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Abstract. In this paper we propose a novel TCP congestion control algorithm 
to overcome the weakness of the original TCP mechanism in wireless environ-
ments. The primary aim of the new algorithm is to cope with packet losses due 
to bit errors in the radio interface. Our solution is based on the idea of Explicit 
Loss Notification (ELN) to notify the sender about packet losses in the wireless 
channel. We also performed extensive simulations with different kind of traffic 
and error models to demonstrate the performance improvement of the proposed 
algorithm compared to the original TCP. 

1   Introduction 

TCP was developed with two aims in the early 80�s. It provides a reliable data trans-
fer protocol and it adapts to the network load situation in a fair way. The first goal 
can be achieved by TCP�s ARQ mechanism [1], while the second goal is reached by 
the congestion avoidance mechanism. The performance of the previously standard-
ized TCP types (Tahoe, Reno [2], New Reno [3]) can be considered adequate in 
wired environments, but the data transfer rate is strongly degraded due to the high bit 
error rate of the radio interface in wireless networks. 

In this paper we introduce a new flow control algorithm which is based on the Ex-
plicit Loss Notification (ELN) approach. The main idea is that the receiver notifies 
the sender when a packet corruption is recognized on the wireless link. We show that 
significant performance improvements can be achieved without the modification of 
network nodes.  

The rest of paper is organized as follows. In Section 2 we summarize the related 
work previously proposed to increase TCP efficiency over wireless links. Section 3 
describes the details of our ELN proposal. Section 4 discusses our proposed algo-
rithm. Section 5 specifies the simulation environment and presents the simulation 
results. Finally, Section 6 concludes this paper. 
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2   Related Works 

Approaches to improve the performance of TCP over wireless links [4] can be classi-
fied as follows.  
• Split-Connection approach: Normally, TCP connections established in a wire-

less environment include the wired part as well. Therefore, an obvious idea is to 
split the connection into two parts at the base station. In the wireless link, either 
TCP or a specialized protocol can be used. The split-connection approach suffers 
from a major disadvantage that every packet has to be stored and processed at the 
base station. Therefore, huge memory consumption and processing overhead 
should be maintained at the base station.  

• Link-layer protocols: Proposals aims at the development of a more reliable link-
layer protocol to hide the unreliable behavior of wireless channels from the TCP 
layer. The two main classes of techniques employed by theses protocols are: error 
correction (using techniques such as forward error correction --FEC), and re-
transmission of lost packets by automatic repeat request (ARQ). The main advan-
tage of the link-layer based proposal is that it fits naturally into the layered hierar-
chy of the network protocol stack. Since it affects only separate links of the net-
work, it can be applied on wide range of scenarios. 

• End-to-End proposals: The main idea of these TCP improvement proposals is 
that additional information about the data flow available for the receiver may help 
the sender to improve the flow control mechanism. Some of the main techniques 
are Selective ACKnowledgements (SACK)[5], HeAder ChecKsum option 
(HACK)[6] and Explicit Loss Notification. The major advantage of end-to-end 
proposals is that only the communicating peers need to be modified, the rest of the 
network stays as is. 
o Contrary to standard versions of TCP using cumulative acknowledgements, 

SACK [5] provides detailed information to the sender on packets that are re-
ceived but out of order. SACK uses the option field in the TCP header for sig-
naling. This technique potentially enables the sender to recover quickly from 
multiple packet losses within a single transmission window. 

o The Header Checksum Option proposal is based on the idea that even damaged 
TCP packets may contain correct headers. Since the payload is much longer 
than the header, the probability for bit corruptions to occur only in the payload 
is high. Retrieving the correct header from a corrupted packet, the receiver is 
able to send negative acknowledgements back to the sender. This helps the 
source to improve the retransmission strategy [6]. 

o The Explicit Loss Notification proposal is built upon the idea that the MAC 
layer is able to detect packet losses and notify the TCP layer. Future duplicate 
acknowledgements corresponding to the lost packet will indicate that a non-
congestion related loss occurred. Upon receiving duplicate acknowledgements, 
the sender may perform retransmissions without invoking the associated con-
gestion�control procedures [4]. 

o TCP Westwood (TCPW) [10] exploits two basic concepts: the end-to-end es-
timation of the available bandwidth, and the use of such an estimate to set the 
slow start threshold and the congestion window after a congestion episode. 
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That is, after three duplicate acknowledgements or after a timeout. In contrast 
to TCP-Reno, which simply halves the congestion window after three dupli-
cate acknowledgements TCPW attempts to make a more "informed" decision. 
It selects a slow start threshold and a congestion window that is consistent with 
the effective connection rate at the time congestion experienced. 

