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Abstract

In this paper, we introduce a retrial queueing problem for wireless cellular networks ap-
plying the Fractional Guard Channel (FGC) admission control policy and propose a new
algorithm to solve the retrial queue problem involving the FGC policy.

Comparison between analytical and simulation results shows that our algorithm is accu-
rate and fast to evaluate the performance of the system.

1 Introduction

In wireless networks it is of paramount importance to handle handover calls in an
appropriate way. The limited number of channels in a specific cell and the compe-
tition between calls may cause great annoyances for traveling subscribers because
of the ongoing call disruption problem. The guard channel policy [8] is the well-
known technique to cope with the problem by giving a priority for handover calls
over fresh calls. The Fractional Guard Channel (FGC) concept has recently been
introduced by Ramjee et al [13]. They showed that FGC can be used to optimally
control call admission policy in cellular networks. Furthermore, the Guard Chan-
nel policy is a special case of FGC. The efficient recursive algorithm to evaluate
the performance of the Fractional Guard Channel Policy was presented in [16].

However the retrial phenomenon of calls in wireless networks with FGC was not
discussed in the literature until now. In this paper we deal with a new retrial queue-
ing model for cellular networks with the Fractional Guard Channel policy. The
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consideration of the retrial phenomenon allows the investigation of important per-
formance measures related to the quality of services experienced by subscribers
such as the average number of calls in the orbit, the probability of fresh and han-
dover calls leaving the system due to the control policy, and the probability that
fresh and handover calls are forced to the orbit. Furthermore, we propose a new
efficient algorithm to solve the retrial queue problem involving the FGC policy.

The rest of the paper is organized as follows. In Section 2 we provide the description
of the retrial queueing problem. In Section 3 an efficient computational procedure is
proposed. In Section 4 some representative numerical results are presented. Finally,
Section 5 concludes the paper.

2 System description

We consider a particular cell in a cellular mobile system with infinite user popula-
tion, where there are c channels to serve incoming calls. The interarrival times of
new and handover calls are exponentially distributed with rate λF and λH , respec-
tively. Call durations (of new and handover calls) in the cell follow an exponen-
tial distribution with mean 1/µ. A blocked call due to the lack of capacity or the
resource allocation policy (e.g., the guard channel concept) will retry with prob-
ability θ and rate α. Note that θ is used to represent the degree of impatience of
users. Throughout this paper, the orbit is defined as a collection of blocked han-
dover and fresh calls which will repeat a request for service (see Figure 1). Let I(t)
(0 ≤ I(t) ≤ c) denote the number of occupied channels at time t.

The Fractional Guard channel [13] policy is defined as follows. When I(t) = i
(0 ≤ i < c), a new call or retried call is accepted with probability βi and handover
calls are accepted with probability 1.
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α α

Fig. 1. A retrial queueing model

The system is described by the two-dimensional continuous time Markov pro-
cess (I(t), J(t)), where I(t) (0 ≤ I(t) ≤ c) represents the number of occupied
servers (channels in the context of this paper) and J(t) (0 ≤ J(t)) is the number
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of customers waiting for reattempt at time t. The steady state probabilities are de-
noted by πi,j = lim

t→∞
Prob(I(t) = i, J(t) = j). We introduce vector vj as follows

vj = (π0,j, . . . , πc,j).

Retrial queues have been used to model the queueing problem of new and handover
calls in cellular mobile networks [4,5,9,14,15] and telecommunication systems [1–
3]. The fact that the retrial rate depends on the number of retried calls waiting in the
system leads to an analytically intractable model [5,7]. Therefore, approximation
procedures should be used to compute the performability of the system. The well-
known technique is based on the truncation of the state space. That is, instead of the
computation of the probabilities of the whole state space {0, . . . , c}×{0, 1, . . .}we
calculate πi,j ((i, j) ∈ {0, . . . , c} × {0, 1, . . . , q}), where q is an appropriate large
integer number. Another approach applies the assumption that the retrial rate of
calls/requests waiting in the orbit has a fixed value after a certain value of J(t). The
development of a proposed algorithm in this paper is based on the latter approach.

