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Abstract

The approximate solution technique for the main M/M/c retrial queue based
on the homogenization of the model employs a quasi-birth-death (QBD) process
in which the maximum retrial rate is restricted above a certain level. This ap-
proximated continuous-time Markov chain (CTMC) can be solved by the matrix-
geometric method, which involves the computation of the rate matrix R. This paper
is motivated by two observations. Firstly, retrial queues for the performability anal-
ysis of telecommunication systems often involve the number of servers in the order
of several hundreds of thousands. Secondly, there are no workable solutions till now
for systems with such large number of servers, due ill-conditioning or prohibitively
large computation times. Our paper is the first to tackle the problem of large num-
ber of servers, very efficiently, in the homogenized M/M/c retrial queue which has
paramount applications in networks. We present an efficient algorithm with the time
complexity of only O(c) to compute the rate matrix R.
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1 Introduction

The main M/M/c retrial queue is very useful to model several resource sharing
problems in telecommunication systems (see [1–6] and references therein). In
it, inter-arrival times of customers are exponentially distributed with parame-
ter λ (i.e. the cumulative distribution function –CDF– of inter-arrival times is
1− e−λt). Holding-times are exponentially distributed with parameter α (i.e.
CDF is 1− e−αt). The number of servers is c. Random variable I(t) represents
the number of occupied servers at time t, hence 0 ≤ I(t) ≤ c holds. A client
who does not receive the allocation of a server upon his arrival because of the
unavailability of servers (which happens when I(t) = c) joins the orbit in order
to wait and retry. Let J(t) be the number of clients in the orbit waiting for
retrial at time t. Each customer retries with rate µ. Hence, the total effective
retrial rate when J(t) = j, is µj = j · µ.

This system can be represented by a two-dimensional continuous-time Markov
chain (CTMC) Y = {I(t), J(t)} with state space {0, 1, . . . , c} × {0, 1, . . .}.
Let the steady state probabilities of this CTMC be denoted by πi,j =
lim
t→∞

Pr(I(t) = i, J(t) = j). Define the row vector vj = [π0,j, . . . , πc,j]. Iden-

tifiers i and j also are used for phase and level respectively.

It is well known that the stationary probabilities of the main M/M/c retrial
queue with c > 2 can be computed only by using approximate techniques [1,7].
A well-known approximation is based on the truncation of the state space at
level m, a sufficiently large integer. Only πi,j ((i, j) ∈ {0, . . . , c}×{0, 1, . . . ,m})
are then computed recursively as in [1], assuming πi,j = 0 (for, j > m). Note
that m should be selected so large that it gives rise to results with the required
accuracy.

Another approximation called the homogenization of the model was pioneered
by Neuts and Rao [8], where the mainM/M/c retrial queue is approximated by
the multiserver retrial queue with the total retrial rate µj = min(J(t), N) · µ.
This means, the retrial times are exponentially distributed with parameter
ν = N · µ and do not dependent on the number of clients in the orbit as
long as the orbit has the number of clients greater than the specified value N .
Note that the discussion for the choice of N is presented in the recent book
by Artalejo and Gómez-Corral on retrial queues [1]. With this assumption, vj
can be obtained by any of the several algorithms [9–14] based on the matrix-
geometric method (MGM). Two key steps in this method are the computation
of the rate matrix R, and solving a system of linear simultaneous equations. It
is well known that the algorithms in [9–11,13] have a computational complexity
of O(c3), for each of these two key steps. When c is very large, of the order of
tens or hundreds of thousands which is the case in many applications connected
with emerging telecommunication systems, many of the existing methods fail
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due to ill-conditioning or prohibitively large computational time requirements.

This paper proposes a new solution algorithm for obtaining the rate matrix R,
for the homogenized model. Our algorithm is numerically highly stable even
for large c values and with a computational complexity of O(c) only.

2 Notations and Definitions

2.1 Notation

We deal with the homogenized system, that is the CTMC Y with µj =
min(J(t), N) · µ, unless stated otherwise. It is driven by the following transi-
tions.

(a) Aj(i, k) denotes the transition rate from state (i, j) to state (k, j) (0 ≤
i, k ≤ c ; j = 0, 1, . . .), which is caused by either the arrival of a customer
(when i < c) or the leaving of a client after the expiry of a holding-
time. The holding-time is exponentially distributed with parameter α.
Matrix Aj is of size (c + 1) × (c + 1) with elements Aj(i, k). Since Aj
is j-independent, it can be written as Aj = A. The nonzero elements of
Aj are Aj(i, i − 1) = iα for i = 1, . . . , c + 1, and Aj(i, i + 1) = λ for
i = 0, . . . , c.

