorithm is to start the cleaning with a cleaning set C of size
one (i.e., to assume first that there is only one attacked equation in set S), and then, if cleaning
fails, to increase the size of C iteratively. In this way, sooner or later, we arrive to a cleaning
set C that contains as many intact equations as the number of attacked equations in S. In each
iteration, we select all possible subsets of the equations in C and replace with them all possible
subsets of equations in S. Thus, eventually, we replace the attacked equations with the intact
ones, and arrive to a clean set.

The pseudo-code of the algorithm is presented in Table 3. Its operation is explained as
follows: The algorithm first downloads Z∗1..k+1 (line 1) and runs the attack detection algorithm
on Z∗1..k using Z∗k+1 as the testing equation (line 2). If no attack is detected, then Z∗1..k is clean
and the algorithm stops (line 3). Otherwise, the algorithm starts the cleaning of S = Z∗1..k
(lines 5–24). This is an iterative process, where in each iteration (lines 7-24), exactly one
new equation is downloaded (line 8). The newly downloaded equation, denoted by e, becomes
the testing equation used for attack detection in the current iteration (line 10). The rest of
the equations downloaded so far, not counting the equations in S, constitute the cleaning set
denoted by C (line 9). The algorithm takes every possible subset C ′ of C, such that |C ′| = τ
is not greater than k (lines 12–13), and uses the equations in C ′ to replace τ equations in S
in all possible ways (lines 14–16). After each replacement, the attack detection mechanism is
executed on the resulting set S′ of equations using e as the testing equation (line 17). If no
attack is detected, then S′ is clean and the algorithm stops (line 18).

Analysis of Algorithm 1

Below, we first analyze the success probability of the algorithm, and then, we analyze its
communication complexity and computational complexity.

Success probability: It is easy to see that the algorithm succeeds iff the number t′ of the
attacked equations in S = Z∗1..k is smaller than the number of the intact equations in the
remaining set Z∗k+1..n. On the one hand, if this condition holds, then we have at least t′ + 1
intact equations in Z∗k+1..n, and therefore, as we continue downloading more and more equations
for cleaning, we eventually reach a state where the cleaning set C contains at least t′ intact
equations and the last downloaded equation e used for attack detection is also intact. In this
case, eventually, all the attacked equations in S will be replaced by intact equations from C,
hence S will be cleaned. In addition, as e is intact, the attack detection mechanism will indicate
no attack, and we can actually realize that S is cleaned.

On the other hand, if t′ is not smaller than the number of the intact equations in Z∗k+1..n,
then either the cleaning set C contains fewer than t′ intact equations, and hence, S cannot be
cleaned, or C contains exactly t′ intact equations and S can be cleaned, but we have no more
intact equation for attack detection purposes, and therefore, we cannot realize that S is cleaned.

Given that there are t attacked equations all together, and t′ of them are in Z∗1..k, we get
that the number of intact equations in Z∗k+1..n is (n−k)− (t− t′). Hence, the algorithm succeeds
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1 download Z∗1..k+1

2 if attack detection(Z∗1..k, Z
∗
k+1) = no attack

3 return Z∗1..k
4 endif

5 let S = Z∗1..k
6 let w = 1
7 while w < n− k
8 download Z∗k+w+1

9 let C = Z∗k+1..k+w

10 let e = Z∗k+w+1

11 for τ = 1 to min(w, k)
12 for every possible selection s1

of τ elements out of w elements
13 let C ′ be the subset of equations

determined by s1 in C
14 for every possible selection s2

of τ elements out of k elements
15 let S′ = S
16 replace the equations determined by s2

in S′ with the equations in C ′

17 if attack detection(S′, e) = no attack
18 return S′

19 end if
20 end for
21 end for
22 end for
23 let w = w + 1
24 end while

Table 3: Pseudo-code of Algorithm 1.

iff t′ < (n− k)− (t− t′), or equivalently, t < n− k. Thus, we get that

Psuccess =

{
1 if t < n− k
0 otherwise

(30)

As k can be an order of magnitude smaller than n, n−k is close to n, and thus, the algorithm
is successful even if a large fraction of the equations is attacked.

Communication complexity: Recall that we measure the communication complexity in the
number of the downloaded equations. As the algorithm downloads a new equation in every
iteration, its communication complexity depends on the number of the iterations it performs.
More precisely, if the algorithm performs R iterations, then its communication complexity is
(k+ 1) +R, because it downloads k+ 1 equations at the beginning before the iterative phase is
started. As k is a fixed parameter, we are interested in the characterization of R.

The algorithm stops as soon as the following two conditions hold: (a) the number of intact
equations in the cleaning set C is equal to the number of attacked equations in S, and (b)
the last downloaded equation e used for attack detection is intact. Indeed, if condition (a) is
satisfied, then eventually the intact equations in C will be used to replace the attacked equations
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in S, hence S will be cleaned. If, in addition, condition (b) is satisfied, then the attack detection
mechanism will indicate no attack, and we can actually realize that S is cleaned. Thus, R is the
number of equations needed to be downloaded to satisfy the two conditions above.

It must be clear that if S contains t′ attacked equations, then C ∪ {e} must contain at least
t′ + 1 intact equations, as otherwise, we cannot clean S and realize that it has been cleaned at
the same time. Thus, R is minimal in the sense that for R′ < R downloaded equations, C ∪ {e}
contains fewer than t′+1 intact equations, and hence, the algorithm cannot succeed. This means
that our algorithm is optimal in terms of communication complexity.

