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Abstract

In this paper we consider a queueing model extension for a manufacturing cell composed
of a machining center and several parallel downstream production stations under a rotation
rule. A queueing model is extended with the arrival processes of negative customers to take
into account failures of production stations, reorganization of works and disasters in the
manufacturing cell. We present an exact solution for the steady state probabilities of the
proposed queueing model. The solution does not require the approximation of the infinite
sum. In addition, we provide an alternative way to compute the rate matrix for the matrix-
geometric method as well.
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1 Introduction

The performance modeling and evaluation activities play an important role in the
design and operation of manufacturing systems. Therefore, the search of new math-
ematical analysis methods for the performance evaluation of manufacturing sys-
tems has been an intensive research area [1–19].
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One type of manufacturing systems is a manufacturing cell that is typically config-
ured from a machining center and several parallel downstream production stations
with buffer of infinite size [6]. Raw material from an ample supply is processed by
the machining center (MC) for a number of different part-types. Then, the part is
moved to downstream production stations for further processing after the comple-
tion of the part in the MC. A production sequence decides which type to produce
upon the completion of the processing of the part in the machining center [6, 17].

A queueing model for a manufacturing cell composed of a machining center
and several parallel downstream production stations under a rotation rule was in-
troduced and analyzed in [6]. The matrix-geometric method [20] is applied by
Chen [6] to calculate the stationary probabilities of the queueing model. The
matrix-geometric method requires the computation of the sum to infinity in the
iterative form of the matrix equation, however the infinite sum is not available in
the closed form. Therefore, the infinite sum is approximated by the truncation [6].

In this paper, we propose a model extension for the manufacturing cell composed
of a machining center and several parallel downstream production stations under
a rotation rule with negative customers. The concept of G-networks with negative
arrivals was first published by Gelenbe in 1989 [21–23]. Negative customers re-
move positive customers in the queue and have been used to model random neural
networks, task termination in speculative parallelism, faulty components in man-
ufacturing systems and server breakdowns and a reaction network of interacting
molecules [21–29]. Queueing models with negative customers can account for
burstiness and correlation, but in addition the negative customers, with an appro-
priate killing discipline, can represent additional behaviours such as breakdowns,
killing signals, losses and load balancing [30–49].

The rest of this paper is organized as follows. In Section 2 an extension with two
Poisson processes of negative customer arrivals is proposed to take into account
extreme events. The first Poisson process is used to model the failure of the server in
stations, while the second Poisson process is applied to capture catastrophic events
in a specific station or the reorganization of processing parts in the manufacturing
cell. A negative customer of the first Poisson process removes a part from a specific
station in our model, while a negative customer of the second Poisson process kills
all customers from the specific station. In Section 3 we present an exact method that
does not require the truncation of an infinite sum. Finally, the paper is concluded in
Section 4.

2 A Model with Negative Customers

Consider a queueing model with negative customers for a manufacturing cell that
is composed of a machining center and m parallel downstream production stations
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with buffer of infinite size under a rotation rule.

The production sequence in a machining center consists of a repeated cycle that can
be partitioned into scheduling lists for station j. The number of the scheduling lists
for station j is equal to the occurrence number of type j parts in a repeated cycle.
Each scheduling list starts from a node after type j node and ends with a type j
node. The processing times of parts in station j follow the exponential distribution
with rate µj .

To model extreme events we introduce two different Poisson processes with rate φj
and ϕj at station j.

• The first Poisson process is used to model the failure of the server in station j.
A negative customer of the first Poisson process removes a part being serviced
from station j if any in our model.
• The second Poisson process is applied to capture catastrophic events in station j

or the removal of parts due to the reorganization in the manufacturing cell. In
our model a negative customer of the second Poisson process kills all the parts
in station j.

Note that both the Poisson processes do not have impact to an empty station.

