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Abstract—Resource management is one of the most indispens-
able components of cluster-level infrastructure layers. Users of
such systems should be able to specify their job requirements
as a configuration parameter (CPU, memory, disk I/O, network
I/O) that are translated into an appropriate resource reservation
and resource allocation decision by the resource management
function. YARN is an emerging resource management framework
in the Hadoop ecosystem, which supports only memory and CPU
reservation at present.

In this paper, we propose a solution that takes into account the
operation of the Hadoop Distributed File System to control the
data rate of applications in the framework of a Hadoop compute
platform. We utilize the property that a data pipe between a
container and a DataNode consists of a disk I/O subpipe and a
TCP/IP subpipe. We have implemented building block software
components to control the data rate of data pipes between
containers and DataNodes and provide a proof-of-concept with
measurement results.

I. INTRODUCTION

Heterogeneous compute clusters can be easily established

using physical machines incorporating memory, disks and

powerful CPUs to offer Information and Communications

Technology (ICT) services. Hadoop [1], [2], [3], [4] is a

software framework that has been developed to satisfy the need

of processing big data [5], [6] in the scale of petabytes/day

with the use of resources offered by compute clusters.

The design of Hadoop considers several factors such as

reliability, scalability, programming model diversity, a flexible

resource model, etc [4]. The popularity of Hadoop is mainly

due to a design decision that allows parallel and distributed

computing meanwhile it hides a complexity from users [2],

[3], [7]. The first versions of Hadoop consist of a distributed

file system and the MapReduce processing framework. Later

on, the need for supporting different processing paradigms was

recognized and YARN was introduced [4], [8].

Application layer software (customer experience manage-

ment, operation support system, customer care are typical

examples in telecommunication environments) use the services

of the infrastructure layer (e.g. Hadoop) and they together

reserve resources through the platform (OS, kernel, firmware,

etc.), like CPU, memory, disk I/O and network I/O. Scheduler

translates those reservations into an appropriate allocation of

resources [9].

Job scheduling is an additional task of resource manage-

ment [4], [10], [11], [12], [13], which is one of the most

indispensable components of cluster-level infrastructure lay-

ers. YARN [8] is a distributed resource management system

for resource allocation in compute clusters [2], [4] and job

scheduling, in the particular case of Hadoop MapReduce. It is

recognized that job scheduling is a challenging issue because

various factors (quality of service, performance, etc) should be

taken into consideration to improve the degree of satisfaction

of users.

In mobile network environments network equipment ven-

dors are increasingly facing the challenge that their solutions

and products need to be deployed in a so called white box

scenario, where they run on the same physical infrastructure as

applications of the mobile operator, and even more, they share

some of the cluster level infrastructure (e.g. shared Hadoop

cluster). In such a scenario, a typical Big Data application

may consist of multiple jobs that are executed a distributed

manner (up to several thousands machines). Some customers

may require a data rate guarantee because their jobs should be

finished by a certain deadline. Therefore, the provision of the

quality of service regarding a data rate guarantee may play a

key factor to attract customers. However, YARN (up to version

2.5.1 [8]) only supports the reservation of memory and CPU

in compute clusters at present.

In this paper, we exploit the special feature of the

Hadoop Distributed File System –HDFS (which is the part of

Hadoop [1]) and the capability of Linux Traffic Control –LTC

(which was developed under Linux kernels 2.2 and 2.4 and

now is incorporated in the newest Linux kernels as a module)

subsystem to control the data pipes of containers to HDFS

DataNodes in YARN. We propose building block software

components that can be integrated into YARN to control the

data throughput of applications. We use ZooKeeper [14] to

maintain persistent information to control the throughput of

data pipes.

The rest of this paper is organized as follows. In Section II,

some technical backgrounds on Hadoop, HDFS and resource

management are presented. In Section III, a proposal is de-

scribed. In Section IV, a proof-of-concept is illustrated with

measurement results. Finally, Section V concludes our paper.



II. TECHNICAL BACKGROUND

In this Section, we provide a short summary of features and

properties we use to construct our proposed solution.