We give an estimation of R in the following way. Let p = t/n, and let W1 denote the number
of equations that need to be downloaded in order for the downloaded set of equations to contain
exactly the same number of intact equations, on average, as the number of attacked equations
in S. The average number of attacked equations in set S is approximately kp. The average
number of intact equations among the W1 equations is approximately W1(1− p). Hence, we get
that W1 ≈ kp/(1− p). Furthermore, let W2 denote the average number of equations that need
to be downloaded until we download an intact equation. Clearly, W2 ≈ 1/(1− p). Thus, when
W1 + W2 equations are downloaded, both conditions (a) and (b) are satisfied. In other words,
a good estimate of R is

R ≈ W1 +W2 ≈
kp+ 1

1− p
(31)

Computational complexity: Recall that we measure the computational complexity in the
number of s.l.e.’s that need to be solved. In our case, each call to the attack detection algorithm
requires the solution of an s.l.e.

The worst case computational complexity Pworst of the algorithm can be easily determined
by inspecting the structure of the nested loops in the algorithm:

Pworst ≈
R∑
w=1

min(w,k)∑
τ=1

(
w
τ

)(
k
τ

)
(32)

where R is the number of iterations, which we can estimate according to (31).
For the derivation of the average case computational complexity Pavg , we assume that the

number of the attacked equations in S is t′, where the average value of t′ is kt/n. We make the
following observations:

� All but the last iterations of the algorithm execute fully. (term (33) in the sum below)

� In the last iteration, the loops that try to clean S with τ < t′ equations from C also
execute fully. (term (34) in the sum below)

� When we use τ = t′ equations from C for cleaning, we have to process on average half of
the possible selections of t′ equations from C until we end up with the subset that contains
the t′ intact equations of C. For all those selections, the inner loop executes fully and we
must process all the possible selections of t′ equations from S. (term (35) in the sum
below)

� Finally, when we select the subset of C that contains the t′ intact equations, we have to
process on average half of the possible selections of t′ equations from S until we end up
with the t′ attacked equations of S. (term (36) in the sum below)
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Thus, we get that

Pavg ≈
R−1∑
w=1

min(w,k)∑
τ=1

(
w
τ

)(
k
τ

)
+ (33)

t′−1∑
τ=1

(
R
τ

)(
k
τ

)
+ (34)

1

2

(
R
t′

)(
k
t′

)
+ (35)

1

2

(
k
t′

)
(36)

Figure 22 shows the average computational complexity of Algorithm 1 as a function of the
number t of attacked equations. The different curves belong to different values of n and k, and
the computation is based on the formula given above. Note the logarithmic scale of the y axis.

Figure 22: Average computational complexity of Algorithm 1 as a function of the number t of
attacked equations. The different curves belong to different values of n and k.

As we can see, the computational complexity of Algorithm 1 increases rapidly with the
number t of attacked equations. Still, for the presented values of n, k, and t, it does not exceed
109 ≈ 230, which is still feasible. Thus, for small systems, where k is in the range of 10 –
50, Algorithm 1 provides a practical solution: it succeeds in recovering from attacks even if the
number t of the attacked equations is very large, its communication complexity is optimal, and it
is still computationally feasible up to t ≈ 55 attacked equations. Note that in the case of n = 100,
t ≈ 55 means that more than half of the storage nodes are compromised, yet Algorithm 1 can
recover from the attack and it is practically feasible. In the case of n = 500, Algorithm 1 can
cope only with a weaker attacker that can compromise around 10% of the storage nodes.

While Algorithm 1 is a good choice for small scale systems (n = 100 – 600 and k = 10 – 50),
it is computationally infeasible for larger systems (e.g., when k is around 100) even if we assume
that t is limited.
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THESIS 4.3. I propose another algorithm for recovering from pollution attacks in coding based
distributed storage schemes that uses a fixed size cleaning set, and hence, it has reduced com-
putational complexity. I show, by means of simulations, that the success rate of the algorithm
is close to 1 up to 10% compromised storage nodes, and then it decreases quickly. The com-
munication complexity of the algorithm grows with the number of compromised storage nodes,
but it remains below n/2 up to 10% compromised nodes, and it is close to optimal up to 5%
compromised nodes. The computational complexity of the algorihm is better than that of my first
recovery algorithm, in particular, with the same amount of computation, the second algorithm
can handle an order of magnitude larger systems (100 source nodes and 1000 storage nodes) up
to 5-10% compromised storage nodes. [J2]

Algorithm 2

Contrary to our first algorithm, where the size of the cleaning set is iteratively increased,
our second algorithm uses a fixed size cleaning set C. In this way, the number of the possible
selections of the different subsets of C does not grow, and hence, the computational complexity
of the algorithm scales better with k. Instead of iteratively increasing C, this algorithm changes
the fixed size sets S and C in each iteration. In effect, S and C consist of the equations that
are taken from a fixed size window that slides over Z∗.

