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Abstract

Dynamic Host Configuration Protocol (DHCP) is designed to provide an auto-
matic mechanism for the allocation, configuration and management of IP addresses
and TCP/IP protocol stack parameters of computers and devices in IP networks.
The important feature of DHCP is a “dynamic allocation” mechanism, which as-
signs an IP address to a client for a limited period of time (called a lease time).
Therefore, a previously allocated IP address can automatically be assigned to an-
other host by a DHCP server upon the expiration of the lease time if a host does
not renew the use of an allocated IP address.

This paper proposes a retrial queueing model to approximate the performability
of the DHCP dynamic allocation mechanism. An efficient computational algorithm
is developed to calculate the steady state probabilities of a continuous time discrete
state Markov process. A comparison of our approximate model with a detailed
simulation model of the DHCP dynamic allocation mechanism shows an excellent
agreement between the analytical and simulation results. The impact of the lease
time parameter on the performability of the DHCP dynamic allocation mechanism
is also illustrated through a numerical study.
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1 Introduction

Dynamic Host Configuration Protocol (DHCP) is designed by the dynamic
host configuration working group within the framework of the Internet En-
gineering Task Force (IETF). At the present, DHCP is specified for Internet
Protocol version 4 in IETF “draft standard” RFC 2131 [1] and for Internet
Protocol version 6 in IETF RFC 4361 [2]. The main aim of DHCP is to provide
an automatic mechanism for the allocation, configuration and management of
IP addresses and IP networking parameters (netmask, router IP address, etc)
for computers and devices in IP networks.

The important feature of DHCP is a “dynamic allocation” mechanism, which
assigns an IP address to a client for a limited period of time (called a lease
time). Therefore, a previously allocated IP address which is not used by one
host can automatically be assigned to another host by a DHCP server imple-
menting the dynamic allocation mechanism. It is recognized that the appro-
priate setting of a lease time in a DHCP server plays an important role in the
efficient allocation of IP addresses. In [3], the authors investigated the impact
of setting lease times using the data from the Georgia Tech campus network.
However, due to the lack of a quantitative performability model and the lack
of data at clients (whether they are forced to wait for an IP address), they only
examined the utilization of the allocatable address space in a DHCP server.

This paper proposes a method to quantitatively evaluate the performance of
a DHCP dynamic allocation mechanism and the impact of a lease time. To
construct a retrial queue and a tractable solution, the following steps are per-
formed. We show that interarrival times of DHCP requests from clients follow
the exponential distribution. We make a relaxed assumption concerning the
lease time sent by a DHCP server and the retrials of clients. We develop an
efficient computational algorithm to calculate the steady state probabilities
and the performance measures of a continuous time discrete state Markov
(CTMC) process associated with the proposed retrial queue. It is shown via
simulation of more detailed model than an analytical abstract model of DHCP
that the proposed model is accurate to calculate the performance of the inter-
action between the behavior of clients and the DHCP mechanism. A numerical
study is also performed, which provides an insight for the impact of trade-off
parameters and factors on the operation of DHCP.

The rest of this paper is organized as follows. In Section 2, the overview of
DHCP operation is presented. In Section 3, the proposed model and a com-
putational algorithm is described. In Section 4 a numerical study is provided
to reveal some interesting behaviors of the IP address allocation mechanism.
Finally, the paper is concluded in Section 5.
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2 Overview of DHCP operation

The operation of DHCP assumes two roles. A centralized DHCP server man-
ages a range of IP addresses allocated by a network administrator for a specific
IP subnet. The communications between a DHCP server and a client are de-
livered by the DHCP protocol. A DHCP client software running on computers
or devices normally sends a broadcast query (DHCPDISCOVERY message)
requesting information from a DHCP server. The DHCP server checks whether
the message is sent from the client with a permissible Media Access Control
(MAC) address. If the client is authorized, the server assigns the client an
IP address, a lease time, the subnet mask and the default gateway address
encapsulated in the DHCPOFFER message.

Note that the whole process is performed in the similar way, if a client knows
the IP address of a DHCP server in advance of the request of an IP address.
The only exception is that a client sends DHCPREQUEST message instead
of DHCPDISCOVERY message.