A Hadoop (version 2.0 or higher) compute cluster normally

consists of four main groups (one hardware group and three

software groups) that are illustrated in Figure 1:

• The hardware infrastructure includes a platform of ma-

chines/servers with CPUs, memory and disks, and a

network that connects the machines. The hardware in-

frastructure and the operating systems (running directly

on physical or virtual machines) provides resources for

the Hadoop system and applications.

• The Hadoop Distributed File System (HDFS) with func-

tional entities (NameNode and DataNodes) is a dis-

tributed file system that runs on physical or virtual

machines. It stores large data sets (files of gigabytes to

terabytes) and provides streaming data access to clients

and applications.

• The resource management group with functional en-

tities (Resource Manager –RM, NodeManagers –NM,

ApplicationMasters –AM) is responsible to process the

resource requirement of applications, and decides where

(which physical machines) a specific application should

run based on the knowledge of the hardware infrastructure

and the locations of data blocks in a HDFS storage.

Containers (C) are allocated based on the requirement

of applications to execute the tasks of jobs.

• Applications analyze Big Data and do some computations

on Big Data. One type of applications use MapReduce,

that is a programming model for data processing [3],

[2] and imposes a typical workload on top of HDFS

associated with the 3 phases (map, shuffle and reduce)

of the processing paradigm. Another type of applications

of the HDFS is HBase, which is a distributed, column-

oriented database to support real-time read/write random

access to very large datasets [2], [3]. A systematic survey

of application types and their characteristic workload on

HDFS is beyond the scope of this paper.
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Fig. 1. Main components in a Hadoop Compute Platform

A. Operation of HDFS

In the Hadoop, NameNode and Datanodes are functional

components that realize the Hadoop Distributed File System

to store files and retrieve blocks of data [2], [3]. Files are

splitted into blocks and stored in Datanodes. To ensure the

reliable service against failures, the replication mechanism

may be applied to allow the placement of the same blocks in

different DataNodes. The NameNode is responsible for storing

the filesystem tree, the metadata of all the files and directories

in the HDFS file system. Information about the locations of the

blocks of a specific file is also maintained by the NameNode.

To access/read a specific file, a HDFS client initiates a re-

quest to the NameNode to enquire about the list of Datanodes

that stores replicas of the blocks of the file. Then, the HDFS

client chooses a Datanode that stream data blocks to the client

(see Figure 2). In HDFS all communications and data transfers

are performed using the TCP/IP protocol stack.
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Fig. 2. Data pipes between an application and a DataNode

It is worth emphasizing that the streaming data of a specific

file block is conveyed through two pipes (as illustrated in

Figure 2): a TCP/IP pipe (through either a network or the

loopback interface of a Datanode’s machine) between an

application and a DataNode, and a disk I/O pipe between a

DataNode and a certain disk.

B. Resource Management

YARN decouples the programming model from the resource

management infrastructure [4]. In the YARN architecture there

are several important entities: Resource Manager (RM), Node

Managers (NM), Application Masters (AM). There is a special

term “container” that is the collection of resources (CPU and

memory) centrally assigned by the RM. In YARN, negotia-

tions regarding resources are performed between a client, its

ApplicationMaster and RM, and decisions are taken by RM.

However, the resource usage related to a HDFS storage is

not covered by YARN, which may cause performance prob-

lems because certain types of applications such as MapReduce

have HDFS-intensive resource consumption. Furthermore, the

identification of HDFS data pipes is hidden from other re-

source management functions, which causes a challenge for

resource management. We describe our approach in Section

III to handle these problems.

III. A PROPOSED SOLUTION

In this Section, we propose a solution that allows service

providers to control the data rate (customer’s QoS require-

ment) of applications from a HDFS storage in Hadoop com-

pute clusters.



Fig. 3. Data rate control of pipes

Quality of Service (QoS) is defined by Recommendation

ITU-T G.1000 [15] as the collective effect of service perfor-

mances that characterize the degree of satisfaction of a user.

