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Abstract

Kumar et al. consider the M/M/c/N+c feedback queue with constant retrial rate [1]. They
provide a solution for the steady state probability based onthe matrix-geometric method.
We show that there exists a more efficient computation methodto calculate the steady state
probabilities whenN + c is large. We prove that the number of zero-eigenvalues of the
characteristic matrix polynomial associated with the balance equation isb(N + c+ 2)/2c.
As consequence, the remaining eigenvalues inside the unit circle can be computed in a
quick manner based on the Sturm sequences. Therefore, the steady state probabilities can
be determined in an efficient way.

1 Introduction

The concept of Quasi Birth-Death (QBD) processes, as a generalization of the clas-
sical birth and death M/M/1 queues was first introduced by [2]and [3] in the late
sixties. The states of a QBD process are described by two dimensional random
variables called a phase and a level [4–6] and transitions ina QBD process are only
possible between adjacent levels. It is observed that QBD processes create a useful
framework for the performability analysis of many problemsin telecommunica-
tions and computer networks [1,7–15].

There are two main methods to find the steady state probabilities for QBD pro-
cesses on semi-infinite strips. The matrix-geometric [4] method (which is widely
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used to analyze queues [7,16]) and its variants [6,12] are numerical approaches
to recursively compute the rate matrix (the minimal nonnegative matrix solution)
of the matrix quadratic equation. The spectral expansion method is based on the
eigenvalues and eigenvectors of the characteristic matrixpolynomial [5,17]. It is
confirmed by a number of works that the spectral expansion method is better than
the matrix geometric one from some aspects [5,18,19]. It is worth emphasizing that
there have been no works which consider or develop an algorithm for queues in-
volving zero-eigenvalues (see [5,8,20–22] for more detail). In this paper, we deal
with an algorithm to find the eigenvalues of the matrix quadratic equation of a
tridiagonal form based on the sign variations of the Sturm sequences. We consider
a case where multiple zero-eigenvalues are involved.

The example for investigation is the M/M/c/N+c feedback queue with constant re-
trial rate, which is solved by the matrix-geometric method in [1]. However, the
existing approaches face the state explosion problem when the queueing capacity
(N + c) is large. We prove that the number of zero-eigenvalues of the character-
istic matrix polynomial associated with the balance equation isb(N + c + 2)/2c.
As consequence, the remaining eigenvalues inside the unit circle can be computed
in a quick manner based on the Sturm sequences. It is worth emphasizing that the
algorithm of [22] should be slightly modified in order to determine the remaining
eigenvalues of the characteristic matrix polynomial inside the unit circle. Numerical
results are presented to compare computation times which are needed by the matrix
geometric method, the pure spectral expansion approach, the method proposed by
Naoumov et al. and the new algorithm to calculate the steady state probabilities.
The comparison clearly demonstrates the advantage of the new algorithm on the
computation of the steady state probabilities of the queue with a large queueing
capacity.

The rest of this paper is organized as follows. In Section 2, the M/M/c/N+c feed-
back queue with constant retrial rate is described. A main theoretical result con-
cerning the number of zero-eigenvalues of the characteristic matrix polynomial
associated with the balance equation and the modified algorithm to calculate the
eigenvalues is presented in Section 3. Numerical results are demonstrated in Sec-
tion 4. Finally, Section 5 concludes the paper.

2 A system description

The M/M/c/N+c feedback queue with constant retrial rate hasa limited waiting
position of sizeN andc homogeneous servers. Service times are exponentially dis-
tributed with parameterµ. External customers arrive according to a Poisson process
with rateλ. Upon the arrival, an external customer

• either is served if there is a free server,
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• or occupies a waiting position if allc servers are busy and there is a free waiting
position,

• or is blocked and is forced to leave the system forever if allc servers are busy
and waiting positions are occupied.

When one of the servers becomes free, the customer in the firstwaiting position
immediately starts getting served.

A customer who leaves a system after service either join the retrial group (orbit)
for another service with probabilityq (0 ≤ q < 1) or leave the system forever
with probability p = 1 − q. Customers in the retrial group request service with
constant retrial rateσ, which is independent of the number of customers in the
retrial group [1]. Note that a customer in the orbit can enterthe service facility at
the retrial instant only when there are idle servers.