(b) Bj(i, k) represents the one-step upward transition rate from state (i, j) to
state (k, j + 1) (0 ≤ i, k ≤ c ; j = 0, 1, . . .), which is due to the arrival of
a request when all servers are busy (i.e., when i = c), thus increasing J(t)
by 1. Matrix Bj (B, since it is j-independent) is of size (c+ 1)× (c+ 1)
with elements Bj(i, k). The only nonzero element of Bj is Bj(c, c) = λ.

(c) Cj(i, k) is the transition rate from state (i, j) to state (k, j−1) (0 ≤ i, k ≤
c ; j = 1, 2, . . .), which is due to the successful retrial of a request from
the orbit. Matrix Cj is of size (c+ 1)× (c+ 1) with its elements Cj(i, k).
The nonzero elements of Cj (j ≥ 1) are Cj(i, i+ 1) = µj for i = 0, . . . , c.

For j ≥ N , we have µj = ν = Nµ. Therefore, Cj (j ≥ N) is j- independent,
and let C = Cj (j ≥ N). C0 = 0 by definition.

Define DZ (Z = A,C,C1, C2, . . . , CN−1), as a diagonal matrix whose diago-
nal element is the sum of all elements in the corresponding row of Z. The
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infinitesimal generator matrix of Y can be written as follows,

Q
(0)
1 Q

(0)
0 0 . . . . . . . . . . . . . . . . . .

Q
(1)
2 Q

(1)
1 Q

(1)
0 0 . . . . . . . . . . . . . . .

0 Q
(2)
2 Q

(2)
1 Q

(2)
0 0 . . . . . . . . . . . .

0 0 Q
(3)
2 Q

(3)
1 Q

(3)
0 0 . . . . . . . . .

...
...

...
...

...
...

...
...

...

. . . . . . . . . Q2 Q1 Q0 . . . . . .

. . . . . . . . . . . . Q2 Q1 Q0 . . . . . .

. . . . . . . . . . . . . . . Q2 Q1 Q0 . . .

...
...

...
...

...
...

...
...

...



, (1)

where Q0 = B, Q1 = A − DA − B − DC , Q2 = C, and Q
(j)
0 = B, Q

(j)
1 =

A−DA −B −DCj , Q
(j)
2 = Cj (j = 0, 1, . . .) .

Then, the balance equations and the normalization equation pertaining to the
CTMC Y are

v0Q
(0)
1 + v1Q

(1)
2 = 0, (2)

vj−1Q
(j−1)
0 + vjQ

(j)
1 + vj+1Q

(j+1)
2 = 0 (j ≥ 1), (3)

∞∑
j=0

vje
T
c+1 = 1.0 (normalization). (4)

Note that ec+1 is the row vector of size c+ 1 with each element equal to unity.
For j ≥ N , equation (3) can be rewritten as

vj−1Q0 + vjQ1 + vj+1Q2 = 0 (j ≥ N). (5)

The coefficient matrices in the difference equations (5) are j- independent.
This leads to the following solution based on the MGM.

vj = vN−1R
j−N+1 (j ≥ N), (6)

where R is the unique minimal nonnegative solution of the quadratic matrix
equation Q0 + RQ1 + R2Q2 = 0 (cf. [9,11]). After the computation of R,
the rate matrix, the steady state probabilities for states j ≤ N − 1 can be
determined by solving the balance equations pertaining to the levels j ≤ N
and the normalization equation. R can be computed by the original algorithm
of the MGM [9] and further improved algorithms of MGM [10,11,13]. However,
the time complexity of these algorithms is O(c3). But, for large c values, of the
order of tens or hundreds of thousands, there have not been workable (with
numerical stability and affordable computation times) solutions, so far in the
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literature. In what follows, we provide an efficient algorithm to calculate R,
with time complexity of O(c) only, which is numerically stable for large c
values.

2.2 Eigenvalues and Eigenvectors of the Characteristic Matrix Polynomial

Q(x) = Q0+Q1x+Q2x
2 is the characteristic matrix polynomial associated with

the difference equations (5) or with Y . In [15,12], it is shown that the steady
state probabilities of the CTMC are closely related to the left eigenvalue-
eigenvector pairs (x,ψ) of Q(x). They satisfy,

ψQ(x) = 0; det[Q(x)] = 0 . (7)

Q(x) is a tri-diagonal matrix of size (c+ 1)× (c+ 1), can be obtained as,

Q(x) =



q1,1(x) q1,2(x) 0 . . . 0 0 0

q2,1(x) q2,2(x) q2,3(x) . . . 0 0 0

0 q3,2(x) q3,3(x) q3,4(x) . . . 0 0
...