There are several QoS criteria (speed, accuracy, availability,

reliability, security, simplicity and flexibility) [16] that serve

as the base for setting QoS parameters and performance

objectives. Furthermore, there are four viewpoints [15] of

QoS from the perspective of customers and service providers:

customer’s QoS requirements, QoS offered by a provider,

QoS achieved by a provider, QoS perceived by a customer.

It is worth mentioning that mechanisms (rules, procedures,

policies) should be deployed in the infrastructure of service

providers to provision QoS for customers.

Today YARN is not supporting yet metrics like de-

lay/latency of the query execution, which would be very

useful to specify/enforce from the viewpoint of an end user or

application. The reservation of CPU and memory is supported

in YARN. However, the inclusion of other metrics like the disk

I/O rate and execution time, etc, is far from trivial and deep

application insight/fingerprinting is necessary, which is subject

for future work. Following the general principles regarding

the provision of QoS from the viewpoint of service provider,

mechanisms to control the data rate of applications should

include

• the specification of requirements of users (applications),

• Information about a specific compute cluster, i.e.,

– the maximum capacity of the resource of a cluster

(i.e., the maximum capacity of disk I/O),

– the network topology and the network capacity (i.e.,

the maximum capacity of network I/O between ma-

chines) of a cluster,

– the amount of resource occupied by containers in a

cluster, and the identification of pipes between ap-

plications and DataNodes, and amongst DataNodes,

• resource management policy (i.e., a strategy to allocate

resource) and decision procedures (admission control and

policing) performed by RM.

Within the YARN framework, a client submits a job to the

RM. The submission of a job contains the resource require-

ments for a container that will host the ApplicationMaster of

the client [2], [4]. ApplicationMaster is responsible to request a

set of containers to run its tasks on. An instance of Resource

class conveys the resource type requirements of containers.

Therefore, to support a new type of resource, Resource

class should be extended to contain the requirements of a new

resource type (e.g., the IOPS, the reads per second, the writes

per seconds, throughput).

Upon the arrival of requests for containers, RM should

perform an admission control procedure to check whether

current available resources are sufficient for the requested

containers. The decision by the admission control procedure is

based on the information about the capacity of the cluster, the

amount of resources occupied by the allocated containers in

the cluster and the resource requirement of containers that are

being requested by the ApplicationMaster of a specific client.

If the admission control allows the allocation of a container,

the ApplicationMaster sets up the ContainerLaunchContext

and communicate with the ContainerManager of a specific

NodeManager to start its allocated container. The Application-

Master also monitors the status of the allocated containers. If

a task running on a container finished, the ApplicationMaster

will get updates of completed containers.

A policing function is responsible to keep and guarantee

the required resource for the allocated containers. To control

the data rate, the operation of the Hadoop Distributed File

System (i.e., how files and blocks are streamed by DataNodes

to applications) is taken into consideration in what follows.

Since the streaming data of a specific file block is conveyed

through two pipes as illustrated in Figure 2,

• the enforcement of the I/O usage of containers and HDFS



Fig. 4. The time line of the flow execution

could be done at DataNodes in the machine level,

• all the I/O activities of tasks depends on the TCP con-

nections handled by HDFS datanodes,

• the throughput of TCP connections can be controlled by

Linux Traffic Control (LTC) –see Figure 3 where the

order of steps is illustrated.

Due to the decoupling of functionality, the opening of

data pipes (Figure 2) for the usage of a HDFS storage is

not explicitly covered by the resource negotiation process.

However, applications like MapReduce intensively access the

data blocks of big files stored in HDFS. Furthermore, the

identification of data pipes is hidden from other resource

management functions and can not be revealed at the begin-

ning (i.e., which DataNode is to be contacted for a certain

data block by a specific Map task), which causes a challenge

for resource management. To configure LTC and control a

TCP pipe, the information about the existence of pipes must

be obtained. For this purpose, we either take the creation

of pipes to the negotiation process or implement a monitor

function that senses the setup of TCP pipes between containers

and DataNodes. Figure 4 illustrates the time line of the flow

execution for the latter alternative with the following durations

from the aspect of controlling pipes:

• t1 is the duration between starting the container and begin

of checking TCP connections. Note that TCP connections

may be existing in this time interval.