The pseudo-code of the algorithm is presented in Table 4. First, we download the equations
Z∗1..k+1 and perform attack detection in a way similar to Algorithm 1 (lines 1–4). If no attack
is detected, then the algorithm stops; otherwise, we start an iterative cleaning process (lines
5–26). As we said above, in this algorithm, the size w of the cleaning set C is a fixed value dαke
(line 5), where α is an input parameter. We download the equations Z∗k+2..k+w (line 6), and
initialize the set S to be cleaned with Z∗1..k and the cleaning set C with Z∗k+1..k+w. Both sets
change in each iteration, and we use variables iS and iC to point to the first equations of them
in the current iteration. Similarly, ie points to the equation that we use in attack detection for
testing. Variables iS , iC , and ie are initialized (line 7) and the iteration starts. In each iteration
(lines 8–26), we download exactly one new equation (line 9), which becomes the equation that
is used as the testing equation in attack detection (line 12). The algorithm takes every possible
subset C ′ of C, such that |C ′| = τ is not greater than τmax (lines 13–15), and uses the equations
in C ′ to replace τ equations in S in all possible ways (lines 16–18). Here τmax is another input
parameter that limits the computational complexity of the algorithm by limiting the size of the
subsets of the equations that we choose from C and replace in S. After each replacement, the
attack detection mechanism is executed on the resulting set S′ of equations using e as the testing
equation (line 19). If no attack is detected, then S′ is clean and the algorithm stops (line 20).
Otherwise, we increment each of our pointers iS , iC , and ie (line 25), and continue the iteration.
Note that set S ∪ C ∪ {e} consists of the equations in a sliding window of size k + w + 1 that
slides over Z∗ until either cleaning is successful or we downloaded all equations in Z∗.

Analysis of Algorithm 2 by simulations

Algorithm 2 is more difficult to examine analytically, therefore, we used simulations, written
in Matlab, to investigate its performance. In our simulations, we set n = 1000 and k = 100, and
we range the value of τmax over the values {4, 5, 6}. For each value of τmax , we set

α =
τmax

k − τmax
(37)

The rationale behind this setting of α is the following: Intuitively, we are prepared to clean
at most τmax attacked equation in S. If we assume that S, which has size k, contains τmax
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1 download Z∗1..k+1

2 if attack detection(Z∗1..k, Z
∗
k+1) = no attack

3 return Z∗1..k
4 endif

5 let w = dαke
6 download Z∗k+2..k+w

7 let iS = 1, iC = iS + k, ie = iC + w
8 while ie ≤ n
9 download Z∗ie
10 let S = Z∗iS ..iS+k−1

11 let C = Z∗iC ..iC+w−1

12 let e = Z∗ie
13 for τ = 1 to τmax

14 for every possible selection s1

of τ elements out of w elements
15 let C ′ be the subset of equations

determined by s1 in C
16 for every possible selection s2

of τ elements out of k elements
17 let S′ = S
18 replace the equations determined by s2

in S′ with the equations in C ′

19 if attack detection(S′, e) = no attack
20 return S′

21 end if
22 end for
23 end for
24 end for
25 let iS = iS + 1, iC = iS + k, ie = iC + w
26 end while

Table 4: Pseudo-code of Algorithm 2.

attacked equation, then we may estimate the probability that a given equation in Z∗ is attacked
as τmax/k. Thus, the number of intact equations in C, which has size w, can be estimated as
w(1− τmax/k). In order to be able to clean S, the number of intact equations in C must be at
least τmax . Thus, we must have that

τmax ≤ w
(

1− τmax

k

)
(38)

from which
w ≥ τmax

1− τmax
k

=
τmax

k − τmax
k (39)

Moreover, for each setting of τmax and α, we range the number t of attacked equations form
10 to 150 with a step size of 10. For each setting of the parameters, we run 100 simulations,
where the t attacked equations are chosen uniformly at random in the set Z∗ of n equations.

We are interested in the success probability of the algorithm, which we estimate as the frac-
tion of the simulation runs, for a given setting of the parameters, where the algorithm succeeds.
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In addition, we are interested in the average communication and computational complexity of the
algorithm, which we obtain as the mean of the communication and computational complexities,
respectively, of the simulation runs for a given setting of the parameters.

Success probability: Figure 23 shows the success probability of Algorithm 2 as the function
of the number t of the attacked equations. The different curves belong to different values of
τmax .

Figure 23: Success rate of Algorithm 2 as a function of the number t of attacked equations.
n = 1000 and k = 100.

As we can see, the success probability of the algorithm is larger than 90% until a threshold
value of t, and begins to decrease rapidly after the threshold. This threshold value is approx-
imately t = 85, t = 100, and t = 110, for τmax = 4, τmax = 5, and τmax = 6, respectively.
Thus, as we expected, if we increase τmax , the algorithm ensures recovery from stronger attacks
that involve more attacked equations. Unfortunately, as we will see below, the computational
complexity increases too.

Recall that in case of Algorithm 1, the success probability remained one until the threshold
t = n− k − 1, which would be t = 899 for n = 1000 and k = 100. This threshold is much larger
than the threshold values that we got for Algorithm 2. Despite of this, the threshold values
that we obtained are still surprisingly large given that the algorithm is prepared to handle much
smaller number of attacked equations. Indeed, when τmax = 4, the algorithm is prepared to
clean 4 attacked equations in a set of size k = 100, which means 40 attacked equations in the
entire set of size n = 1000. However, the algorithm succeeds with high probability even if the
number of attacked equations is around 85. A similar observation can be made for the other
values of τmax .