Example 1 An example of such systems with four production stations is illustrated
in Figure 1. Assume that a part of type 3, a part of type 1, a part of type 3, a part of
type 4, a part of type 2, a part of type 3, a part of type 4, a part of type 1, a part of
type 2, a part of type 3, a part of type 3, a part of type 4, a part of type 2 is repeatedly
processed in the MC. Therefore, the production sequence consists of a repeated
cycle in the MC: {3→ 1→ 3→ 4→ 2→ 3→ 4→ 1→ 2→ 3→ 3→ 4→ 2}.

Station 3

Station 2

Station 1

Machining center

Station 4

Type 1

Type 2

Type 3

Type 4

Ample
Supply

Buffer

Buffer

Buffer

Buffer

Fig. 1. Illustration for a system with four production stations

Some notations are introduced as follows:

• L(j, i) is the sequence in the ith scheduling list of type j.
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• N(j) denotes the occurrence number of type j parts in a repeated cycle.
• N(j, i, k) is the occurrence number of type k parts in the ith scheduling list of

type j for k 6= j.

Remarks. Let us consider the second production station in Example 1. Then, there
are three scheduling lists for the second station: L(2, 1) = {3→ 1→ 3→ 4→ 2},
L(2, 2) = {3 → 4 → 1 → 2} and L(2, 3) = {3 → 3 → 4 → 2}. Values for some
notations are as follows:

• N(1) = 2, N(2) = 3, N(3) = 5, N(4) = 3,
• N(2, 1, 1) = 1, N(2, 1, 3) = 2, N(2, 1, 4) = 1,
• N(2, 2, 1) = 1, N(2, 2, 3) = 1, N(2, 2, 4) = 1,
• N(2, 3, 1) = 0, N(2, 3, 3) = 2, N(2, 3, 4) = 1.

Additional notations are as follows:

• Yj denotes the processing time of type j parts in the MC. Random variable Yj is
exponentially distributed with mean 1/λj .
• Gj,i represents the interarrival time of parts at station j when the production

sequence follows the ith scheduling list of type j.
• Gj,i(t) is the cumulative distribution function ofGj,i, i.e.,Gj,i(t) = Pr(Gj,i < t).
• G∗j,i(s) denotes Laplace-Stieltjes transform G∗j,i(s) =

∫∞
0 e−stdGk,i(t).

• pk,i,j is the probability that the number of type j parts completed in station j
duringGk,i is equal to k when the production sequence follows the ith scheduling
list of type j.
• πn,i,j denotes the stationary probability that the number of parts remaining in

station j is equal to n at the moment the MC completes a type j part and the
production sequence follows the ith schedule list.

Let ℵh denote the number of parts remaining in station j and hג be the
scheduling list seen by the hth arrival of a part at station j. Process
{ℵh, ,hג h ≥ 1} constitutes an embedded Markov chain on state space {(n, i)|n =
0, 1, . . . ,∞; i = 1, 2, . . . , N(j)}. Let πn,i,j denote the stationary probabil-
ity as πn,i,j = Prh→∞(ℵh = n, hג = i). We introduce vector αn,j =
(πn,1,j, . . . , πn,N(j),j).

Following [6] we can write the following equations

G∗j,i(s) =
λj

λj + s

m∏
l=1,6=j

(
λl

λl + s

)N(j,i,l)

. (1)

It is not difficult to express the transition probabilities

pk,i,j =
∫ ∞
0

((µj + φj)t)
ke−(µj+φj)te−ϕjt

k!
dGj,i(t) =

(−µj − φj)k

k!
G
∗(k)
j,i (µj+φj+ϕj),

(2)
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where G∗(k)j,i (s) is the order-k derivative of G∗j,i(s) with respect to s.

For n ≥ 0, matrix An,j is introduced as follows:

An,j =



0 pn,2,j 0 . . . 0 0 0

0 0 pn,3,j . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 pn,N(j),j

pn,1,j 0 . . . 0 0 0


, (n ≥ 0).