• t2 is the duration needed to detect TCP connections.

• t3 is the duration to construct and submit new LTC

settings.

• t4 is the duration needed to configure LTC for a DataN-

ode.

• t5 is the latency between the start of control and observ-

able effect.

It will be shown in Section IV that the delay (T = t1 + t2 +
t3 + t4 + t5) is acceptable for certain cases (especially when

big HDFS blocks are streamed).

A. Interfaces

It is worth mentioning that there are a number of alternatives

to implement mechanisms and procedures. Therefore, our

Fig. 5. Interface for DataNodes

Fig. 6. Interface in machines with a NodeManager

approach is to define clear interfaces between functions and

mechanisms (see Figure 3). Next, we implement building-

block functions in Figures 5 and 6 where interfaces and

functions for the exchange of information and LTC setting

are shown:

• ConnectionMonitor maintains the information of

connections between container nodes and DataNodes.

• TrafficControlDataSubmitter submits data

collected by ConnectionMonitor to a persistent

component.

• TrafficControlDataCollector collects data

submitted by TrafficControlData and creates the

list of appropriate events.

• TrafficControlExecutor performs the

configuration of Traffic Control actions on devices

according to the list of events collected by

TrafficControlDataColletor.



Because the amount of persistent information and control

information to support the provision of QoS is huge, a Best of

Practice approach (to ensure a lean operation) is to define an

operation policy. For example, a limited number of container

classes (defined based on data rates) should be supported

for containers, or containers are allocated in each machine

based on the number of cores and data rates (i.e., preplanned

container classes based on cores and data rates).

Fig. 7. Data structure for storing LTC settings in ZooKeeper

B. Keeping the information of containers’s pipes with

ZooKeeper

The maintenance of traffic control parameters and changes

of the traffic control parameters requires a persistent data

structure that can be established with the use of Apache

ZooKeeper [14]. The ability to provide high availability and

high performant service in distributed systems (i.e., to handle

partial failures, to support loosely couple interactions) gives

the rationale behind the choice of ZooKeeper.

The following features of ZooKeeper are taken into account

in our design:

• Reading/writing data of zNode is atomic, appending is

not possible in ZooKeeper.

• A zNode can be either persistent or ephemeral. A persis-

tent zNode can be only deleted manually. An ephemeral

zNode, in contrast, will be deleted if the client that created

it crashes or simply closes its connection to ZooKeeper.

• ZooKeeper deals with changes using watches. With

watches, a client registers its request to receive a one-

time notification of a change to a given zNode.

In this implementation ZooKeeper acts as a persistent layer

for storing and delivering LTC settings between nodes. Note

that only one ZooKeeper Server is needed for the operation

(of course, additional ZooKeeper servers can be operated to

increase the reliability). The data structure is illustrated in

Figure 7. All related traffic control data will be stored under

the /tcData root zNode. Each Datanode will register itself

with ZooKeeper server by creating /tcData/DNID OF DN

where ID OF DN is its identification, it can be the host-

name or the IP address of the Datanode.

In each NodeManager, ConnectionMonitor investi-

gates the traffic connections and constructs the content of

LTC settings and pass them to TCDataSubmitter. Then

TCDataSubmitter notify new demands to Datanodes by

creating new /tcData/DNID OF DN/NMID OF NM zN-

ode with LTC data settings (if this zNode did not exist) under

the zNode node of the corresponding Datanode or replacing

the data of this zNode with the new one.

In order to get new LTC settings, TCDataCollector

uses watches to collect data related to its Datanode. The first

watch is associated to /tcData/DNID OF DN zNode for

tracking the creation/deletion of child zNodes (e.g. whether we

have new demands from new NodeManager node). So we can

get notifications about new demands from the corresponding

NodeManager. When changes are detected, the LTC settings

will be processed by TCDataCollector. It retrieves mod-

ifications by comparing with previous one and pass them to

TCExecutor to set the LTC table.

