

Explicit Loss Notification to Improve TCP Performance
over Wireless Networks

Gergö Buchholcz1, Adam Gricser1, Thomas Ziegler2, Tien Van Do1

1Department of Telecommunications, Budapest University of Technology and Economics
Magyar tudósok körútja 2., Budapest, Hungary

buchholcz@hit.bme.hu, gricser@hit.bme.hu, do@hit.bme.hu
2Telecommunications Research Center Vienna (ftw.)

Tech Gate Vienna, Donau-City-Straβe 1/3. Stock A-1220 Wien, Austria
ziegler@ftw.at

Abstract. In this paper we propose a novel TCP congestion control algorithm
to overcome the weakness of the original TCP mechanism in wireless environ-
ments. The primary aim of the new algorithm is to cope with packet losses due
to bit errors in the radio interface. Our solution is based on the idea of Explicit
Loss Notification (ELN) to notify the sender about packet losses in the wireless
channel. We also performed extensive simulations with different kind of traffic
and error models to demonstrate the performance improvement of the proposed
algorithm compared to the original TCP.

1 Introduction

TCP was developed with two aims in the early 80�s. It provides a reliable data trans-
fer protocol and it adapts to the network load situation in a fair way. The first goal
can be achieved by TCP�s ARQ mechanism [1], while the second goal is reached by
the congestion avoidance mechanism. The performance of the previously standard-
ized TCP types (Tahoe, Reno [2], New Reno [3]) can be considered adequate in
wired environments, but the data transfer rate is strongly degraded due to the high bit
error rate of the radio interface in wireless networks.

In this paper we introduce a new flow control algorithm which is based on the Ex-
plicit Loss Notification (ELN) approach. The main idea is that the receiver notifies
the sender when a packet corruption is recognized on the wireless link. We show that
significant performance improvements can be achieved without the modification of
network nodes.

The rest of paper is organized as follows. In Section 2 we summarize the related
work previously proposed to increase TCP efficiency over wireless links. Section 3
describes the details of our ELN proposal. Section 4 discusses our proposed algo-
rithm. Section 5 specifies the simulation environment and presents the simulation
results. Finally, Section 6 concludes this paper.

M.M. Freire, P. Lorenz, M.M.-O. Lee (Eds.): HSNMC 2003, LNCS 2720, pp. 481-492, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [1200 1200] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [1200 1200]>> setpagedevice

482 Gergö Buchholcz et al.

2 Related Works

Approaches to improve the performance of TCP over wireless links [4] can be classi-
fied as follows.
• Split-Connection approach: Normally, TCP connections established in a wire-

less environment include the wired part as well. Therefore, an obvious idea is to
split the connection into two parts at the base station. In the wireless link, either
TCP or a specialized protocol can be used. The split-connection approach suffers
from a major disadvantage that every packet has to be stored and processed at the
base station. Therefore, huge memory consumption and processing overhead
should be maintained at the base station.

• Link-layer protocols: Proposals aims at the development of a more reliable link-
layer protocol to hide the unreliable behavior of wireless channels from the TCP
layer. The two main classes of techniques employed by theses protocols are: error
correction (using techniques such as forward error correction --FEC), and re-
transmission of lost packets by automatic repeat request (ARQ). The main advan-
tage of the link-layer based proposal is that it fits naturally into the layered hierar-
chy of the network protocol stack. Since it affects only separate links of the net-
work, it can be applied on wide range of scenarios.

• End-to-End proposals: The main idea of these TCP improvement proposals is
that additional information about the data flow available for the receiver may help
the sender to improve the flow control mechanism. Some of the main techniques
are Selective ACKnowledgements (SACK)[5], HeAder ChecKsum option
(HACK)[6] and Explicit Loss Notification. The major advantage of end-to-end
proposals is that only the communicating peers need to be modified, the rest of the
network stays as is.
o Contrary to standard versions of TCP using cumulative acknowledgements,

SACK [5] provides detailed information to the sender on packets that are re-
ceived but out of order. SACK uses the option field in the TCP header for sig-
naling. This technique potentially enables the sender to recover quickly from
multiple packet losses within a single transmission window.

o The Header Checksum Option proposal is based on the idea that even damaged
TCP packets may contain correct headers. Since the payload is much longer
than the header, the probability for bit corruptions to occur only in the payload
is high. Retrieving the correct header from a corrupted packet, the receiver is
able to send negative acknowledgements back to the sender. This helps the
source to improve the retransmission strategy [6].

o The Explicit Loss Notification proposal is built upon the idea that the MAC
layer is able to detect packet losses and notify the TCP layer. Future duplicate
acknowledgements corresponding to the lost packet will indicate that a non-
congestion related loss occurred. Upon receiving duplicate acknowledgements,
the sender may perform retransmissions without invoking the associated con-
gestion�control procedures [4].

o TCP Westwood (TCPW) [10] exploits two basic concepts: the end-to-end es-
timation of the available bandwidth, and the use of such an estimate to set the
slow start threshold and the congestion window after a congestion episode.