The reason of this is that when t = 85, the average number of attacked equations in a set
of size k = 100 is 8.5, but this means that there are sets with a smaller number of attacked
equations. Apparently, we can find a set with not more than 4 attacked equations with a rather
high probability among the sets that we obtain by sliding a window of size k = 100 over the
entire set Z∗ of equations. A similar argument applies for the other cases.

Communication complexity: Figure 24 shows the average communication complexity (i.e.,
the number of the downloaded equations) of Algorithm 2. The different curves belong to dif-
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ferent values of τmax . We truncated the plot at t = 120, because above that value, the success
probability of the algorithm is rather poor anyway, hence, we are not really interested in its
complexity.

Figure 24: Average communication complexity of Algorithm 2 as a function of the number t of
attacked equations. n = 1000 and k = 100.

As we expected, the average communication complexity increases as the number t of the
attacked equations increases, because it becomes more difficult to find, at the same time, a set
S of k equations that contains no more than a fixed τmax attacked equations, and a set C of αk
equations that contains at least τmax intact equations. However, on average, the number of the
downloaded equations is smaller than half of the total number n of equations, and the standard
deviation is also acceptably small. In particular, when the number t of attacked equations is
around 50 (i.e., only 5% of the storage nodes are compromised), the communication overhead is
very small.

We can also observe that the communication complexity increases as τmax decreases. Unfor-
tunately, as we will se below, the price of this decrease is the substantially increased computa-
tional complexity.

Computational complexity: Figure 25 shows the computational complexity (i.e., the number
of s.l.e.’s that need to be solved) of Algorithm 2 as a function of the number t of attacked
equations. The different curves belong to different values of τmax . Note the logarithmic scale of
the y axis.

We can observe that the computational complexity increases quickly as the number t of the
attacked equations increases, as well as with the increase of τmax . Indeed, incrementing τmax

by one results, roughly, in an order of magnitude more computations. The best trade-off seems
to be the τmax = 4 case, where Algorithm 2 can handle up to t = 50 attacked equations (i.e.,
up to 5% of the total number of equations) with a very low communication overhead, and still
reasonable computational complexity (109 ≈ 230 s.l.e.’s to solve).

4.4 Summary

In this thesis group, we addressed the problem of pollution attacks in coding based distributed
storage schemes, and we proposed specific algorithms for detecting and recovering from such
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Figure 25: Average computational complexity of Algorithm 2 as a function of the number t of
attacked equations. n = 1000 and k = 100.

attacks. A salient feature of the proposed algorithms is that they are not based on cryptographic
checksums or digital signatures, which are traditionally used for providing integrity services.
Instead, we take advantage of the inherent redundancy in such distributed storage systems.
In particular, our approach is to obtain more encoded packets than strictly necessary for the
decoding of the original data, and to use those additional encoded packets for attack detection
and recovery purposes. Both detection and recovery require only solving systems of linear
equations over a finite field.

The attack detection algorithm that we proposed is effective and extremely efficient both in
terms of communication and computational overhead. In addition, we proposed two recovery
algorithms. The first algorithm is optimal in terms of communication complexity, and it ensures
recovery from attacks even if a large fraction of the encoded packets are modified, but it does not
scale up to large systems in terms of computational complexity. It is still a practical solution,
though, for smaller systems. The second algorithm that we proposed scales better, but it is less
effective in terms of recovery capabilities and less efficient in terms of communication overhead.
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5 Efficient private authentication in resouce constrained envi-
ronments

THESIS GROUP 5. I propose a new method to design optimized key-trees for tree-based
private authentication schemes. For this, I propose a benchmark metric to measure the level
of privacy provided by a given key-tree, and I propose a key-tree construction algorithm that
maximizes this metric under the constraint of keeping the authentication delay in the system
below a given threshold. I also give an approximation of the achieved level of privacy when any
number c of the system’s members are compromised. I show, by means of simulations, that the
approximation formula is sharp. This approximation can, thus, be used to compare different
key-trees in terms of the level of privacy that they achieve. [C3]

Entity authentication is the process whereby a party (the prover) corroborates its identity to
another party (the verifier). Entity authentication is often based on authentication protocols in
which the parties pass messages to each other. These protocols are engineered in such a way that
they resist various types of impersonation and replay attacks [6]. However, less attention is paid
to the requirement of preserving the privacy of the parties (typically that of the prover) with
respect to an eavesdropping third party. Indeed, in many of the well-known and widely used
authentication protocols (e.g., [25]) the identity of the prover is sent in cleartext, and hence, it
is revealed to an eavesdropper.

One approach to solve this problem is based on public key cryptography, and it consists in
encrypting the identity information of the prover with the public key of the verifier so that no
one but the verifier can learn the prover’s identity. Another approach, also based on public key
techniques, is that the parties first run an anonymous Diffie-Hellman key exchange and estab-
lish a confidential channel, through which the prover can send its identity and authentication
information to the verifier in a second step. These approaches provide appropriate solution to
the problem only if the parties can afford public key cryptography. In many applications, such
as in wireless sensor networks or in case of low cost RFID tags, this is not the case.