3   The ELN Proposal 

This section describes the basic properties of the ELN algorithm proposal investi-
gated in this paper [4]. The fundamental idea behind the Explicit Loss Notification 
proposal is that the MAC layer of the receiver node is able to detect the corrupted 
packets. The conventional MAC layer drops the packet immediately as it realizes bit 
corruption. In this case TCP considers the corrupted packet to be lost due to conges-
tion after the timer expires, which follows the reduction of the sending rate of the data 
flow. It is obvious, that informing the TCP sender about the corrupted packet, hence 
giving it the ability to distinguish between packet losses due to congestion and packet 
losses due to wireless link errors, would increase the overall performance of the data 
flow. This performance improvement can be gained by avoiding unnecessary reduc-
tions of the TCP window. 

In the proposal the MAC layer at the receiver propagates the loss information to 
the higher layers, thus the TCP receiver can send loss notifications to the TCP sender. 
Since the TCP data receiver may handle multiple connections simultaneously, it is not 
enough to know the fact of a packet loss but the packet exact address (IP address and 
port no.) is also important. Using information on the exact address the packet�s sender 
can be informed about the loss. There are two main possibilities to gain the lost 
packet�s identifiers. Forbidding simultaneous TCP connections is a restricted but 
feasible solution for low performance mobile hosts when they run web browsers. 
New HTTP [7] standards provide the ability of a persistent connection, thus only one 
TCP session may be enough at a time. If there is a demand for simultaneous TCP 
connections at the mobile host, the sender of the corrupted packet must be deter-
mined. The TCP sender is identified by the port number in the header of the TCP 
packet, thus this information has to be retrieved from the corrupted TCP packet. Ac-
complishing this task is possible using the Header Checksum Option [6]. Since in 
most TCP packets the payload is much longer than the header bit errors are likely to 
appear in the payload leaving the header intact. By adding a special option field to the 
TCP header containing a checksum for the header only, the validity of the TCP 
header can be verified [6]. With this mechanism, the TCP sender can be identified 
from an intact TCP header and the receiver can send loss notifications to the proper 
TCP peer entity.  

The ELN proposal has two major properties that affect the applicability in wireless 
networks.  
• First it is an end-to-end proposal: modifications are made only to protocol layers 

in the two communicating end nodes. This property makes the ELN technique 
scalable and easily applicable compared to proposals that need to modify inner 
network nodes as well. 
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• The second property is that only the last link of the connection (Base Station to 
Mobile Node) is monitored by the receiver's MAC layer in order to detect packet 
losses. Communicating TCP peers do not have additional information about nei-
ther the packet losses on possible inner wireless links of the network, nor about 
packets traveling in upload direction (Mobile Node to Fixed Host). As a conse-
quence only the download direction can be optimized by this method. For these 
reasons the ELN proposal is best to apply in networks containing only wireless 
links between the mobile nodes and the base station. In mobile networks it is very 
common to have only one wireless link at the mobile node, and download direc-
tion is still dominant in most cases (e.g. Web browsing), thus applying the ELN 
proposal even with these restrictions may produce significant benefits. 

4   Overview of the Mechanism 

 normal operation

packets loss notification

increase the number
of corrupted packets

normal operation

send acknowledgment
exactly when original

TCP would, and
always include the

number of lost packets

 
Fig. 1. The operation of the TCP-ELN receiver 

In this section we explain the operation of the improved TCP entities. Without loss of 
generality we consider one TCP flow. The operation of the receiver TCP-ELN entity 
is illustrated in Figure 1. Assume that a notification is sent to the receiver TCP layer 
every time a packet corruption is detected by the MAC layer. The TCP-ELN receiver 
has now two events to handle: receiving a loss notification or receiving an intact TCP 
packet. In the first case the only task it performs is increasing the overall number of 
packets corrupted during the connection. Upon receiving an intact TCP packet, the 
TCP-ELN receiver behaves exactly as the original except for including the number of 
corrupted packets counted so far in every acknowledgement. We use the TCP options 
field in acknowledgements to carry this information. For the remainder of the paper 
this field will be referred to as the corruption counter field.  
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Fig. 2.  The operation of the TCP-ELN sender 

This additional information embedded in every TCP acknowledgement enables the 
TCP-ELN sender to distinguish between the causes of packet losses (see Figure 2 
and 3). Packet losses are indicated either by a timeout or by three duplicate acknowl-
edgements triggering fast retransmit, fast recovery. Because a timeout is a very strong 
indication for network congestion, the mechanisms invoked in this case remain un-
changed.  