Explicit Loss Notification to Improve TCP Performance over Wireless Networks 483

That is, after three duplicate acknowledgements or after a timeout. In contrast
to TCP-Reno, which simply halves the congestion window after three dupli-
cate acknowledgements TCPW attempts to make a more "informed" decision.
It selects a slow start threshold and a congestion window that is consistent with
the effective connection rate at the time congestion experienced.

3 The ELN Proposal

This section describes the basic properties of the ELN algorithm proposal investi-
gated in this paper [4]. The fundamental idea behind the Explicit Loss Notification
proposal is that the MAC layer of the receiver node is able to detect the corrupted
packets. The conventional MAC layer drops the packet immediately as it realizes bit
corruption. In this case TCP considers the corrupted packet to be lost due to conges-
tion after the timer expires, which follows the reduction of the sending rate of the data
flow. It is obvious, that informing the TCP sender about the corrupted packet, hence
giving it the ability to distinguish between packet losses due to congestion and packet
losses due to wireless link errors, would increase the overall performance of the data
flow. This performance improvement can be gained by avoiding unnecessary reduc-
tions of the TCP window.

In the proposal the MAC layer at the receiver propagates the loss information to
the higher layers, thus the TCP receiver can send loss notifications to the TCP sender.
Since the TCP data receiver may handle multiple connections simultaneously, it is not
enough to know the fact of a packet loss but the packet exact address (IP address and
port no.) is also important. Using information on the exact address the packet�s sender
can be informed about the loss. There are two main possibilities to gain the lost
packet�s identifiers. Forbidding simultaneous TCP connections is a restricted but
feasible solution for low performance mobile hosts when they run web browsers.
New HTTP [7] standards provide the ability of a persistent connection, thus only one
TCP session may be enough at a time. If there is a demand for simultaneous TCP
connections at the mobile host, the sender of the corrupted packet must be deter-
mined. The TCP sender is identified by the port number in the header of the TCP
packet, thus this information has to be retrieved from the corrupted TCP packet. Ac-
complishing this task is possible using the Header Checksum Option [6]. Since in
most TCP packets the payload is much longer than the header bit errors are likely to
appear in the payload leaving the header intact. By adding a special option field to the
TCP header containing a checksum for the header only, the validity of the TCP
header can be verified [6]. With this mechanism, the TCP sender can be identified
from an intact TCP header and the receiver can send loss notifications to the proper
TCP peer entity.

The ELN proposal has two major properties that affect the applicability in wireless
networks.
• First it is an end-to-end proposal: modifications are made only to protocol layers

in the two communicating end nodes. This property makes the ELN technique
scalable and easily applicable compared to proposals that need to modify inner
network nodes as well.

484 Gergö Buchholcz et al.

• The second property is that only the last link of the connection (Base Station to
Mobile Node) is monitored by the receiver's MAC layer in order to detect packet
losses. Communicating TCP peers do not have additional information about nei-
ther the packet losses on possible inner wireless links of the network, nor about
packets traveling in upload direction (Mobile Node to Fixed Host). As a conse-
quence only the download direction can be optimized by this method. For these
reasons the ELN proposal is best to apply in networks containing only wireless
links between the mobile nodes and the base station. In mobile networks it is very
common to have only one wireless link at the mobile node, and download direc-
tion is still dominant in most cases (e.g. Web browsing), thus applying the ELN
proposal even with these restrictions may produce significant benefits.