The problem of using symmetric key encryption to hide the identity of the prover is that
the verifier does not know which symmetric key it should use to decrypt the encrypted identity,
because the appropriate key cannot be retrieved without the identity. The verifier may try all
possible keys in its key database until one of them properly decrypts the encrypted identity, but
this would increase the authentication delay if the number of potential provers is large. Long
authentication delays are usually not desirable, moreover, in some cases, they may not even be
acceptable. As an example, let us consider contactless smart card based electronic tickets in
public transportation: the number of smart cards in the system (i.e., the number of potential
provers) may be very large in big cities, while the time needed to authenticate a card should be
short in order to ensure a high throughput of passengers and avoid long queues at entry points.

Molnar and Wagner proposed an elegant approach to privacy protecting authentication [32]
that is based on symmetric key cryptography while still ensuring short authentication delays.
More precisely, the complexity of the authentication procedure in the Molnar-Wagner scheme
is logarithmic in the number of potential provers, in contrast with the linear complexity of
the näıve key search approach. The main idea of Molnar and Wagner is to use key-trees (see
Figure 26 for illustration). A key-tree is a tree where a unique key is assigned to each edge.
The leaves of the tree represent the potential provers, which we will call members in the sequel.
Each member possesses the keys assigned to the edges of the path starting from the root and
ending in the leaf that corresponds to the given member. The verifier knows all keys in the
tree. In order to authenticate itself, a member uses all of its keys, one after the other, starting
from the first level of the tree and proceeding towards lower levels. The verifier first determines
which first level key has been used. For this, it needs to search through the first level keys only.

61



Once the first key is identified, the verifier continues by determining which second level key has
been used. However, for this, it needs to search through those second level keys only that reside
below the already identified first level key in the tree. This process is continued until all keys
are identified, which at the end, identify the authenticating member. The key point is that the
verifier can reduce the search space considerably each time a key is identified, because it should
consider only the subtree below the recently identified key.

Figure 26: Illustration of a key-tree. There is a unique key assigned to each edge. Each leaf
represents a member of the system that possesses the keys assigned to the edges of the path
starting from the root and ending in the given leaf. For instance, the member that belongs to
the leftmost leaf in the figure possesses the keys k1, k11, and k111.

The problem of the above described tree-based approach is that upper level keys in the tree
are used by many members, and therefore, if a member is compromised and its keys become
known to the adversary, then the adversary gains partial knowledge of the key of other mem-
bers too. This obviously reduces the privacy provided by the system to its members, since by
observing the authentication of an uncompromised member, the adversary can recognize the
usage of some compromised keys, and therefore its uncertainty regarding the identity of the au-
thenticating member is reduced (it may be able to determine which subtree the member belongs
to).

One interesting observation is that the näıve, linear key search approach can be viewed as
a special case of the key-tree based approach, where the key-tree has a single level and each
member has a single key. Regarding the above described problem of compromised members,
the näıve approach is in fact optimal, because compromising a member does not reveal any
key information of other members. At the same time, as we saw above, the authentication
delay is the worst in this case. On the other hand, in case of a binary key-tree, we can observe
that the compromise of a single member strongly affects the privacy of the other members,
while at the same time, the binary tree is very advantageous in terms of authentication delay.
Thus, there seems to be a trade-off between the level of privacy provided by the system and
the authentication delay, which depends on the parameters of the key-tree, but it is far from
obvious to see how the optimal key-tree should look like.

In this thesis group, we address this problem, and we show how to find optimal key-trees.
More precisely, our main contributions are the following:

� We propose a benchmark metric for measuring the resistance of the system to a single
compromised member based on the concept of anonymity sets.

� We introduce the idea of using different branching factors at different levels of the key-
tree; the advantage is that the system’s resistance to single member compromise can be
increased while still keeping the authentication delay short.

� We propose an algorithm for determining the optimal parameters of the key-tree, where
optimal means that resistance to single member compromise is maximized, while the au-
thentication delay is kept below a predefined threshold.
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� In the general case, when any member can be compromised, we give a lower bound on the
level of privacy provided by the system, and present some simulation results that show
that this lower bound is sharp. This allows us to compare different systems based on their
lower bounds.

In summary, we propose practically usable techniques for designers of key-tree based authen-
tication systems.

5.1 Resistance to single member compromise

THESIS 5.1. I propose a benchmark metric for measuring the resistance of the system to a
single compromised member based on the concept of anonymity sets. I propose a new algorithm
for determining the optimal parameters of the key-tree, where optimal means that resistance to
single member compromise is maximized, while the authentication delay is kept below a predefined
threshold. I prove (Theorem 5.1) the optimality of the proposed key-tree construction algorithm.
[C3]

There are different ways to measure the level of anonymity provided by a system [15, 37].
Here we will use the concept of anonymity sets [13]. The anonymity set of a member v is the set
of members that are indistinguishable from v from the adversary’s point of view. The size of the
anonymity set is a good measure of the level of privacy provided for v, because it is related to
the level of uncertainty of the adversary. Clearly, the larger the anonymity set is, the higher the
level of privacy is. The minimum size of the anonymity set is 1, and its maximum size is equal to
the number of all members in the system. In order to make the privacy measure independent of
the number of members, one can divide the anonymity set size by the total number of members,
and obtain a normalized privacy measure between 0 and 1. Such normalization makes the
comparison of different systems easier.