Three main modes for IP address allocation are supported: manual, automatic
and dynamic allocation. The purpose of the “manual allocation” mode is to al-
low the network administrator to centrally store information concerning client
hosts. In this mode the IP address is assigned by the network operator to a
client host. After the identification of a specific client (e.g. based on hardware
MAC address) DHCP sends a fixed IP address and configuration parameters
(e.g.: the subnet mask, the default gateway address) for the client. This kind of
operation is typically applied in a campus or LAN environment. In the mode
”automatic allocation”, a DHCP server assigns a permanent IP address to a
client host.

The most important feature of DHCP is the “dynamic allocation” mechanism,
which assigns an IP address to a client for a limited period of time. A lease
time is defined as a period of time for which the server gives a permission for
a client to use the address. Note that a lease time is also sent to a client. Upon
the expiration of the lease time, the allocated address becomes free and can be
assigned to another client unless a client extends the right to use a specific IP
address before the expiration of the lease time. This feature is often applied
in the environment of Internet Service Providers because the reuse of scarce
IP addresses is possible.

The decision that a DHCP client “leaves” the system or renews the use of the
allocate IP address depends on the relation between the lease time and the
holding time (e.g.: the working time) of clients. In order to extend the use of
the allocated IP address the client sends a DHCPREQUEST message which
includes the client’s allocated IP address in the “requested IP address” option
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of a DHCPREQUEST message.

3 A Proposed Model

3.1 A Retrial Queue

The size of the pool (i.e.: the number of allocatable IP addresses) is c. The fix
lease time value sent by the DHCP server is denoted by Tl.

We assume the interarrival times of DHCP DISCOVERY messages are expo-
nentially 1 distributed with a mean interarrival time 1/λ.
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Fig. 1. Q-Q plot for the interarrival times (measured in seconds) of DHCPDISCOV-
ERY messages

Assume that the holding times (i.e.: how long does a client need an IP address)
of clients are represented by random variable H with a cumulative distribution
function Pr(H < x) = F (x). Upon the expiration of the lease time, the
previously allocated address at the DHCP server becomes free and can be
allocated to another client unless the client extends the use of a specific IP
address before the expiration of the lease time. Let a denote the probability
that DHCP clients leave (i.e.: switch off the computer) the system or do not

1 We process the log file of the DHCP server of our department between the period
of January 2 and May 28, 2008. In Figure 1, the straight line of the Q-Q plot, where
the interarrival times of DHCP requests between 8h and 18h during the investi-
gation period to the DHCP server are plotted against the theoretical exponential
distribution, confirms our assumption.
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renew the allocated IP address after the expiration of its lease time. We can
write

a = Pr(H < Tl) = F (Tl).

It is worth emphasizing that there is no specific assumption concerning about
the relation of the average holding time and the lease time in our model.

I(t) denotes the number of allocated IP addresses at time t. Note that 0 ≤
I(t) ≤ c holds. A client who does not receive the allocation of an IP address
because the shortage (when I(t) = c) of IP addresses sets a timer to wait for a
limited time and will retry the request for an IP address upon the expiration
of backoff time. We model this phenomenon as the client joins the “virtual
orbit”. J(t) represents the number of DHCP clients in the ”orbit” at time t
and takes values from 0 to ∞.

In order to have a mathematically tractable model, we make the following
assumptions.

• Lease times are exponentially distributed with a mean lease time 1/µ = Tl.
• Clients waiting in the orbit repeat the request for the DHCP server with

rate ν (i.e.: the inter-repetition times are exponentially distributed with
parameter ν), which is independent from the number of waiting clients in
the orbit.

Therefore, the presented approach below is the application of an approximate
model for the DHCP mechanism presented in Section 2. It will be shown in
Section 4 (through the comparison with the simulation of the DHCP mech-
anism) that the approximate model provides a quite good prediction for the
performance measures of the DHCP dynamic allocation mechanism.

As a consequence, the system is modeled by a CTMC, Y = {I(t), J(t)}, with
a state space {0, 1, . . . , c} × {0, 1, . . .}.

Remarks: The stationary distributions of the main M/M/c retrial queue
with c > 2 can be computed using approximation techniques [4–6]. Falin and
Templeton proposed a truncation model and a numerical tractable solution
with a threshold in their book [6], which is followed by the work [7]. The re-
trial queue presented in this paper is indeed a numerically tractable model [6]
with 0 threshold value. However, only matrix-geometric solution is suggested
in [6]. We show in the later section that we develop an efficient computa-
tional algorithm for the considered retrial queue and the evaluation of the
DHCP dynamic allocation mechanism based on the considered retrial queue
is accurate.
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3.2 A Quasi-Birth-and-Death (QBD) representation

We denote the steady state probabilities by πi,j = lim
t→∞

Prob(I(t) = i, J(t) = j),

and introduce vj = (π0,j, . . . , πc,j).