4 Overview of the Mechanism

 normal operation

packets loss notification

increase the number
of corrupted packets

normal operation

send acknowledgment
exactly when original

TCP would, and
always include the

number of lost packets

Fig. 1. The operation of the TCP-ELN receiver

In this section we explain the operation of the improved TCP entities. Without loss of
generality we consider one TCP flow. The operation of the receiver TCP-ELN entity
is illustrated in Figure 1. Assume that a notification is sent to the receiver TCP layer
every time a packet corruption is detected by the MAC layer. The TCP-ELN receiver
has now two events to handle: receiving a loss notification or receiving an intact TCP
packet. In the first case the only task it performs is increasing the overall number of
packets corrupted during the connection. Upon receiving an intact TCP packet, the
TCP-ELN receiver behaves exactly as the original except for including the number of
corrupted packets counted so far in every acknowledgement. We use the TCP options
field in acknowledgements to carry this information. For the remainder of the paper
this field will be referred to as the corruption counter field.

Explicit Loss Notification to Improve TCP Performance over Wireless Networks 485

wait for
acknowledgement

store the loss
information from the

acknowledgement

normal operation

store the number of
packets already sent

but not yet
acknowledged

yes

wait recovery ACK

retransmit lost
packet(s)

yes

normal operation

no

is it
acknowledging
new segments?

any notification
 of packets lost on the

radio channel?

no

send packets

normal operation

increase congestion
window size

reset the number of
duplicate

acknowledgements
received in a row

increase the number
of duplicate

acknowledgements
received in a row

third duplicate
acknowledgement in

 a row received?

no

invoke TCP-Reno
mechanism for

packet loss due to
congestion (Fast
Retransmission,
Fast Recovery)

yes

store the size of
congestion window

Fig. 2. The operation of the TCP-ELN sender

This additional information embedded in every TCP acknowledgement enables the
TCP-ELN sender to distinguish between the causes of packet losses (see Figure 2
and 3). Packet losses are indicated either by a timeout or by three duplicate acknowl-
edgements triggering fast retransmit, fast recovery. Because a timeout is a very strong
indication for network congestion, the mechanisms invoked in this case remain un-
changed.

Normally TCP sends out several new segments depending on the size of the con-
gestion window and awaits acknowledgements. Whenever an acknowledgement ar-
rives, the source checks whether it is acknowledging new segments or segments that
have been previously acknowledged. In case of receiving an ACK acknowledging
new segments, TCP operates as usual. It increases the window size by an increment
depending on the state of the sender (Slow Start or Congestion Avoidance); resets the
number of previously received duplicated acknowledgements (Fast Retransmit) and
finally transmits new segments according to the new congestion window size. This
part of the protocol remained unchanged as shown in the upper part of Figure 2.

486 Gergö Buchholcz et al.

The lower part of Figure 2 presents the duplicate acknowledgement management
of the TCP-ELN protocol. Upon receiving a duplicate acknowledgement the sender
checks if there is any notification of packet corruption on the radio channel or not.
The decision on the existence of packet corruption is based on comparing the values
of the corruption counter field received in the acknowledgements. The increment of
the corruption counter field since last retransmission due to corruption equals the
number of packets corrupted on the wireless link since then. If the increment is larger
than zero, the duplicate acknowledgement is assumed to be an indication of packet
corruption on the radio link. Otherwise, if there is no increment, the duplicate ac-
knowledgement is considered to be the indication of congestion or packet reordering.

If there is no notification about a packet corruption, the TCP sender proceeds as
usual. It increases the number of received duplicate acknowledgements, and invokes
Fast Retransmit-Fast Recovery procedures if the third duplicate acknowledgement
arrives in sequence. Obviously, the sender checks the loss notifications for all subse-
quent duplicate acknowledgements it receives before invoking Fast Retransmit.

Otherwise, if loss notifications indicate that the packet was corrupted and lost on
the wireless channel the sender performs a different procedure. It first retransmits the
lost packet(s) (loss notifications may indicate the loss of several subsequent seg-
ments). Afterward it stores the number of packets already sent but not yet acknowl-
edged and the size of congestion window for future purposes.

The TCP source will get several duplicate acknowledgements before the recovery
acknowledgement arrives. While awaiting the recovery acknowledgement the source
has no information about network congestion (duplicate acknowledgements can only
indicate a single packet loss as they point to the last segment arrived in order at the
receiver). In order to keep the data transmission rate at the same level the sender en-
ters a new state as shown in the left branch of Figure 3.