Normally TCP sends out several new segments depending on the size of the con-
gestion window and awaits acknowledgements. Whenever an acknowledgement ar-
rives, the source checks whether it is acknowledging new segments or segments that 
have been previously acknowledged. In case of receiving an ACK acknowledging 
new segments, TCP operates as usual. It increases the window size by an increment 
depending on the state of the sender (Slow Start or Congestion Avoidance); resets the 
number of previously received duplicated acknowledgements (Fast Retransmit) and 
finally transmits new segments according to the new congestion window size. This 
part of the protocol remained unchanged as shown in the upper part of Figure 2.  
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The lower part of Figure 2 presents the duplicate acknowledgement management 
of the TCP-ELN protocol. Upon receiving a duplicate acknowledgement the sender 
checks if there is any notification of packet corruption on the radio channel or not. 
The decision on the existence of packet corruption is based on comparing the values 
of the corruption counter field received in the acknowledgements. The increment of 
the corruption counter field since last retransmission due to corruption equals the 
number of packets corrupted on the wireless link since then. If the increment is larger 
than zero, the duplicate acknowledgement is assumed to be an indication of packet 
corruption on the radio link. Otherwise, if there is no increment, the duplicate ac-
knowledgement is considered to be the indication of congestion or packet reordering. 

If there is no notification about a packet corruption, the TCP sender proceeds as 
usual. It increases the number of received duplicate acknowledgements, and invokes 
Fast Retransmit-Fast Recovery procedures if the third duplicate acknowledgement 
arrives in sequence. Obviously, the sender checks the loss notifications for all subse-
quent duplicate acknowledgements it receives before invoking Fast Retransmit.  

Otherwise, if loss notifications indicate that the packet was corrupted and lost on 
the wireless channel the sender performs a different procedure. It first retransmits the 
lost packet(s) (loss notifications may indicate the loss of several subsequent seg-
ments). Afterward it stores the number of packets already sent but not yet acknowl-
edged and the size of congestion window for future purposes. 

The TCP source will get several duplicate acknowledgements before the recovery 
acknowledgement arrives. While awaiting the recovery acknowledgement the source 
has no information about network congestion (duplicate acknowledgements can only 
indicate a single packet loss as they point to the last segment arrived in order at the 
receiver). In order to keep the data transmission rate at the same level the sender en-
ters a new state as shown in the left branch of Figure 3. 

Normally the TCP sender will receive as many duplicate acknowledgements pre-
ceding the recovery acknowledgement as many packets it has already sent but not yet 
acknowledged at the time of the fast retransmit. The reception of more duplicate ac-
knowledgements is indicating that the retransmitted packet was lost either due to 
congestion or due to wireless link error. In order to avoid retransmitting the same 
packets again, the sender invokes the congestion resolving mechanisms [2] of the 
original TCP protocol when the number of received duplicate acknowledgements 
exceeds the expected amount. Every time a duplicate acknowledgement arrives and 
the limit is not exceeded the sender increases the window size by 1 segment. Increas-
ing the window size enables the source to send new segments to the receiver while 
waiting for the recovery acknowledgement. Note that opening the window in this 
state does not increase the speed of data flow and is necessary to keep the speed con-
stant, since no new segments are acknowledged by duplicate acknowledgements.  