We assume that the rate α0 of repeated calls is independent of the number of calls
in the orbit. Note that due to the efficient estimation of the average number of calls
in the orbit, we can apply the iterative procedure (see Algorithm 3) to estimate
α0 = E(J)α, where E(J) is the average number of waiting calls in the orbit.
The result of the fixed point iteration (Algorithm 3) is used to approximate the
performance of wireless cellular networks with the FGC policy, where the rate of
repeated calls depends on the number of calls in the orbit.

The following notations are introduced.

• Aj(i, k) denotes a transition rate from state (i, j) to state (k, j) (0 ≤ i, k ≤
c; j = 0, 1, . . .), which is caused by either the departure of a call after service or
the arrival of a call. For j ≥ 0, matrix Aj is defined as the matrix with elements
Aj(i, k). Since Aj is j-independent, it can be written as

Aj = A =



0 λ0 0 . . . 0 0 0

µ 0 λ1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . (c− 1)µ 0 λc−1

0 0 . . . 0 cµ 0


,

where λi = λFβi + λH .
• Bj(i, k) represents one step upward transition from state (i, j) to state (k, j + 1)

(0 ≤ i, k ≤ c; j = 0, 1, . . .), which is due to a call joining the orbit. In the similar
way, matrix Bj (B) with elements Bj(i, k) is defined as
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Bj = B =



σ0 0 0 . . . 0 0 0

0 σ1 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 σc−1 0

0 0 . . . 0 0 σc


∀j ≥ 0,

where σi = λF (1− βi)θ (0 ≤ i < c) and σc = (λF + λH)θ

• Cj(i, k) is the transition rate from state (i, j) to state (k, j−1) (0 ≤ i, k ≤ c; j =
1, . . .), which is due to a call which leaves the orbit. Matrix Cj (∀j ≥ 1) with
elements Cj(i, k) is written as

Cj = C =



ω0 α0β0 0 . . . 0 0

0 ω1 α0β1 . . . 0 0
...

...
...

...
...

...

0 0 . . . ωc−1 α0βc−1

0 0 . . . 0 (1− θ)α0


,

where ωi = α0(1− βi)(1− θ).

DA and DC are diagonal matrices whose diagonal elements are the sum of the
elements in the corresponding row of A and C. The infinitesimal generator matrix
of Markovian process (I(t), J(t)) is given by



A00 B 0 . . . . . . . . . . . .

C Q1 B 0 . . . . . . . . .

0 C Q1 B 0 . . . . . .

0 0 C Q1 B 0 . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . .


, (1)

where A00 = A−DA −B and Q1 = A−DA −B −DC .

It is obvious that the system is described by a Quasi-Birth and Death (QBD) pro-
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cess. For j ≥ 1, the balance equations is written as follows

vj−1B + vjQ1 + vj+1C = 0 (j ≥ 1). (2)

We have the balance equation for j = 0

v0A00 + v1C = 0. (3)

In addition, the normalization equation is

c∑
i=0

∞∑
j=0

πi,j = 1. (4)

Since the system can be approximately modeled by a QBD process, some existing
methods can be used such as the improved version [11] of the matrix-geometric
method [12], the spectral expansion method [10]. We will show that we can develop
a faster algorithm than the matrix-geometric method.

Following [10], the characteristic matrix polynomial associated with equations (2)
is Q(x) = B + Q1x + Cx2. Assume that Q(x) has d + 1 pairs of eigenvalue-
eigenvectors (xi,ψi), thus satisfying the equation:

ψiQ(xi) = 0; det[Q(xi)] = 0 for i = 0, . . . , d. (5)

For the kth (k = 0, . . . , d) eigenvalue-eigenvector pair, (xk,ψk), by substituting
vj = ψkx

j
k in the equations (2), this set of equations is satisfied. This means vj =

ψkx
j
k is a particular solution. As a consequence, the general solution for vj is a

linear sum of all the factors (ψkx
j
k). That is, we can write

vj =
d∑

k=0

bkx
j
kψk (j ≥ 0), (6)

where (x0,ψ0), . . ., (xd,ψd) are left-hand-side eigenvalue-eigenvector pairs of
Q(x) and b0, . . . , bd are coefficients to be determined. In order to satisfy the nor-
malization equation 4, only |xi| < 1 should be considered. Without the loss of gen-
erality, let d+ 1 be the number of these eigenvalues xi. The number of coefficients
b0, . . . , bd to be determined is d+1. We can utilize equation (3) and the normaliza-
tion equation to compute the coefficients. Thus, the number of linear equations is
c+2. However, only c+1 equations are linearly independent. Therefore, we obtain
a unique solution if and only if c = d. This means, the exact number of eigenvalues
(|xi| < 1) is c+ 1.