Let us define bn,i,j = 1−∑n−1
l=0 pl,i,j for n = 1, 2, . . . and introduce vectors

Bn,j =



0 bn+1,2,j 0 . . . 0 0 0

0 0 bn+1,3,j . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 bn+1,N(j),j

bn+1,1,j 0 . . . 0 0 0


, (n ≥ 0).

Hence the transition probability matrix of the embedded Markov chain {ℵh, ,hג h ≥
1} can be written as follows



B0,j A0,j 0 0 0 0 . . .

B1,j A1,j A0,j 0 0 0 . . .

B2,j A2,j A1,j A0,j 0 0 . . .

B3,j A3,j A2,j A1,j A0,j 0 . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . .


. (3)

The stationary probabilities can be expressed according to the matrix-geometric
method [20] as

αn,j = αn,0R
n
j . (4)
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Hence the key step is to compute the rate matrix Rj that is the minimal nonnegative
solution to the matrix equation

Rj =
∞∑
k=0

Rk
jAk,j. (5)

The rate matrix can be calculated by applying a numerically iterative proce-
dure [20]. However, a numerically iterative procedure needs the approximation of
the infinite sum in the right hand side of equation (5). Therefore, the infinite sum
is approximated by

∑K
k=0 R

k
jAk,j , where K is an appropriately large value such as

the approach applied in [6]. We shall present a new method where the numerical
approximation of the infinite sum is not needed in the subsequent section.

3 A Proposed Solution

The balance equations can be written as follows:

α0,j =
∞∑
n=0

αn,jBn,j, (6)

αn,j =
∞∑

k=−1
αn+k,jAk+1,j (n ≥ 1). (7)

In addition, the normalization equation is

N(j)∑
i=1

∞∑
n=0

πn,i,j = 1. (8)

Let Qj(x) = A0,j + (A1,j − Ij)x +
∑∞
k=2Ak,jx

k be defined as the characteristic
matrix polynomial associated with equation (7), where Ij is the identity matrix of
size N(j) × N(j). Note that the term of the characteristic matrix polynomial was
introduced in [35,50–52] to obtain the stationary probabilities of Quasi-Birth-Death
processes. In these works the degree of the characteristic matrix polynomial is two
(see [50–52]) or finite [35].

Assume that Qj(x) has d pairs of eigenvalue-eigenvectors (xi,j,ψi,j), thus satisfy-
ing the equations

ψi,jQj(xi,j) = 0, for i = 1, . . . , d, (9)
det[Qj(xi,j)] = 0, for i = 1, . . . , d. (10)
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For the kth (k = 1, . . . , d) eigenvalue-eigenvector pair, (xk,j,ψk,j), by substituting
αn,j = ψk,jx

n
k,j in the equations (7), this set of equations is satisfied. This means

αn,j = ψk,jx
n
k,j is a particular solution. As a consequence, the general solution for

αn,j is a linear sum of all the factors (ψk,jx
n
k,j). That is, we can write

αn,j =
d∑

k=1

βk,jx
n
k,jψk,j (n ≥ 0), (11)

where β1,j, . . . , βd,j are coefficients to be determined. In order to satisfy the nor-
malization equation (8), only |xi,j| < 1 should be considered. Without the loss of
generality, let d be the number of these eigenvalues xi,j . The number of coefficients
β1,j, . . . , βd,j to be determined is d. We can utilize equation (6) and the normaliza-
tion equation to compute the coefficients. Thus, the number of linear equations is
N(j)+1. However, onlyN(j) linear equations are linearly independent. Therefore,
the linear equations have the unique solution if and only if N(j) = d. This means,
the exact number of eigenvalues inside the unit circle (i.e., |xi,j| < 1) is N(j).

Therefore, we have to determine the eigenvalues, the eigenvectors and the coeffi-
cients for the stationary probabilities.