Now, let us consider a key-tree with ` levels and branching factors b1, b2, . . . , b` at the levels,
and let us assume that exactly one member is compromised (see Figure 27 for illustration).
Knowledge of the compromised keys allows the adversary to partition the members into parti-
tions P0, P1, P2, . . ., where

� P0 contains the compromised member only,

� P1 contains the members the parent of which is the same as that of the compromised
member, and that are not in P0,

� P2 contains the members the grandparent of which is the same as that of the compromised
member, and that are not in P0 ∪ P1,

� etc.

Members of a given partition are indistinguishable for the adversary, while it can distinguish
between members that belong to different partitions. Hence, each partition is the anonymity set
of its members.

The level of privacy provided by the system can be characterized by the level of privacy
provided to a randomly selected member, or in other words, by the expected size of the anonymity
set of a randomly selected member. By definition, the expected anonymity set size is:

S̄ =
∑̀
i=0

|Pi|
N
|Pi| =

∑̀
i=0

|Pi|2

N
(40)

63



Figure 27: Illustration of what happens when a single member is compromised. Without loss
of generality, we assume that the member corresponding to the leftmost leaf in the figure is
compromised. This means that the keys k1, k11, and k111 become known to the adversary.
This knowledge of the adversary partitions the set of members into anonymity sets P0, P1, . . . of
different sizes. Members that belong to the same partition are indistinguishable to the adversary,
while it can distinguish between members that belong to different partitions. For instance, the
adversary can recognize a member in partition P1 by observing the usage of k1 and k11 but not
that of k111, where each of these keys are known to the adversary. Members in P3 are recognized
by not being able to observe the usage of any of the keys known to the adversary.

where N is the total number of members, and |Pi|/N is the probability of selecting a member
from partition Pi. We define the resistance to single member compromise, denoted by R, as the
normalized expected anonymity set size, which can be computed as follows:

R =
S̄

N
=
∑̀
i=0

|Pi|2

N2

=
1

N2

(
1 + (b` − 1)2 + ((b`−1 − 1)b`)

2 + . . .+ ((b1 − 1)b2b3 . . . b`)
2
)

=
1

N2

1 + (b` − 1)2 +
`−1∑
i=1

(bi − 1)2
∏̀
j=i+1

b2j

 (41)

where we used that

|P0| = 1

|P1| = b` − 1

|P2| = (b`−1 − 1)b`

|P3| = (b`−2 − 1)b`−1b`

. . . . . .

|P`| = (b1 − 1)b2b3 . . . b`

As its name indicates, R characterizes the loss of privacy due to the compromise of a single
member of the system. If R is close to 1, then the expected anonymity set size is close to the
total number of members, and hence, the loss of privacy is small. On the other hand, if R is
close to 0, then the loss of privacy is high, as the expected anonymity set size is small. We use
R as a benchmark metric based on which different systems can be compared.

Obviously, a system with greater R is better, and therefore, we would like to maximize R.
However, there are some constraints. We define the maximum authentication delay, denoted by
D, as the number of basic operations needed to authenticate any member in the worst case.
The maximum authentication delay in case of key-tree based authentication can be computed
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as D =
∑`

i=1 bi. In most practical cases, there is an upper bound Dmax on the maximum
authentication delay allowed in the system. Therefore, in practice, the designer’s task is to
maximize R under the constraint that D ≤ Dmax.

5.2 Optimal trees in case of single member compromise

The problem of finding the best branching factor vector can be described as an optimization
problem as follows: Given the total number N of members and the upper bound Dmax on the
maximum authentication delay, find a branching factor vector B = (b1, b2, . . . b`) such that R(B)
is maximal subject to the following constraints:

∏̀
i=1

bi = N (42)

∑̀
i=1

bi ≤ Dmax (43)

We analyze this optimization problem through a series of lemmas that will lead to an algo-
rithm that solves the problem. Our first lemma states that we can always improve a branching
factor vector by ordering its elements in decreasing order, and hence, in the sequel we will
consider only ordered vectors:

Lemma 5.1. Let N and Dmax be the total number of members and the upper bound on the
maximum authentication delay, respectively. Moreover, let B be a branching factor vector and
let B∗ be the vector that consists of the sorted permutation of the elements of B in decreasing
order. If B satisfies the constraints of the optimization problem defined above, then B∗ also
satisfies them, and R(B∗) ≥ R(B).

The following lemma provides a lower bound and an upper bound for the resistance to single
member compromise:

Lemma 5.2. Let B = (b1, b2, . . . b`) be a sorted branching factor vector (i.e., b1 ≥ b2 ≥ . . . ≥ b`).
We can give the following lower and upper bounds on R(B):(

1− 1

b1

)2

≤ R(B) ≤
(

1− 1

b1

)2

+
4

3b21
(44)

Let us consider the bounds in Lemma 5.2. Note that the branching factor vector is ordered,
therefore, b1 is not smaller than any other bi. We can observe that if we increase b1, then
the difference between the upper and the lower bounds decreases, and R(B) gets closer to 1.
Intuitively, this implies that in order to find the solution to the optimization problem, b1 should
be maximized. The following lemma underpins this intuition formally:

Lemma 5.3. Let N and Dmax be the total number of members and the upper bound on the maxi-
mum authentication delay, respectively. Moreover, let B = (b1, b2, . . . , b`) and B′ = (b′1, b

′
2, . . . , b

′
`′)

be two sorted branching factor vectors that satisfy the constraints of the optimization problem
defined above. Then, b1 > b′1 implies R(B) ≥ R(B′).