The evolution of Y is driven by the following transitions.

(a) Aj(i, k) denotes a transition rate from state (i, j) to state (k, j) (0 ≤
i, k ≤ c; j = 0, 1, . . .), which is caused by either the arrival of DHCPDIS-
COVERY requests or by the expiration of the lease time without the
renewal of an allocated IP address. Matrix Aj is defined as the matrix
with elements Aj(i, k). Since Aj is j-independent, it can be written as

Aj = A =



0 λ 0 . . . 0 0 0

aµ 0 λ . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . a(c− 1)µ 0 λ

0 0 . . . 0 acµ 0


∀j ≥ 0;

(b) Bj(i, k) represents one step upward transition from state (i, j) to state
(k, j + 1) (0 ≤ i, k ≤ c; j = 0, 1, . . .), which is due to the arrival of
DHCPDISCOVERY requests when no free IP address is available in the
IP address pool. In the similar way, matrix Bj (B) with elements Bj(i, k)
is defined as

Bj = B =



0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0

0 0 . . . 0 0 λ


∀j ≥ 0;

(c) Cj(i, k) is the transition rate from state (i, j) to state (k, j−1) (0 ≤ i, k ≤
c; j = 1, . . .), which is due to the successful retrial of a request from the
orbit. Matrix Cj (∀j ≥ 1) with elements Cj(i, k) is written as
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Cj = C =



0 ν 0 . . . 0 0 0

0 0 ν . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 ν

0 0 . . . 0 0 0


∀j ≥ 1.

DA and DC are diagonal matrices whose diagonal elements are the sum of the
elements in the corresponding row of A and C, respectively. The infinitesimal
generator matrix of Y can be written as follows



A00 B 0 . . . . . . . . . . . .

C Q1 B 0 . . . . . . . . .

0 C Q1 B 0 . . . . . .

0 0 C Q1 B 0 . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . .


, (1)

where A00 = A−DA −B and Q1 = A−DA −B −DC .

Because of the special structure of the QBD, the steady state probabilities
can be obtained with the existing methods like the matrix-geometric and its
variants [8–10], and the spectral expansion [11]. However, the existing methods
have the “state-space explosion” problem when c is large. The problem starts
when c reaches a value of several hundreds (no results or a very long-running
time of computer programs implementing these methods). Therefore, in what
follows we present an efficient computational procedure to find the steady
state probabilities.

3.3 An Efficient Computational Procedure

For j ≥ 1, the balance equations are written as follows

vj−1B + vjQ1 + vj+1C = 0 (j ≥ 1). (2)

Q(x) = B + Q1x + Cx2 is defined as the characteristic matrix polynomial
associated with equations (2). In the present paper, Q(x) is a tridiagonal
matrix
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Q(x) =



q11(x) λx+ νx2 0 . . . 0 0 0

aµx q2,2(x) λx+ νx2 . . . 0 0 0

0 a2µx q3,3(x) λx+ νx2 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . a(c− 1)µx qc,c(x) λx+ νx2

0 0 . . . 0 acµx qc+1,c+1(x)


where

q1,1(x) =−(λ+ ν)x,

qi,i(x) =−(λ+ ν + (i− 1)aµ)x (i = 2, . . . , c),

qc+1,c+1(x) =λ− (λ+ cµa)x.

The steady state probabilities are closely related to the eigenvalue-eigenvector
pairs (x,ψ) of Q(x), which satisfy ψQ(x) = 0 and det[Q(x)] = 0 (c.f. [11]).
It is easy to see that Q(x) has c zero-eigenvalues. The corresponding in-
dependent eigenvectors for c zero-eigenvalues are ψ1 = {1, 0, . . . , 0}, ψ2 =
{0, 1, 0, . . . , 0},. . . ,ψc = {0, 0, . . . , 1, 0}.

Note that if the system is ergodic, then the number of eigenvalues of Q(x) of
a QBD process, which are inside the unit disk, is c + 1 (c.f. [11]). Therefore,
Q(x) should have a single eigenvalue x0 inside the unit disk because Q(x) has c
zero-eigenvalues. Let ψ0 the corresponding left-hand-side eigenvector of Q(λ)
for the eigenvalue x0.