...
...

...
...

...
...

0 0 . . . qc,c−1(x) qc,c(x) qc,c+1(x)

0 0 . . . 0 qc+1,c(x) qc+1,c+1(x)


where

q1,1(x) =−(λ+ ν)x,

qi,i(x) =−(λ+ ν + (i− 1)α)x (i = 2, . . . , c),

qc+1,c+1(x) =λ− (λ+ cα)x,

qi,i+1(x) =λx+ νx2 (i = 1, . . . , c),

qi+1,i(x) =α · i · x (i = 1, . . . , c).

In many applications pertaining to telecommunications networks, the value of
c can be as large as tens of thousands or even more. Traditional algorithms
to compute the eigenvalues and eigenvectors can fail with ill-conditioning,
or produce inaccurate results using tremendous computational time, for such
large values of c. We discover in this paper certain nice spectral properties
of Q(x), and explore these properties to bring out a greatly faster computa-
tional algorithm for computing the eigenvalues and eigenvectors, and then the
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rate matrix R. Characteristic matrix polynomial Q(x) has c zero-eigenvalues
x1, . . . , xc (null-eigenvalues) with corresponding independent left eigenvectors
ψ1 = [1, 0, . . . , 0], ψ2 = [0, 1, 0, . . . , 0],. . . ,ψc = [0, 0, . . . , 1, 0], respectively.
This can be easily verified, by substitution in equations (7).

If the system is ergodic (which is so when λ < cα), then the number of
eigenvalues of Q(x), which are strictly inside the unit disk, has to be c + 1
(cf. [12,15]). Therefore, when the system is ergodic, Q(x) should have a single
non-zero eigenvalue xc+1 strictly inside the unit disk because Q(x) has c zero-
eigenvalues. Let ψc+1 be the left eigenvector of Q(x) corresponding to the left
eigenvalue xc+1.

The steady state probabilities vj can be expressed, using the spectral expan-
sion method [12,15], as

vj =
c+1∑
k=1

bkψkx
j−N+1
k (j ≥ N − 1) (8)

where bi are suitable coefficients which can be determined using the balance
equations pertaining to rows 0 to N−1, and the normalization equation. Since
the probabilities are non-negative, xc+1 is real and 0 < xc+1 < 1 holds.

3 Main Result

3.1 An Algorithm to Compute the R Matrix

Let us introduce

Ψ =



ψ1,1 ψ1,2 ψ1,3 . . . ψ1,c+1

ψ2,1 ψ2,2 ψ2,3 . . . ψ2,c+1

...
...

...
...

...

ψc,1 ψc,2 ψc,3 . . . ψc,c+1

ψc+1,1 ψc+1,2 ψc+1,3 . . . ψc+1,c+1


, (9)

where ψi = [ψi,1, ψi,2, . . . , ψi,c+1] for i = 1, 2, . . . , c+ 1.

Based on equations (6) and (8), the rate matrix R can be obtained from the
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eigenvalues and eigenvectors of Q(x) using simple algebraic work, as follows

R= Ψ−1 · diag(0, 0, . . . , 0, xc+1) ·Ψ

=



0 0 0 . . . 0 0

0 0 0 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 0 0

ψc+1,1xc+1 ψc+1,2xc+1 ψc+1,3xc+1 . . . ψc+1,cxc+1 xc+1


. (10)

As the consequence, computation of R boils down to the computation of xc+1

and ψc+1. Due to the tri-diagonal structure, the component matrices of the
LU decomposition of Q(xc+1) can be written as follows

L(xc+1) =



l1(xc+1) 0 0 . . . 0 0 0

αxc+1 l2(xc+1) 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . α(c− 1)xc+1 lc(xc+1) 0

0 0 . . . 0 αcxc+1 lc+1(xc+1)


, (11)

U(xc+1) =



1 u1(xc+1) . . . 0 0 0 0

0 1 u2(xc+1) . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 1 uc(xc+1)

0 0 . . . 0 0 1


, (12)

Here, li(xc+1) (i = 1, . . . , c+ 1) and ui(xc+1) (i = 1, . . . , c) are the elements of
L(xc+1) and U(xc+1), respectively. By equating the corresponding elements of
Q(xc+1) and L(xc+1) ·U(xc+1), and using some algebraic simplification, we get

l1(xc+1) = q1,1(xc+1) = −(λ+ ν)xc+1, (13)

li(xc+1) + α(i− 1)xc+1ui−1(xc+1) = qi,i(xc+1), (i = 2, . . . , c+ 1), (14)

li(xc+1)ui(xc+1) =λxc+1 + νx2c+1, (i = 1, . . . , c). (15)
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Since the determinant of a tri-diagonal matrix is the product of its diagonal
entries, we can write