Lemma 5.3 states that given two branching factor vectors, the one with the larger first
element is always at least as good as the other. The next lemma generalizes this result by
stating that given two branching factor vectors the first j elements of which are equal, the
vector with the larger (j + 1)-st element is always at least as good as the other.
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Lemma 5.4. Let N and Dmax be the total number of members and the upper bound on the maxi-
mum authentication delay, respectively. Moreover, let B = (b1, b2, . . . , b`) and B′ = (b′1, b

′
2, . . . , b

′
`′)

be two sorted branching factor vectors such that bi = b′i for all 1 ≤ i ≤ j for some j < min(`, `′),
and both B and B′ satisfy the constraints of the optimization problem defined above. Then,
bj+1 > b′j+1 implies R(B) ≥ R(B′).

We will now present an algorithm that finds the solution to the optimization problem. How-
ever, before doing that, we need to introduce some further notations. Let B = (b1, b2, . . . , b`)
and B′ = (b′1, b

′
2, . . . , b

′
`′). Then

�

∏
(B) denotes

∏`
i=1 bi;

�

∑
(B) denotes

∑`
i=1 bi;

� {B} denotes the set {b1, b2, . . . , b`} of the elements of B;

� B′ ⊆ B means that {B′} ⊆ {B};

� if B′ ⊆ B, then B \ B′ denotes the vector that consists of the elements of {B} \ {B′} in
decreasing order;

� if b is a positive integer, then b|B denotes the vector (b, b1, b2, . . . , b`).

We define our algorithm as a recursive function f , which takes two input parameters, a
vector B of positive integers, and another positive integer d, and returns a vector of positive
integers. In order to compute the optimal branching factor vector for a given N and Dmax, f
should be called with the vector that contains the prime factors of N , and Dmax. For instance, if
N = 27000 and Dmax = 90, then f should be called with B = (5, 5, 5, 3, 3, 3, 2, 2, 2) and d = 90.
Function f will then return the optimal branching factor vector.

Function f is defined as follows:

f(B, d)
1 if

∑
(B) > d then exit (no solution exists)

2 else find B′ ⊆ B such that∏
(B′) +

∑
(B \B′) ≤ d and∏

(B′) is maximal
3 if B′ = B then return (

∏
(B′))

4 else return
∏

(B′)|f(B \B′, d−
∏

(B′))

The operation of the algorithm can be described as follows: The algorithm starts with a
branching factor vector consisting of the prime factors of N . This vector satisfies the first
constraint of the optimization problem by definition. If it does not satisfy the second constraint
(i.e., it does not respect the upper bound on the maximum authentication delay), then no
solution exists. Otherwise, the algorithm successively improves the branching factor vector
by maximizing its elements, starting with the first element, and then proceeding to the next
elements, one after the other. Maximization of an element is done by joining as yet unused
prime factors until the resulting divisor of N cannot be further increased without violating the
constraints of the optimization problem.

Theorem 5.1. Let N and Dmax be the total number of members and the upper bound on the
maximum authentication delay, respectively. Moreover, let B be a vector that contains the prime
factors of N . Then, f(B,Dmax) is an optimal branching factor vector for N and Dmax.
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Proof. We will give a sketch of the proof. Let B∗ = f(B,Dmax), and let us assume that there is
another branching factor vector B′ 6= B∗ that also satisfies the constraints of the optimization
problem and R(B′) > R(B∗). We will show that this leads to a contradiction, hence B∗ should
be optimal.

Let B∗ = (b∗1, b
∗
2, . . . , b

∗
`∗) and B′ = (b′1, b

′
2, . . . , b

′
`′). Recall that B∗ is obtained by first

maximizing the first element in the vector, therefore, b∗1 ≥ b′1 must hold. If b∗1 > b′1, then
R(B∗) ≥ R(B′) by Lemma 5.3, and thus, B′ cannot be a better vector than B∗. This means
that b∗1 = b′1 must hold.

We know that once b∗1 is determined, our algorithm continues by maximizing the next element
of B∗. Hence, b∗2 ≥ b′2 must hold. If b∗2 > b′2, then R(B∗) ≥ R(B′) by Lemma 5.4, and thus, B′

cannot be a better vector than B∗. This means that b∗2 = b′2 must hold too.
By repeating this argument, finally, we arrive to the conclusion that B∗ = B′ must hold,

which is a contradiction.

5.3 Analysis of the general case

THESIS 5.2. I derive an approximation S̃ for the average anonymity set size of a randomly
selected member when any number c of members are compromised as follows:

S̃ =
L∑
i=1

bi−1∑
k=1

kNi

(
bi − 1

k − 1

)
(1− qi)kqbi−ki + 1 · p+N · (1− p)N

where L is the depth of the key-tree, b1, b2, . . . , bL are the branching factors at the different levels
in the tree, N = b1 · b2 · . . . · bL is the total number of leaves, Ni = N

b1·b2·...·bi is the number of
leaves in a sub-tree below an edge at level i, p = c/N is the probability of any member being
compromised, and qi = 1 − (1 − p)Ni is the probability of an edge at level i being compromised
(meaning that at least one leaf in the sub-tree below that edge is compromised). I show, by means
of simulations, that the above approximation formula is sharp. [C3]

So far, we have studied the case of a single compromised member. This was useful, because it
allowed us to compare different key-trees and to derive a key-tree construction method. However,
one may still be interested in what level of privacy is provided by a system in the general case
when any number of members could be compromised. In this section, we address this problem.