5



3 A Computational Procedure

From equation (6) the steady state probabilities are given by

vj =
c∑

k=0

bkx
j
kψk (j ≥ 0), (7)

where (x0,ψ0), . . ., (xc,ψc) are left-hand-side eigenvalue-eigenvector pairs of
Q(x) and b0, . . . , bc are coefficients to be determined.

In the present paper, Q(x) is a tridiagonal matrix

Q(x) =



q0,0(x) q0,1(x) 0 . . . 0 0

µx q1,1(x) q1,2(x) . . . 0 0
...

...
...

...
...

...

0 0 . . . cµx qc,c(x)


,

where

qi,i+1(x)= (λFβi + λH)x+ x2α0βi (i = 0, . . . , c− 1),

q0,0(x)=λF (1− β0)θ − (λFβ0 + λH)x−
(λF (1− β0)θ + α0(1− β0)(1− θ) + α0β0)x

qi,i(x)=λF (1− βi)θ − (iµ+ λFβi + λH)x−
(λF (1− βi)θ + α0(1− βi)(1− θ) + α0βi)x+

x2α0(1− βi)(1− θ) (i = 1, . . . , c− 1),

qc,c(x)=λθ − x(λθ + cµ+ (1− θ)α0) + (1− θ)α0x
2,

λ=λF + λH .

If ξ(x) = {ξ0(x), ξ1(x), . . . , ξc(x)} is the corresponding eigenvector of eigenvalue
x of Q(x) (i.e: ξ(x)Q(x) = 0), we can write

0= ξ0(x)q0,0(x) + ξ1(x)q1,0(x),

0= ξi−1(x)qi−1,i(x) + ξi(x)qi,i(x) + ξi+1(x)qi+1,i(x),

i = 1, . . . , c− 1,

0= ξc−1(x)qc−1,c(x) + ξc(x)qc,c(x).

6



We set ξ0(x) = 1 and qc+1,c(x) = 1 + x, therefore

ξ1(x)=−q0,0(x)/q1,0(x),

ξi+1(x)=−
ξi(x)qi,i(x) + ξi−1(x)qi−1,i(x)

qi+1,i(x)
,

i = 1, . . . , c. (8)

The sequence {ξi(x), i = 0, . . . , c + 1} associated with the characteristic matrix
polynomial of tridiagonal form is a Sturm sequence within a given interval if for
any fixed x within this interval ξ0(x) = 1 and ξi(x) = 0 (i = 1, . . . , n) imply
ξi−1(x)ξi+1(x) < 0. In order to determine the eigenvalues of Q(x), the number of
sign variations is defined as

mnsv(x) = #{ξi(x)ξi+1(x) < 0, 0 ≤ i ≤ c}. (9)

As a consequence, a divide-and-conquer procedure [6] (called the getx in Al-
gorithm 1) can be applied to find eigenvalues (see Algorithm 2). The eigenvector
ψi = [ψi,0, . . . , ψi,c] can be computed by the use of equation ψiQ(xi) = 0 and
ψi,0 = 1.

Algorithm 1 getx procedure
{Xeg is the vector of eigenvalues}
{ε is the required accuracy}
PROCEDURE getx(xx1, nx1, xx2, nx2)
if nx1 == nx2 then

Return
end if
if xx2 − xx1 < ε then

if nx1 == nx2 + 1 then
Xegnx2 = xx1

end if
Return

end if
x = xx1+xx2

2

nx = nsv(x)
Call getx(xx1, nx1, xx, nx)
Call getx(x, nx, xx2, nx2)
END OF PROCEDURE getx

Note that for each eigenvalue, the corresponding eigenvector can be determined
by equation (8), then the steady state probabilities can be computed after the cal-
culation of coefficients bi’s. To compute bi’s, we have to use equation (3) and the
normalization equation. Based on the efficient computation of the approximated
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Algorithm 2 The proposed computation algorithm
{ ε is the required accuracy}
xx1 := ε
xx2 := 1− ε
nx1 := mnsv(xx1)
nx2 := mnsv(xx2)
Call getx(xx1, nx1, xx2, nx2)
{nonzero-eigenvalues are returned in Xeg}

model, we propose a procedure to evaluate the performance of the system (see
Algorithm 3). The result of the fixed point iteration is used to approximate the
performance of wireless cellular networks with the FGC policy, where the rate of
repeated calls depends on the number of calls in the orbit.