Upon receiving the recovery acknowledgement (the right hand side of Fig. 3) the 
sender has to investigate whether network congestion evolved while waiting for the 
recovery acknowledgement or not. As mentioned above, no congestion indication can 
be retrieved from the duplicate acknowledgements. The lack of proper information is 



Explicit Loss Notification to Improve TCP Performance over Wireless Networks           487 

wait recovery ACK

wait for
acknowledgement

yesno

send new segments
if possible

wait recovery ACK

no invoke TCP-Reno
mechanism for

packet loss due to
congestion (Fast
Retransmission,
Fast Recovery)

ye
s

yes

no

is it
acknowledging
new segments?

maximum number
of acceptable duplicate

acknowledgement
reached?

is it acknowledging
 all segments sent before

retransmission ?

normal operation

increase window
size by 1 reset size of

congestion window

 
Fig. 3.  Handling ACK at the TCP-ELN sender 
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Fig. 4. Transmission window size in the presence of packet loss 

resolved with a simple and conservative assumption. A partial recovery acknowl-
edgement is considered to be a sign of congestion. In case of a partial acknowledge-
ment the congestion resolving mechanisms of the original TCP are invoked (Fast 
Retransmit - Fast Recovery). Otherwise, if a full recovery acknowledgement arrives 
(i.e. all segments sent before the retransmission are acknowledged by this packet) the 
sender resets the congestion window to the size it had when the packet was lost be-
fore fast retransmit and resumes normal operation (Figure 3, right hand side). Set-
ting the congestion window to the value before detection of the loss (and not halving 
it as original TCP Reno would do) is justified by the fact that the packet loss has been 
detected as a loss due to packet corruption.  

The simple scenario of the new protocol�s behavior compared to the original one is 
illustrated in Figure 4. When packet 16 is lost on the wireless channel due to bit 
corruption the original TCP Reno protocol goes through the recovery phases [2]. 
After the recovery TCP Reno halves the congestion window and unnecessarily de-
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creases the speed of data flow. On the contrary, TCP-ELN detects that the loss is due 
to packet corruption by examining the packet corruption counter, resends the lost 
packet, and waits for the recovery acknowledgement without halving the congestion 
window at fast retransmit. On receipt of the recovery ACK it resets the congestion 
window to the size before detecting the loss of packet 16 keeping the amount of 
packets in the network constant.  

5   Simulation Results 

Wired link,
1Mbit/s, 100 ms

Wireless links
2 Mbit/s each

TCP Source
Base Station

TCP Receivers

 
Fig. 5. Simulation topology 

To measure the performance of TCP-ELN we have run a wide variety of simulations 
that are designed to cover realistic scenarios. The topology (Figure 5) consists of 5 
nodes: a server, a base station (BS), and 3 mobile nodes. The server node connects to 
the BS with a 1 Mb/s link having a latency of 100ms, the BS offers a 2 Mb/s band-
width connection to every mobile node in download and upload directions. Using this 
bandwidth distribution the topology offers the possibility of separating packet drops 
due to error and packet drops due to congestion. Congestion may occur only at the 
link from the server to the BS, packet loss due to bit error can occur only at the radio 
links. 

For traffic simulation FTP and web traffic is generated. The bulk FTP traffic is 
used to measure the steady state behavior of the protocol, while web traffic is used to 
examine the dynamic behavior. In the first group of simulations one FTP session is 
started at every mobile node. In the second group 5 web sessions are started at the 
mobile nodes. We measure the ftp throughput and the response time of web traffic. 
We use the SURGE model [8] to generate Web traffic which is based on real traffic 
traces and has been proved to generate realistic workloads. Uniform and Markov 
error models are two different approaches of modeling the lossy link behavior. Both 
of them are used to simulate packet loss at the link level. The mean value of the uni-
form distribution is varied between 0 and 0.2. Integrating channel fading and radio 
link parameters the Markov model takes the characteristics of wireless channels into 
account.  
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Table 1.  Parameters of the Markov model 

Model 
number 

User speed Average 
error rate 

Average error 
burst length 

1 0.001 1.4913 
2 0.01 4.0701 
3 

Pedestrian 
(1.5Km/h) 

0.1 13.6708 
4 0.001 1.0083 
5 0.01 1.0838 
6 

intermediate 

0.1 1.8629 
7 0.001 1.0024 
8 0.01 1.012 
9 

High 

(100Km/h) 
0.1 1.1317 

 
Using the Markov model we simulate radio links that a pedestrian and radio links 

that a high-speed user can experience with different packet drop probabilities (A 
more detailed description of Markov error model can be found in [9]). 

The different speed parameters with the same average error rates result in different 
expected values of burst error length as shown in Table 5.1. Note that due to the be-
havior of the physical channel the correlation of packet errors (the average burst 
length) is decreasing as the speed increases. 