Normally the TCP sender will receive as many duplicate acknowledgements pre-
ceding the recovery acknowledgement as many packets it has already sent but not yet
acknowledged at the time of the fast retransmit. The reception of more duplicate ac-
knowledgements is indicating that the retransmitted packet was lost either due to
congestion or due to wireless link error. In order to avoid retransmitting the same
packets again, the sender invokes the congestion resolving mechanisms [2] of the
original TCP protocol when the number of received duplicate acknowledgements
exceeds the expected amount. Every time a duplicate acknowledgement arrives and
the limit is not exceeded the sender increases the window size by 1 segment. Increas-
ing the window size enables the source to send new segments to the receiver while
waiting for the recovery acknowledgement. Note that opening the window in this
state does not increase the speed of data flow and is necessary to keep the speed con-
stant, since no new segments are acknowledged by duplicate acknowledgements.

Upon receiving the recovery acknowledgement (the right hand side of Fig. 3) the
sender has to investigate whether network congestion evolved while waiting for the
recovery acknowledgement or not. As mentioned above, no congestion indication can
be retrieved from the duplicate acknowledgements. The lack of proper information is

Explicit Loss Notification to Improve TCP Performance over Wireless Networks 487

wait recovery ACK

wait for
acknowledgement

yesno

send new segments
if possible

wait recovery ACK

no invoke TCP-Reno
mechanism for

packet loss due to
congestion (Fast
Retransmission,
Fast Recovery)

ye
s

yes

no

is it
acknowledging
new segments?

maximum number
of acceptable duplicate

acknowledgement
reached?

is it acknowledging
 all segments sent before

retransmission ?

normal operation

increase window
size by 1 reset size of

congestion window

Fig. 3. Handling ACK at the TCP-ELN sender

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

1 3 5 7 9 11 13 15 15 15 15 15 15 15 15 31 33 35 37

ACK sequence number

Tr
an

sm
is

si
on

 w
in

do
w

 s
iz

e

TCP TCP-ELN

packet 16 is lost

recovery ACK arrives

Fig. 4. Transmission window size in the presence of packet loss

resolved with a simple and conservative assumption. A partial recovery acknowl-
edgement is considered to be a sign of congestion. In case of a partial acknowledge-
ment the congestion resolving mechanisms of the original TCP are invoked (Fast
Retransmit - Fast Recovery). Otherwise, if a full recovery acknowledgement arrives
(i.e. all segments sent before the retransmission are acknowledged by this packet) the
sender resets the congestion window to the size it had when the packet was lost be-
fore fast retransmit and resumes normal operation (Figure 3, right hand side). Set-
ting the congestion window to the value before detection of the loss (and not halving
it as original TCP Reno would do) is justified by the fact that the packet loss has been
detected as a loss due to packet corruption.

The simple scenario of the new protocol�s behavior compared to the original one is
illustrated in Figure 4. When packet 16 is lost on the wireless channel due to bit
corruption the original TCP Reno protocol goes through the recovery phases [2].
After the recovery TCP Reno halves the congestion window and unnecessarily de-

488 Gergö Buchholcz et al.

creases the speed of data flow. On the contrary, TCP-ELN detects that the loss is due
to packet corruption by examining the packet corruption counter, resends the lost
packet, and waits for the recovery acknowledgement without halving the congestion
window at fast retransmit. On receipt of the recovery ACK it resets the congestion
window to the size before detecting the loss of packet 16 keeping the amount of
packets in the network constant.

5 Simulation Results

Wired link,
1Mbit/s, 100 ms

Wireless links
2 Mbit/s each

TCP Source
Base Station

TCP Receivers

Fig. 5. Simulation topology

To measure the performance of TCP-ELN we have run a wide variety of simulations
that are designed to cover realistic scenarios. The topology (Figure 5) consists of 5
nodes: a server, a base station (BS), and 3 mobile nodes. The server node connects to
the BS with a 1 Mb/s link having a latency of 100ms, the BS offers a 2 Mb/s band-
width connection to every mobile node in download and upload directions. Using this
bandwidth distribution the topology offers the possibility of separating packet drops
due to error and packet drops due to congestion. Congestion may occur only at the
link from the server to the BS, packet loss due to bit error can occur only at the radio
links.