3.1 Computation of Eigenvalues and Eigenvectors

Lemma 1 For the stationary probability pk,i,j that the number of parts remaining
in station j is equal to n at the moment the MC completes a type j part and the
production sequence follows the ith schedule list,

∞∑
k=0

xkpk,i,j = G∗j,i((µj + φj)(1− x) + ϕj). (12)

Proof. This is clearly

∞∑
k=0

xkpk,i,j =
∞∑
k=0

∫ ∞
0

(x(µj + φj)t)
ke−(µj+φj)te−ϕjt

k!
dGj,i(t)

=
∫ ∞
0

( ∞∑
k=0

(x(µj + φj)t)
k

k!

)
e−(µj+φj)te−ϕjtdGj,i(t)

=
∫ ∞
0

ex(µj+φj)te−(µj+φj)te−ϕjtdGj,i(t)

=G∗j,i((µj + φj)(1− x) + ϕj). 2 (13)
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By Lemma 1 we obtain the closed form for the characteristic matrix polynomial as

Qj(x) = A0,j + (A1,j − Ij)x+
∞∑
k=2

Ak,jx
k = −Ijx+

∞∑
n=0

An,jx
n,

Qj(x) =



−x
∞∑
n=0

pn,2,jx
n 0 . . . 0 0 0

0 −x
∞∑
n=0

pn,3,jx
n . . . 0 0 0

...
...

...
...

...
...

...

0 0 . . . 0 −x
∞∑
n=0

pn,N(j),jx
n

∞∑
n=0

pn,1,jx
n 0 . . . 0 0 −x



=



−x G∗j,2(ωj) 0 . . . 0 0 0

0 −x G∗j,3(ωj) . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 −x G∗j,N(j)(ωj)

G∗j,1(ωj) 0 . . . 0 0 −x


,

where ωj = (µj + φj)(1− x) +ϕj . The eigenvalues xi,j’s (i = 1, . . . , N(j)) inside
the unit circle can be easily obtained because of the closed form of the characteristic
matrix polynomial Qj(x).

Because of the special structure of the characteristic matrix polynomial Qj(x) we
obtain

det[Qj(x)] = (−x)N(j) − (−1)N(j)
N(j)∏
i=1

G∗j,i(ωj). (14)

Substituting (1) into equation (14), we get
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det[Qj(x)] = (−x)N(j) − (−1)N(j)

N(j)∏
i=1

λj
λj + ωj

m∏
k=1, 6=j

(
λk

λk + ωj

)N(j,i,k)

= (−x)N(j) − (−1)N(j)

(
λj

λj + ωj

)N(j) N(j)∏
i=1

m∏
k=1, 6=j

(
λk

λk + ωj

)N(j,i,k)

= (−x)N(j) − (−1)N(j)

(
λj

λj + ωj

)N(j) m∏
k=1, 6=j

(
λk

λk + ωj

)N(j)∑
i=1

N(j, i, k)

. (15)

Since there are various technique to find the roots of polynomials, we can eas-
ily find the roots of det[Qj(x)] = 0 and therefore the eigenvalues (xi,j’s for
i = 1, . . . , N(j) inside the unit circle) of the characteristic matrix polynomial
Qj(x) as well.

The eigenvectors are calculated as follows. Letψi,j = [ψi,j,1, ψi,j,2, . . . , ψi,j,N(j)] be
an eigenvector for the eigenvalue xi,j (i = 1, 2, . . . , N(j)). Expanding equation (9),
we get the recursive relations ψi,j,l+1 = ψi,j,lG

∗
j,l+1(ωj)/x between ψi,j,l and ψi,j,l+1

for l = 1, . . . , N(j)− 1. An eigenvector remains as the eigenvector corresponding
to the same eigenvalue when it is multipled by a scalar. Using this property, we can
determine ψi,j by setting ψi,j,1 = 1 and applying the above recursive relations to
compute ψi,j,l for l = 2, . . . , N(j).