Figure 6 shows the results of FTP traffic with uniform error model. The curves 
show that in error free transmission both protocols � the original and TCP-ELN � 
produce the same throughput. This is in accordance with the fact that TCP-ELN be-
haves exactly the same as the original protocol when there is no loss notification. In 
case of packet corruption TCP-ELN can achieve a 60-200% improvement in through-
put for the examined error rates. The higher the error rates are the better the new 
protocol�s relative performance improvement is (see the right side of Figure 6). 
While the original protocol closes the congestion window as often as a packet is lost 
the TCP-ELN tries to avoid unnecessary window reductions. 
FTP throughput and the relative improvement with the Markov error model is shown 
in Figure 7. 

As it can be seen in on the right side of Figure 7 the relative improvement is be-
tween 110% and 140% for the high loss scenario (bulk 3,6,9). The improvement is 
between 60% and 120% for the medium loss scenario (bulk 2,5,8). Naturally, in the 
case of low loss ( bulk 1, 4, 7) the relative throughput increase is somewhat lower. 

Comparing the throughput and improvement values measured over uniform error 
with the ones produced over Markov error model, an interesting correlation can be 
recognized. Investigate the throughput values over an average error rate of 0.1 (10%). 
This error rate corresponds to the 3rd, 6th and 9th bulk in figure 6.3. Over the uni-
form model TCP-ELN produced a throughput of 8407 kBytes/s. The values for the 
Markov models 3, 6 and 9 are 18433, 9965, 8685 kBytes/s respectively. As the speed 
parameter of the Markov model increases the average length of an error burst de-
creases. Thus  
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Fig. 6. The throughput and the relative improvement over FTP traffic with the uniform error 
model 
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Fig. 7 The throughput and the relative improvement over FTP traffic with Markov error model 

at higher speeds � as packet loss becomes sporadic � the Markov error model con-
verges to the uniform error model. According to the results TCP-ELN is more effec-
tive when packet losses occur in bursts. Uniform, sporadic errors force the sender to 
reduce the size of congestion window more frequently than bursty errors with the 
same average error rate. In the third group of Markov models when the speed is the 
highest and the packet errors are barely correlated (distribution is close to uniform) 
the value of throughput is nearly the same as in the case of uniform distribution. 
In the web traffic simulation 5 sessions are used per mobile node. Each session simu-
lates web page downloads with random object sizes, user think times, inter-object 
sizes and number of objects per page according to the SURGE model. The average 
response time of these downloads can be seen in the corresponding figures. In figure 
8 the uniform error probability results are shown. Figure 9 shows the web results 
with the Markov error model.  

The average response times with the uniform error model are 10% to 60% better 
when using TCP-ELN. Figure 8 shows that at higher error rates the improvement 
becomes larger.  

In case of web traffic and the Markov error model (see figure 9) we observe slight 
improvements in case of low mean error rates (bulk 1,4,7), improvements between 
15% and 30% in case of medium mean error rates, and 30% to 50% in case of high 
mean error rates. 
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Fig. 8. The average response time and relative improvement of web traffic with the uniform 
error model 
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Fig. 9. The average response time and the relative improvement of web traffic with 
the Markov error model 

6   Conclusions 

In this paper we have proposed a new technique to improve TCP�s low performance 
on wireless networks. The TCP-ELN protocol is based on the idea of the Explicit 
Loss Notification mechanism. TCP-ELN allows the TCP source to differentiate be-
tween packet losses due to wireless link error and packet losses due to congestion. 
Avoiding unnecessarily halving the congestion window when a packet is lost due to 
link error, the improved protocol guarantees higher performance than original TCP. 

We have explained the algorithm in detail and clarified the circumstances under 
which TCP-ELN can be used. TCP-ELN has applicability restrictions in terms of the 
network topology, the data flow direction, and the number of simultaneous flows at a 
mobile host in case the Header Checksum Option is not used. However, in spite of 
these practical limitations the new protocol is able to increase TCP performance in 
most common scenarios.  

Our simulation experiments have shown that TCP-ELN dramatically improves the 
performance of TCP over wireless links in a wide variety of environments. We have 
tested the protocol�s performance over random and bursty erroneous links with two 
different types of traffic, static FTP bulk load and dynamic web traffic. Results prove 
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that TCP-ELN produces a substantially better performance than the original TCP in 
all cases. In case of FTP traffic and high error probability throughput is improved 
between 110% and 200%. In case of Web traffic and high error probability mean 
response times are reduced between 30% and 60%. 
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