Algorithm 3 The proposed computation algorithm
{α is the retrial rate of each call in the orbit}
{α0 is the retrial rate of the approximated model}
{En(J) is the average number of calls in the orbit in the approximated model}
α0 = α
repeat

Compute xi’s based on Algorithm 2
Compute ψi’s
Compute bi’s
Compute En(J)
α0 = αEn(J)

until En(J) converges

3.1 Influence of βi = 1

Theorem 1 The number of zero-eigenvalues of Q(x) is equal to the number of βi’s
whose value is 1.

Proof. If bi = 1, then all the elements (qi−1,i(x), qi,i(x), qi,i+1(x)) in row i of Q(x)
are divideable by x, but not by x2. Therefore, it follows that Q(x) should have a
zero-eigenvalue because of the computation of det[Q(x)] according to row i. The
number of zero-eigenvalues of Q(x) is equal to the number of rows which are
divideable by x (the number of βi’s whose value is 1). �

It is worth emphasizing that for βi = 0, the eigenvector corresponding to a zero-
eigenvalue is a vector with all elements equal to zero except the ith element which
is 1.
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3.2 Limited Fractional Guard Channel Policy

The FGC is called the Limited Fractional Guard Channel Policy (LFGC) if the
following parameters are applied: βi = 1 (0 ≤ i ≤ T ), βT+1 = β and βi = 0
(T +1 < i < c). As consequence, the number of zero-eigenvalues is T +1. Without
the loss of generality, these eigenvalues are x0, x1, . . . , xT . Since the eigenvector
corresponding to xi = 0 is a vector with all elements equal to zero except the ith

element which is 1.

v0=b(∗) +
c∑

k=T+1

bkψk (10)

vj =
c∑

k=T+1

bkx
j
kψk (j ≥ 1), (11)

where b(∗) = {b1, . . . , bT , 0, . . . , 0}.

4 Numerical Results

We have built a simulation for the original and analytically intractable system de-
scribed in Section 2, where the retrial rate depends 1 on the number of waiting calls
in the orbit. In Table 1 we present some illustrative results 2 to show the accuracy
of the new method concerning to the blocking probabilities of calls and the av-
erage number of occupied channels when the LFGC is applied with T = c − 1,
β = 0, c = 15, 1/µ = 120 s, α/µ = 20, λF/λH = 24. The offered load is defined
by ρ = λ/(cµ). All the computations are performed with machine precision (ap-
proximately 2.22045x10−16). It is worth emphasizing that the similar observation
is obtained with other parameter values as well.

In Figures 2, 3 and 4, we show illustrative results concerning the average number of
calls in the orbit, the probabilities that fresh calls and handover calls are forced to
the orbit when LFGC policy is applied. It is observed that paramter β has a strong
impact on handover calls, therefore it can be used for fine-tuning the system.

1 It is the only difference between the simulation and the proposed approach is the retrial
rate of calls waiting in the orbit.
2 Note that the simulation results are generated with the confidential level of 99%, and the
ratio of the half-width of the confidence interval and the mean of collected observations is
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Table 1
Comparison with simulation

ρ θ = 0.1

Simulation Analytical

Es(I) Es(J) Prs(I = Prs(I = c) En(I) En(J) Prn(I = Prn(I = c)

c− 1) c− 1)