C. LTC

In Linux, queues1 can be setup to manage the bandwidth of

TCP/IP pipes. That is, filters can be specified to classify traffic

based on the source address, the destination address, and the

port numbers of TCP sessions, and/or u322 condition. Then,

different algorithms (e.g., Token Bucket Filter, Stochastical

Fairness Queueing, Random Early Detection) can be used to

control the rate of TCP/IP sessions [17].

Function TrafficController and its relation with the

other components of the YARN framework are illustrated in

Figure 8.

IV. A PROOF-OF-CONCEPT

Our proposal has been implemented within the YARN

framework. The source codes of software components can be

obtained from [18]. Using machines with Intel Core i5-4670

CPU, 16GB DDR3 1600 MHz RAM memory and 1TB hard

disks, we have created a small Hadoop cluster to demonstrate

the capability of our building block software components.

In our testbed, we provide an illustration to control a data

rate for the following class of applications:

• a job consists of multiple tasks,

• the execution of a job can be divided into several phases,

• the majority of tasks should be executed within a specific

phase, and few tasks span several phases,

• tasks belonging to one specific phase can be executed in

parallel, each of them require one container,

• there are HDFS intensive tasks. It is reasonable to require

that those tasks process data as streams of bytes. HDFS

intensive tasks that are simultaneously executed require

different HDFS data blocks.

Figure 9 depicts the TCP throughputs of two containers

that read data blocks from the same DataNode. Note that the

limiting rate setting in LTC is for the IP layer. It is observed

that container 1 that reads data blocks before container 2 gets

a higher throughput if no LTC is applied. Note that disk I/O

1http://lartc.org/howto/lartc.qdisc.html
2a match on any part of a packet
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Fig. 8. The flow of executions when TCP connections are detected
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Fig. 9. TCP throughput of pipes without LTC
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Fig. 10. TCP throughput of pipes controlled by LTC

bottlenecks may happen due to certain conditions. E.g., one

cause of disk I/O bottlenecks is the consequence of the large

amount of disk blocks sequentially read by applications from

a HDFS storage. In such a case, applications that read a huge

volume of data blocks from disks (I/Os per second and the

amount of bytes per I/O are high) may greedily seize the whole

disk I/O capacity.

To provide a proof-of-concept, we apply LTC to limit the

IP bitrate of container 1 to be 10 MBps and the container

2 to be 40 MBps (note that the rates can be set to other

values as well). From Figure 10 we can conclude that the

throughput control mechanism of LTC practically eliminates

the disadvantage of the later born data pipes in the comparison

with the original YARN (where there is not any limit for pipes

–see Figure 9). It worth emphasizing that the greedy nature

related to the I/O activity under the uncontrolled period can

be observed in Figure 10 too: applications with the sequential

reads of data blocks tend to capture all available I/O capacity

during the uncontrolled period if there is a room to increase its

I/O activity. From the perspective of resource management and

containers that read a huge volume of data, the uncontrolled

period of pipes (i.e., the delay denoted by T in Figure 10

from the start of containers until the LTC has the impact on

the data rate of containers) is negligible. As we mentioned

earlier, the information about the establishment of data pipes

should be a part of the QoS negotiation process to eliminate

the uncontrolled period, which will be done in our future work.

V. CONCLUSION

We have presented an approach to take into account the

HDFS feature to control the throughput of data pipes between

applications and HDFS DataNodes in the YARN framework.

Some basic building block functions have been implemented to

exploit the property (data pipes between DataNodes and con-

tainers) of the HDFS architecture. It has been shown through

measurement results that the throughput of applications (jobs,

containers) can be controlled within YARN using our building

block components.

At present we are working on a prototype to extend YARN.

The prototype will include the specification of I/O rates by



applications, the admission control procedure, and scheduling

and management policy along with building block software

components described in this paper.
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