For traffic simulation FTP and web traffic is generated. The bulk FTP traffic is
used to measure the steady state behavior of the protocol, while web traffic is used to
examine the dynamic behavior. In the first group of simulations one FTP session is
started at every mobile node. In the second group 5 web sessions are started at the
mobile nodes. We measure the ftp throughput and the response time of web traffic.
We use the SURGE model [8] to generate Web traffic which is based on real traffic
traces and has been proved to generate realistic workloads. Uniform and Markov
error models are two different approaches of modeling the lossy link behavior. Both
of them are used to simulate packet loss at the link level. The mean value of the uni-
form distribution is varied between 0 and 0.2. Integrating channel fading and radio
link parameters the Markov model takes the characteristics of wireless channels into
account.

Explicit Loss Notification to Improve TCP Performance over Wireless Networks 489

Table 1. Parameters of the Markov model

Model
number

User speed Average
error rate

Average error
burst length

1 0.001 1.4913
2 0.01 4.0701
3

Pedestrian
(1.5Km/h)

0.1 13.6708
4 0.001 1.0083
5 0.01 1.0838
6

intermediate

0.1 1.8629
7 0.001 1.0024
8 0.01 1.012
9

High

(100Km/h)
0.1 1.1317

Using the Markov model we simulate radio links that a pedestrian and radio links

that a high-speed user can experience with different packet drop probabilities (A
more detailed description of Markov error model can be found in [9]).

The different speed parameters with the same average error rates result in different
expected values of burst error length as shown in Table 5.1. Note that due to the be-
havior of the physical channel the correlation of packet errors (the average burst
length) is decreasing as the speed increases.

Figure 6 shows the results of FTP traffic with uniform error model. The curves
show that in error free transmission both protocols � the original and TCP-ELN �
produce the same throughput. This is in accordance with the fact that TCP-ELN be-
haves exactly the same as the original protocol when there is no loss notification. In
case of packet corruption TCP-ELN can achieve a 60-200% improvement in through-
put for the examined error rates. The higher the error rates are the better the new
protocol�s relative performance improvement is (see the right side of Figure 6).
While the original protocol closes the congestion window as often as a packet is lost
the TCP-ELN tries to avoid unnecessary window reductions.
FTP throughput and the relative improvement with the Markov error model is shown
in Figure 7.

As it can be seen in on the right side of Figure 7 the relative improvement is be-
tween 110% and 140% for the high loss scenario (bulk 3,6,9). The improvement is
between 60% and 120% for the medium loss scenario (bulk 2,5,8). Naturally, in the
case of low loss (bulk 1, 4, 7) the relative throughput increase is somewhat lower.

Comparing the throughput and improvement values measured over uniform error
with the ones produced over Markov error model, an interesting correlation can be
recognized. Investigate the throughput values over an average error rate of 0.1 (10%).
This error rate corresponds to the 3rd, 6th and 9th bulk in figure 6.3. Over the uni-
form model TCP-ELN produced a throughput of 8407 kBytes/s. The values for the
Markov models 3, 6 and 9 are 18433, 9965, 8685 kBytes/s respectively. As the speed
parameter of the Markov model increases the average length of an error burst de-
creases. Thus

490 Gergö Buchholcz et al.

0
10
20
30
40
50

0 2 4 6 8 10 12 14 16 18 20
Packet error rate (%)

Th
ro

ug
hp

ut
 (k

B
/s

)

TCP-ELN

TCP Reno 0
50

100
150
200
250

0 2 4 6 8 10 12 14 16 18 20
Packet error rate (%)

Im
pr

ov
em

en
t (

%
)

Fig. 6. The throughput and the relative improvement over FTP traffic with the uniform error
model

113%

136%
25%

126%

140%
21%

122%

68%17%

0
10
20
30
40
50
60

1 (0.1) 2 (1) 3 (10) 4 (0.1) 5 (1) 6 (10) 7 (0.1) 8 (1) 9 (10)
Markov error model (average packet error rate (%))

Th
ro

ug
hp

ut
 (k

B
yt

es
/s

)

TCP Reno

TCP-ELN
% Improvement

Fig. 7 The throughput and the relative improvement over FTP traffic with Markov error model

at higher speeds � as packet loss becomes sporadic � the Markov error model con-
verges to the uniform error model. According to the results TCP-ELN is more effec-
tive when packet losses occur in bursts. Uniform, sporadic errors force the sender to
reduce the size of congestion window more frequently than bursty errors with the
same average error rate. In the third group of Markov models when the speed is the
highest and the packet errors are barely correlated (distribution is close to uniform)
the value of throughput is nearly the same as in the case of uniform distribution.
In the web traffic simulation 5 sessions are used per mobile node. Each session simu-
lates web page downloads with random object sizes, user think times, inter-object
sizes and number of objects per page according to the SURGE model. The average
response time of these downloads can be seen in the corresponding figures. In figure
8 the uniform error probability results are shown. Figure 9 shows the web results
with the Markov error model.