3.2 Computation of Coefficients

Lemma 2 The right hand side of balance equation (6) can be expressed as follows

∞∑
n=0

αn,jBn,j =

N(j)∑
k=1

βk,j
1− xk,j

ψk,jEj −
N(j)∑
k=1

βk,j
1− xk,j

ψk,j(Qj(xk,j) + xk,jIj), (16)

where Ej is a matrix of size N(j)×N(j) as
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Ej =



0 1 0 . . . 0 0 0

0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 1

1 0 . . . 0 0 0


.

Proof. Since bn,i,j = 1 − ∑n−1
l=0 pl,i,j for n = 1, 2, . . . by definition, Bn,j +∑n

i=0Ai,j = Ej holds. Therefore, we obtain

∞∑
n=0

αn,j

(
Bn,j +

n∑
i=0

Ai,j

)
=
∞∑
n=0

αn,jEj

=
∞∑
n=0

N(j)∑
k=1

βk,jx
n
k,jψk,jEj =

N(j)∑
k=1

βk,j
1− xk,j

ψk,jEj. (17)

We can derive the following relation

∞∑
n=0

αn,j
n∑
i=0

Ai,j =
∞∑
i=0

∞∑
n=i

αn,jAi,j =
N(j)∑
k=1

∞∑
i=0

∞∑
n=i

βk,jx
n
k,jψk,jAi,j

=
N(j)∑
k=1

βk,j
1− xk,j

ψk,j

∞∑
i=0

Ai,jx
i
k,j =

N(j)∑
k=1

βk,j
1− xk,j

ψk,j(Qj(xk,j) + xk,jIj). (18)

Using (17) and (18) this yields equation (16). 2

By Lemma 2, balance equation (6) can be rewritten as follows

α0,j =
N(j)∑
k=1

βk,j
1− xk,j

ψk,jEj −
N(j)∑
k=1

βk,j
1− xk,j

ψk,j(Qj(xk,j) + xk,jIj). (19)

From (11), the normalization equation can be rewritten as follows

∞∑
n=0

N(j)∑
k=1

βk,jx
n
k,jψk,je =

N(j)∑
k=1

βk,j
1− xk,j

ψk,jej = 1, (20)

where ej is a vector of size N(j) with all elements equal to 1.
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To compute the coefficients β1,j, . . . , βN(j),j , we have to utilize equations (19)
and (20), which form the system of N(j) independent linear equations. Note that
no direct computation of the infinite sums is needed in equations (19) and (20).

3.3 Remarks

From equations (4) and (11), the rate matrix Rj can be obtained from the eigenval-
ues and eigenvectors of Qj(x) using simple algebraic work as follows

Rj = Ψ−1j · diag(x1,j, . . . , xN(j),j) ·Ψj, (21)

where

Ψj =



ψ1,j,1 ψ1,j,2 ψ1,j,3 . . . ψ1,j,N(j)

ψ2,j,1 ψ2,j,2 ψ2,j,3 . . . ψ2,j,N(j)

...
...

...
...

...

ψN(j),j,1 ψN(j),j,2 ψN(j),j,3 . . . ψN(j),j,N(j)


. (22)

Then equations α0,j = α0,j(Ij − Rj)
−1(E−1j − Rj) and α0,j(Ij − Rj)

−1ej = 1
can be used to compute α0,j and the stationary probabilities. However, this way for
the stationary probabilities is more computationally extensive than solving for the
coefficients β1,j, . . . , βN(j),j because two matrix inversions (Ψ−1j and (Ij −Rj)

−1)
are needed in addition.

4 Conclusion

In this paper, we have extended a model for the manufacturing cell composed of
a machining center and several parallel downstream production stations under a
rotation rule. The arrival processes of negative customers are used to model failures
and disasters.

We have provided an exact solution for the proposed queueing model. The solution
has an advantage over existing method because it does not require the approxima-
tion of the infinite sum. Moreover, an alternative procedure is presented to compute
the rate matrix for the matrix-geometric method.
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