As a consequence, the steady state probabilities can be expressed as follows

vj = b0ψ0x
j
0 (j ≥ 1),

v0 =
c∑

k=0

bkψk, (3)

where bi are the coefficients to be determined. Since the probabilities are
greater or equal 0, 0 < x0 < 1 holds.

The straightforward way to obtain the steady state probabilities is to find the
eigenvalues of Q(x) (see [12] for the methodology to find the eigensystem of
the matrix polynomial). Then, one could use the balance equation for level 0

v0A00 + v1C = 0 (4)
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and the normalisation equation

c∑
i=0

∞∑
j=0

πi,j =
c∑

k=1

bkψke + b0ψ0e/(1− x0) = 1 (5)

to determine the coefficients bi. Note that e is a 1 × (c + 1) vector with all
elements equal 1.

The key step towards the steady state probabilities is to determine x0 and the
corresponding eigenvector ψ0.

Theorem 1 0 < x0 < 1 is the root of lc+1(x), the last diagonal element of
L(x) when we make the LU decomposition of Q(x) = L(x)U(x).

Proof. Since Q(x0) is a tridiagonal matrix and qi,i(x0) 6= 0, the component
matrices of the LU decomposition of Q(x0) are written as

L(x0) =



l1(x0) 0 0 . . . 0 0 0

aµx0 l2(x0) 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . a(c− 1)µx0 lc(x0) 0

0 0 . . . 0 acµx0 lc+1(x0)


, (6)

U(x0) =



1 u1(x0) . . . 0 0 0 0

0 1 u2(x0) . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 1 uc(x0)

0 0 . . . 0 0 1


(7)

where li(x0) (i = 1, . . . , c + 1) and ui(x0) (i = 1, . . . , c) are the elements of
L(x0) and U(x0), respectively. After a simple algebra, it can be written as

l1(x0) = q1,1(x0) = −(λ+ ν)x0
li(x0) + a(i− 1)µx0ui−1(x0) = qi,i(x0), (i = 2, . . . , c+ 1)

li(x0)ui(x0) =λx0 + νx20, (i = 1, . . . , c). (8)

Therefore, the determinant of Q(x0) is expressed as

Det[Q(x0)] = Det[L(x0)]Det[U(x0)] =
c+1∏
i=1

li(x0) (9)
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As the consequence of equation (8), li(x0) 6= 0 (1 < i ≤ c). Hence,Det[Q(x0)] =
0 follows lc+1(x0) = 0. �

It is also easy to prove that lc+1(0) is positive and lc+1(1) is negative. There-
fore, a bisection algorithm can be proposed to determine x0 as illustrated in
Algorithm 1. Note that the recursive relations (see Algorithm 1) between ψ0,i

and ψ0,i+1 (i = c, . . . , 1) are easily derived from equation

ψ0Q(x0) = ψ0L(x0)U(x0) = 0.

Based on the property that multiplying an eigenvector with a scalar number
results in an eigenvector, we can determine ψ0 = {ψ0,1, ψ0,2, . . . , ψ0,c+1} by
setting ψ0,c+1 = 1 and using the recursive relations.

Algorithm 1 Bisection algorithm to determine x0 and the calculation of ψ0

Initialize the required accuracy ε
x0,u = 1.0, x0,d = 0
repeat
x0 =

x0,u+x0,d
2

calculate lc+1(x0) based on equation (8)
if lc+1(x0) > 0 then
x0,d = x0

else
x0,u = x0

end if
until |lc+1(x0)| < ε
ψ0,c+1 = 1
for i = c to 1 do
ψ0,i = −aiµx0

li(x0)
ψ0,i+1

end for
return x0, ψ0

Let us introduce bcf =
∑c
i=1 biψi = {b1, b2, . . . , bc, 0}. From equations (3)

and (4), we can write

c∑
i=0

biψi

[
DA +B − A

]
= b0ψ0x0C

bcf
[
DA +B − A

]
= b0ψ0x0C − b0ψ0

[
DA +B − A

]
(10)

The computation of the coefficients is based on the following observations

• both the left and right hand side of equation (10) are vectors.
• the last element (i.e.: element c + 1) of the left hand side of equation (10)

contains only bc.
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• only bc and bc−1 are in element c of the left hand side of equation (10). only
bc−1, bc−2 and bc−3 are in element c−1 of the left hand side of equation (10),
etc.