The average response times with the uniform error model are 10% to 60% better
when using TCP-ELN. Figure 8 shows that at higher error rates the improvement
becomes larger.

In case of web traffic and the Markov error model (see figure 9) we observe slight
improvements in case of low mean error rates (bulk 1,4,7), improvements between
15% and 30% in case of medium mean error rates, and 30% to 50% in case of high
mean error rates.

Explicit Loss Notification to Improve TCP Performance over Wireless Networks 491

0
2
4
6
8

10
12
14

0 2 4 6 8 10 12 14 16 18 20
Packet error rate (%)

A
vg

. r
es

p.
 ti

m
e

(s
)

TCP-ELN

TCP Reno

0
10
20
30
40
50
60

0 2 4 6 8 10 12 14 16 18 20
Packet error rate (%)

D
ec

re
as

e
 (%

)

Fig. 8. The average response time and relative improvement of web traffic with the uniform
error model

37%

30%21%

49%

30%
9%

17%
15%

33%

0
1
2
3
4
5
6
7

1 (0.1) 2 (1) 3 (10) 4 (0.1) 5 (1) 6 (10) 7 (0.1) 8 (1) 9 (10)
Markov error model (average packet error rate (%))

A
vg

. r
es

p
tim

e
(s

)

TCP Reno

TCP-ELN
 % Decrease

Fig. 9. The average response time and the relative improvement of web traffic with
the Markov error model

6 Conclusions

In this paper we have proposed a new technique to improve TCP�s low performance
on wireless networks. The TCP-ELN protocol is based on the idea of the Explicit
Loss Notification mechanism. TCP-ELN allows the TCP source to differentiate be-
tween packet losses due to wireless link error and packet losses due to congestion.
Avoiding unnecessarily halving the congestion window when a packet is lost due to
link error, the improved protocol guarantees higher performance than original TCP.

We have explained the algorithm in detail and clarified the circumstances under
which TCP-ELN can be used. TCP-ELN has applicability restrictions in terms of the
network topology, the data flow direction, and the number of simultaneous flows at a
mobile host in case the Header Checksum Option is not used. However, in spite of
these practical limitations the new protocol is able to increase TCP performance in
most common scenarios.

Our simulation experiments have shown that TCP-ELN dramatically improves the
performance of TCP over wireless links in a wide variety of environments. We have
tested the protocol�s performance over random and bursty erroneous links with two
different types of traffic, static FTP bulk load and dynamic web traffic. Results prove

492 Gergö Buchholcz et al.

that TCP-ELN produces a substantially better performance than the original TCP in
all cases. In case of FTP traffic and high error probability throughput is improved
between 110% and 200%. In case of Web traffic and high error probability mean
response times are reduced between 30% and 60%.

References

1. W. Richard Stevens, TCP/IP Illustrated, Volume 1
2. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms,

Network Working Group, RFC 2001
3. The NewReno Modification to TCP's Fast Recovery Algorithm, RFC 2582
4. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, A Comparison of Mecha-

nism for Improving TCP Performance over Wireless Links, IEEE/ACM Trans. on Net-
working, 5(6), December 1997.

5. TCP Selective Acknowledgment Options, RFC 2018
6. R. K. Balan et. al, TCP Hack: TCP Header Checksum Option to Improve Performance over

Loosy Links, IEEE Infocom 2001
7. Hypertext Transfer Protocol - HTTP/1.1, RFC 2616
8. P. Barford and M. E. Crovella, "Generating Representative Web Workloads for Network

and Server Performance Evaluation," in Proceedings of Performance '98/ACM
SIGMETRICS '98, pp. 151-160, Madison WI.

9. Performance of TCP on Wireless Fading Links with Memory, A. Chockalingam, M. Zorzi,
Ramesh R. Rao, ICC 1998

10. Andrea Zanella, Gregorio Procissi, Mario Gerla, M.Y. "Medy" Sanadidi : TCP Westwood:
Analytic Model and Performance Evaluation, Globecom 2001

	1 Introduction
	2 Related Works
	3 The ELN Proposal
	4 Overview of the Mechanism
	5 Simulation Results
	6 Conclusions
	References