0.1 1.500250 0.000000 0.000000 0.000000 1.5 5.6 10−13 7.5 10−10 6.5 10−12

0.2 3.000170 0.000000 0.000002 0.000000 2.99999 4.2 10−9 0.000002 4.8 10−8

0.3 4.500090 0.000000 0.000161 0.000005 4.49925 4.5 10−7 0.000178 0.000005

0.4 5.992940 0.000000 0.002161 0.000091 5.98737 0.00000 0.002236 0.000078

0.5 7.418670 0.000485 0.011387 0.000611 7.41839 0.000046 0.011449 0.000502

0.6 8.712900 0.001767 0.034116 0.002205 8.70786 0.000165 0.033841 0.001781

0.7 9.796540 0.004544 0.071726 0.005546 9.78445 0.000408 0.070401 0.004325

0.8 10.649000 0.008906 0.118981 0.010615 10.6317 0.000784 0.116733 0.008202

0.9 11.302100 0.014681 0.170403 0.017407 11.2777 0.001282 0.167009 0.013212

θ = 0.3

0.1 1.500250 0.000000 0.000000 0.000000 1.5 1.9 10−12 7.5 10−10 1.5 10−11

0.2 3.000600 0.000000 0.000002 0.000000 2.99999 1.5 10−8 0.0000027 1.1 10−7

0.3 4.500360 0.000000 0.000164 0.000011 4.49932 0.0000015 0.000178 0.000011

0.4 5.994750 0.000000 0.002234 0.000224 5.99969 0.001129 0.002387 0.0012942

0.5 7.431050 0.001831 0.011728 0.001494 7.4239 0.000174 0.011521 0.0011505

0.6 8.750470 0.007213 0.035735 0.005646 8.72407 0.000643 0.034040 0.0040884

0.7 9.862670 0.019015 0.074871 0.014397 9.78445 0.000408 0.070401 0.0043254

0.8 10.760900 0.038974 0.123618 0.028256 10.6317 0.000785 0.116733 0.0082025

0.9 11.455700 0.067699 0.175191 0.046835 11.2777 0.001282 0.167009 0.0132115

θ = 1.0

0.1 1.500250 0.00 0.00 0.000 1.5 1.99 10−11 7.5 10−10 7.4 10−11

0.2 3.000920 0.000000 0.000003 0.000000 3.0 2.5 10−7 0.000003 6.0 10−7

0.3 4.500000 0.000073 0.000181 0.000043 4.49999 0.000041 0.000186 0.0000669

0.4 5.999880 0.001795 0.002508 0.000912 5.99969 0.001129 0.002387 0.0012942

0.5 7.497120 0.017323 0.014018 0.007419 7.49959 0.011952 0.012508 0.0097432

0.6 8.989000 0.095756 0.043888 0.033434 8.99538 0.071775 0.041080 0.0373981

0.7 10.453600 0.379311 0.091433 0.102135 10.4503 0.305958 0.0761227 0.118219

0.8 11.884100 1.244660 0.140123 0.239130 11.8743 1.09335 0.167975 0.20876

0.9 13.250500 4.081900 0.155641 0.468458 13.2458 4.22319 0.153844 0.470658

For ρ = 0.9, θ = 0.6, 1/µ = 120 s, α/µ = 20, λF/λH = 24, β = 0.9, we plot
the computational time versus c in Figure 5. The proposed method is compared
against the method proposed by Naoumov et al. [11] (note that the method proposed
by Naoumov et al. is considered as one of the fastest approaches to compute the
stationary probabilities of QBD processes. Figure 5 shows that our method is much
faster than the existing method.

0.099%.
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Fig. 2. The average number of calls in the orbit
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Fig. 3. The probability that fresh calls are forced to the orbit

5 Conclusions

We have presented a new retrial queueing problem for wireless cellular networks
applying the Fractional Guard Channel (FGC) admission control policy and pro-
vided a new algorithm to approximate the retrial queue problem involving the FGC
policy. The comparison between analytical and simulation results confirms that our
algorithm is accurate and fast to evaluate the performance of the system.
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Fig. 4. The probability that handover calls are forced to the orbit
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[2] J. R. Artalejo, A. Economou, and A. Gómez-Corral. Applications of maximum queue
lengths to call center management. Computers & OR, 34(4):983–996, 2007.

[3] J. R. Artalejo, A. Economou, and A. Gómez-Corral. Algorithmic analysis of the
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[4] J. R. Artalejo and A. Gómez-Corral. Channel idle periods in computer and

12



telecommunication systems with customer retrials. Telecommunication Systems,
24(1):29–46, 2003.
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