As a consequence, bc can be expressed in b0. Then, bi (i = c − 1, . . . , 1) can
be calculated recursively. That is, all bi (i = c, . . . , 1) can be given in terms of
b0. Thus, b0 can be determined from the normalization equation. Then other
coefficients b1, . . . , bc are calculated.

3.4 Performance measures

Note that performance parameters related to the DHCP dynamic allocation
mechanism are obtained as follows:

• average number of occupied IP addresses

Nocc =
c∑
i=1

i
∞∑
j=0

πi,j =
c∑
i=1

i(πi,0 +
∞∑
j=1

b0ψ0,i+1x
j
0) =

c∑
i=1

i(πi,0 +
b0ψ0,i+1x0

1− x0
),

(11)
• average number of clients waiting in the orbit

Norbit =
∞∑
j=1

j
c∑
i=0

πi,j =
∞∑
j=1

jb0
c∑
i=0

ψ0,i+1x
j
0 =

b0x0
(1− x0)2

c∑
i=0

ψ0,i+1. (12)

4 Case study

Three scenarios are investigated in this section. The first scenario represents
a case which may happen in a private company or in a small campus. In this
case, a small number (c = 250) of IP addresses can be allocated to clients.
The second and third scenarios correspond to a case where a large number
(c = 1000 and c = 3000) of IP addresses are available to clients. For three
cases, we choose 1/ν = 30 seconds and the exponential distribution of holding
times (i.e.: F (x) = 1−e−x/th), where th is the mean holding time. The request
rate, λ, is of 1 request/minute for the first scenario, and 6 requests/minute for
the second and third scenario. The computational time of the proposed algo-
rithm largely depends on c. On a machine with Intelr Xeonr E5410 2.33GHz
processor, the computation took 0.28 seconds of CPU time for c = 250, 1.06
seconds for c = 1000 and 3.04 seconds for c = 3000.

For the first case, we present the comparison of our model with simulation.
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Lease time: Tl = 5 minutes

Average holding time Analytical Model Simulation (conf. level=99%)

th (minutes) Nocc Norbit Nocc Norbit

10 12.7075 0 12.715630 0

30 32.5694 0 32.590180 0

60 62.5347 0 62.574540 0

90 92.5231 0 92.582617 0

120 122.5170 0 122.596091 0

150 152.5140 0 152.612031 0

180 182.5120 0.000004 182.628786 0.000002

Lease time: Tl = 30 minutes

10 31.5719 0 31.591576 0

30 47.4593 0 47.490397 0

60 76.2448 0 76.293760 0

90 105.832 0 105.899821 0

120 135.624 0 135.709828 0

150 165.500 0 165.605376 0

180 195.416 0.000437 195.540905 0.000423

Lease time: Tl = 60 minutes

10 60.1491 0 60.186734 0

30 69.3911 0 69.436389 0

60 94.9186 0 94.980781 0

90 123.309 0 123.385416 0

120 152.49 0 152.587474 0

150 181.995 0 182.111794

180 211.664 0.03816 211.799544 0.033517

Lease time: Tl = 90 minutes

10 90.0111 0 90.068141 0

30 94.7156 0 94.774729 0

60 115.850 0 115.921970 0

90 142.378 0 142.471148 0

120 170.573 0 170.679458 0

150 199.473 0.001519 199.600627 0.001356

180 228.734 1.299020 228.881151 1.016362

Lease time: Tl = 120 minutes

10 120.001 0 120.076530 0

30 122.239 0 122.315397 0

60 138.782 0 138.872755 0

90 162.954 0 163.052606 0

120 189.837 0.000067 189.961514 0.000060

150 217.916 0.154400 218.052797 0.114559

180 246.618 67.667500 247.106000 66.585000

Table 1
Analytical and simulation results (c = 250, λ = 1 requests/minute)
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We have developed an own simulation program 2 in language C based on the
SimPack toolkit 3 and the statistical module 4 from Politecnico di Torino,
which have been used for many simulation studies. Note that the simulation
model follows the real interaction of clients and the DHCP mechanism as much
as possible. Therefore, it is different from the analytical model presented in
Section 3.1 in three aspects:

• the retrial rate from the orbit: in the simulation the retrial rate depends on
J(t) (i.e.: each waiting client retrial after 1/ν), while the retrial rate in the
queueing model is of fixed value when J(t) > 0.
• the holding time: in the simulation we simulate the phenomenon of the

holding time of a specific request 5 , while in the queueing model we use
parameter a to take into account the phenomenon of the holding time.
• the lease time: the allocated lease times are of fixed value in the real DHCP

operation and our simulation model, while the lease times are exponentially
distributed in the queueing model.