Det[Q(xc+1)] = Det[L(xc+1)]Det[U(xc+1)] =
c+1∏
i=1

li(xc+1). (16)

From equations (13),(14) and (15), it can be verified that li(xc+1) 6= 0 (1 ≤ i ≤
c). Hence, Det[Q(xc+1)] = 0 (from equation (7)) gives rise to lc+1(xc+1) = 0.
This means xc+1 is the root of lc+1(x).

To compute the root of lc+1(x) in interval (0, 1), several alternative algorithms
such as bisection, secant method, false position method, Dekker’s algorithm
and Brent’s method (the interested reader can find the implementation of
these algorithms in [16]) can be applied. In this paper, we have used Brent’s
method [17], applied to the set of equations (13),(14) and (15), to find xc+1 in
the interval (0, 1).
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Fig. 1. Computational time versus c, the number of servers (the first parameter set
λ = 0.8 × c × α, 1/α = 120, 1/ν = 0.5, the second parameter set λ = 0.9 × c × α,
1/α = 60, 1/ν = 0.2), the third parameter set λ = 0.2× c×α, 1/α = 90, 1/ν = 0.6

Since (xc+1,ψc+1) are left eigenvalue-eigenvector pair, we have,

ψc+1Q(xc+1) = 0,

ψc+1L(xc+1)U(xc+1) = 0,

ψc+1L(xc+1)U(xc+1)U(xc+1)
−1 = 0U(xc+1)

−1, because U(xc+1) is non-singular,

ψc+1L(xc+1) = 0. (17)
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Expanding equation (17) we obtain the recursive relations ψc+1,i =
−iαxc+1ψc+1,i+1

li(xc+1)
between ψc+1,i and ψc+1,i+1, for i = c, . . . , 1.

An eigenvector remains as the eigenvector corresponding to the same eigen-
value when multipled by a scalar. Using this property, we can determine
ψc+1 = [ψc+1,1, ψc+1,2, . . . , ψc+1,c+1] by setting ψc+1,c+1 = 1 and using the
above recursive relations and equations (13),(14), (15), to compute ψc+1,i for
i = c, . . . , 1.

3.2 Computational Time Complexity

Proposition 1 The computational time complexity of the proposed algorithm
in Section 3.1 is of O(c).

Proof. Kerber [18] rigourously proved that the number of iterative steps of
root finding algorithms depends only on the interval (it is (0, 1) in the present
paper), the number of bits used to represent numbers in machines and the as-
sumed tolerance (i.e. the error would be smaller than the tolerance). We have
rigorously shown that lc+1(x) has a single root in (0, 1). Based on equations
(13), (14) and (15), the computation of lc+1(x) for a given x requires the execu-
tion of a loop statement whose action block must be repeated exactly c times.
The action block involves only some elementary arithmetic operations. This
can then be summarized by concluding that the computational time complex-
ity of root finding of lc+1(x) would be O(c). In addition, ψ is also determined
in c steps. Therefore, the computational complexity of our algorithm has to
be of O(c). 2

Proposition 1 is indeed supported empirically in our experiments as illustrated
below. In Figure 1, we plot the computational time of the proposed algorithm
versus c on a machine with Intelr Xeonr E5410 2.33GHz processor (note
that the algorithm is implemented in Mathematica). The computational time
complexity of our analytical method is of O(c) as confirmed in Figure 1 with
three parameter sets (the first parameter set λ = 0.8 × c × α, 1/α = 120,
1/ν = 0.5, the second parameter set λ = 0.9 × c × α, 1/α = 60, 1/ν = 0.2
and the third parameter set λ = 0.2× c× α, 1/α = 90, 1/ν = 0.6). Note that
the number c of servers varies between 100 and 106. Similar observation can
be obtained with other parameter values as well.
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4 Conclusions

Discovering and exploring certain nice spectral properties of the characteristic
matrix polynomial Q(x) of the CTMC Y , we are able to develop a new algo-
rithm for the computation of R. This has a computational complexity of O(c)
which is indeed a very significant improvement in the computation times. Our
algorithm is applicable to large c values (as well as small c values) and its
numerical stability is practically established, which likely opens a new appli-
cation opportunity for performance evaluation in emerging telecommunication
systems.
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