Figure 28: Illustration of what happens when several members are compromised. Just as in the
case of a single compromised member, the members are partitioned into anonymity sets, but
now the resulting partitions depend on the number of the compromised members, as well as on
their positions in the tree. Nevertheless, the expected size of the anonymity set of a randomly
selected member is still a good metric for the level of privacy provided by the system, although,
in this general case, it is more difficult to compute.
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We are interested in the expected anonymity set size S̄ of a randomly selected member T
in the general case when c randomly selected members are compromised in the tree. Instead
of directly computing S̄, we will estimate it by assuming that each member of the tree is
compromised with probability p = c/N . Thus, the number of compromised members in the tree
becomes a random variable with expected value c. Furthermore, without loss of generality, we
assume that T is represented by the left most leaf of the tree.

Let us denote the branching factors of the tree by b1, b2, . . . , bL, where L is the depth (number
of levels) of the tree. We say that an edge of the tree is compromised if there is a compromised
leaf in the sub-tree below the given edge. The probability that an edge at level i of the tree is
compromised is

qi = 1− (1− p)Ni

where Ni = N
b1·b2·...·bi is the number of leaves in the sub-tree below the given edge.

The probability that the anonymity set size of the selected member T is exactly k, for
k = 1, 2, . . . , bL − 1, is

(1− qL)

(
bL − 1

k − 1

)
(1− qL)k−1qbL−kL =

(
bL − 1

k − 1

)
(1− qL)kqbL−kL

Note that if the anonymity set size of T is larger than or equal to bL, then it can only be the
multiple of bL. Hence, the probability that the anonymity set size of T is not a multiple of bL
is 0, while the probability that it is equal to kbL (k = 1, 2, . . . , bL−1 − 1) is(

bL−1 − 1

k − 1

)
(1− qL−1)kq

bL−1−k
L−1

By the same argument, the probability that the anonymity set size of T is not a multiple
of bLbL−1 . . . bi+1 is 0, while the probability that it is equal to kbLbL−1 . . . bi+1 = kNi (k =
1, 2, . . . , bi − 1) is (

bi − 1

k − 1

)
(1− qi)kqbi−ki

From this, we get that the expected size of T ’s anonymity set is

S̃ =
L∑
i=1

bi−1∑
k=1

kNi

(
bi − 1

k − 1

)
(1− qi)kqbi−ki + 1 · p+N · (1− p)N (45)

where the term 1 ·p covers the case when T itself is compromised (this happens with probability
p and in that case the anonymity set size is 1), and the term N ·(1−p)N covers the case when no
member is compromised (this happens with probability (1 − p)N and results in the anonymity
set size of N).

In order to see how well S̃ estimates S̄, we run some simulations. The simulation parameters
were the following:

� total number of members N = 27000;

� upper bound on the maximum authentication delay Dmax = 90;

� branching factor vector: (30, 30, 30);

� we varied the number c of compromised members between 1 and 270 with a step size of
one.
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For each value of c, we run 100 simulations. In each simulation run, the c compromised
members were chosen uniformly at random from the set of all members. We computed the exact
value of the normalized expected anonymity set size S̄/N using the expression (40). Finally, we
averaged the obtained values over all simulation runs. Moreover, for every c, we also computed
the estimated value S̃/N using the expression (45).

The simulation results are shown in Figure 29. The figure does not show the confidence
interwalls, because they are very small (in the range of 10−4 for all simulations) and thus they
could be hardly visible. As we can see, S̃/N approximates S̄/N very well.

Figure 29: Simulation results for branching factor vector (30, 30, 30). As we can see, S̃/N
approximates S̄/N very well.

In Figure 30, we plot S̃/N for two trees that have the same number of branches at the
first level, but they differ in the other branching factors. As we can see, the curves are almost
perfectly overlapping. Thus, we can conclude that, just as in the case of a single compromised
member, in the general case too, the level of privacy provided by the system essentially depends
on the value of the first element of the branching factor vector.

Thus, a practical design principle for key-tree based private authentication systems is to
maximize the branching factor at the first level of the key-tree. Further optimization by adjusting
the branching factors of the lower levels may still be possible, but the gain is not significant;
what really counts is the branching factor at the first level.

5.4 Summary

Key-trees provide an efficient solution for private authentication in the symmetric key setting.
However, the level of privacy provided by key-tree based systems decreases considerably if some
members are compromised. We showed that this loss of privacy can be minimized by the careful
design of the tree. In particular, a good practical design principle is to maximize the branching
factor at the first level of the tree such that the resulting tree still respects the constraint on
the maximum authentication delay in the system. Once the branching factor at the first level
is maximized, the tree can be further optimized by maximizing the branching factors at the
successive levels, but the improvement achieved in this way is not really significant; what really
counts is the branching factor at the first level.
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Figure 30: The value of S̃/N as a function of c for different branching factor vectors that have
the same first element. We can see that S̃/N is almost the same for the two vectors. We can
conclude that S̃/N is essentially determined by the value of the first element of the branching
factor vector.
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