That means, the simulation model does not follow the assumption of the ana-
lytical one. Note that the simulation results are generated with the confident
level of 99%. Simulation runs are stopped when the relative precision (i.e.: the
ratio of the half-width of the confidence interval and the mean of collected
observations) of Nocc reaches 0.099%. The collected measures for Norbit show
high variability and the relative precision of Norbit is ±49%. As observed from
Table 1 the agreement between the simulation and analytical results is excel-
lent concerning Nocc. The analytical values of Norbit are within the confidence
interval.

We plot the average number of occupied IP addresses versus the average hold-
ing time and the lease time in Figures 2, the average number of requests
waiting in the orbit versus the average holding time and the lease time in Fig-
ure 3, and the probability that all IP addresses are being allocated in Figure 4.
It can be observed that the system is overloaded when the average holding
time is higher than 200 minutes.

The most important resource of the DHCP server is the pool of IP address,
so the efficient allocation of IP address poses a crucial issue for the network

2 http://www.hit.bme.hu/~do/dhcpmodeling/dhcp.c
3 http://www.cise.ufl.edu/~fishwick/simpack.html
4 We use the statistical module (http://www.telematica.polito.it/class/
statistics.ps.gz) to collect simulation data and to perform the analysis of sim-
ulation runs.
5 The lease time sent to each a client is of a fixed value in a specific simulation and
each client independently retries an IP requests after 30 seconds (it is the normal
value observed in a DHCP client software implemented in the present operating
systems).
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administrator. As one observes that the allocation of IP addresses can be con-
trolled with the appropriate setting of the lease length. If the DHCP is not
overloaded, then the smaller the lease time is, the more efficient the allocation
of IP address (Figure 2) and the smaller the number of requests waiting in the
orbit is (Figure 3). For example in the second scenario when the average hold-
ing time is 90 minutes and a lease time has a value of 30 minutes, the average
number of occupied IP addresses is 635 (365 free IP addresses are available
in average). If we change the setting of a lease time to 120 minutes, only 186
free IP addresses are available in a DHCP server. It is worth emphasizing that
the small value setting of the lease time has the impact of increased number
(load) of renewal messages (DHCPREQUEST). Similar observations can be
obtained in the third scenario (Figure 6) as well (the only difference between
the second and third scenario that we increase the size of the IP address pool
to 3000).

In Figure 5, we show the rate of renewal messages versus the lease time and
the average holding time. We observe that the smaller the lease time is, the
larger the rate of renewal messages is, which contrasts with the behavior of
the average number of occupied IP addresses versus the lease time and the
average holding time (Figure 2). Therefore, the trade-off parameter of the
DHCP dynamic allocation mechanism is the rate of renewal messages. That
is, the choice of an appropriate lease time depends on the processing capacity
(how many messages can be handled during one minute or one second) of a
DHCP server.

5 Conclusions

We have provided a methodology to evaluate the performability of the DHCP
dynamic allocation mechanism. It can be used to determine the appropriate
size of the IP address pool in a DHCP server and to set an appropriate lease
time.

We have observed that the setting of a small lease time in a DHCP server has
the advantage of the more efficient usage (i.e.: more clients can be allocated)
of the IP address pool and the smaller number of clients waiting in the orbit
than a large lease time. It is also worth emphasizing that we also have to take
into account the load of renewal messages when we want to set a small lease
time (i.e: a DHCP server is powerful enough to handle renewal messages).
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(a) c = 250, λ = 1 requests/minute
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Fig. 2. Average number of occupied IP addresses
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(a) c = 250, λ = 1 requests/minute
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(b) c = 1000, λ = 6 requests/minute

Fig. 3. Average number of requests waiting in the orbit
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(b) c = 1000, λ = 6 requests/minute

Fig. 4. Probability that all IP addresses are being allocated
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Fig. 5. Renewal rate (λ = 6 requests/minute)
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Fig. 6. The third scenario (c = 3000, λ = 6 requests/minute)
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