The system is ergodic if the following expression holds (c.f. [1])
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The system is completely described by two random variables.I(t) (0 ≤ I(t) ≤
c + N) is a random variable to denote the number of customers in thesystem
(being served by servers or waiting in the waiting positions). J(t) (J(t) ≥ 0)
is a random variable to represent the number of customers in the retrial group.
Y = {I(t), J(t)} is a Continuous Time Markov Chain (CTMC) with a state space
{0, 1, . . . , c + N} × {0, 1, . . .}. We denote the steady state probabilities byπi,j =
lim
t→∞

Prob(I(t) = i, J(t) = j), and introducevj = (π0,j , . . . , πc+N,j).

The evolution ofY is driven by the following transitions.

(a) Aj(i, k) denotes a transition rate from state(i, j) to state(k, j) (0 ≤ i, k ≤
n = c+N ; j = 0, 1, . . .). These transitions happen due to either the arrival of
an external customer or the departure of a customer from the system.Aj(i, k)
does not depend onj, so we can write

Aj(i, k) = A(i, k) =



























pµmin(i, c) if k = i− 1 andi ≥ 1

λ if k = i+ 1

0 otherwise

. (2)

(b) Bj(i, k) represents one step upward transition from state(i, j) to state(k, j +
1) (0 ≤ i, k ≤ n = c+N ; j = 0, 1, . . .). These transitions are due to customers
who join the retrial group.
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Bj(i, k) is independent ofj, thus it is valid

Bj(i, k) = B(i, k) =











qµmin(i, c) if k = i− 1 andi ≥ 1

0 otherwise
. (3)

(c) Cj(i, k) is the transition rate from state(i, j) to state(k, j − 1) (0 ≤ i, k ≤
n = c + N ; j = 1, . . .). These transitions are initiated by requests from the
retrial group.Cj(i, k) does not depend onj, so we can write

Cj(i, k) = C(i, k) =











σ if k = i+ 1 andi < c

0 otherwise
. (4)
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.

Table 1
Matrices forc = 2 andN = 3

A(i, k), B(i, k) andC(i, k) are the elements ofA, B andC matrices, respectively.
We introduce diagonal matricesDA, DB andDC . The diagonal elements are the
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sum of the elements in the row ofA, B andC. The infinitesimal generator matrix
of Y can be written as follows:
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, (5)

whereA00 = A −DA −DB, Q0 = B, Q1 = A− DA −DB −DC andQ2 = C.
The forms of the matrices are illustrated in Table 1.

3 An efficient computation algorithm

3.1 The number of zero-eigenvalues

For j ≥ 1, the balance equations is written as follows:

vj−1Q0 + vjQ1 + vj+1Q2 = 0 (j ≥ 1). (6)

Q(x) = Q0 +Q1x+Q2x
2 is defined as the characteristic matrix polynomial asso-

ciated with equations (6). In the present paper,Q(x) is a tridiagonal matrix

Q(x) =
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























q0,0(x) q0,1(x) 0 . . . 0 0 0
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...
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...
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




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



















(7)

where
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q0,0(x) =−(λ+ σ)x,

qi,i−1(x) = qµmin(i, c) + pµmin(i, c)x (i = 1, . . . , n),

qi,i(x) =−(λ+ µmin(i, c) + C(i, i+ 1))x (i = 1, . . . , n− 1),

qi,i+1(x) = λx+ C(i, i+ 1)x2 (i = 0, . . . , n− 1),

qn,n(x) =−cµx.

The steady state probabilities are closely related to the eigenvalue-eigenvector pairs
(xi,ψi) of Q(x), which satisfyψQ(x) = 0 anddet[Q(x)] = 0 (c.f. [5,23]). If the
system is ergodic (which is so when inequation (1) holds), then the number of
eigenvalues of the characteristic polynomialQ(x) with a degree ofn + 1, which
are strictly inside the unit disk, has to ben + 1 (see the proof in [23]). So we can
write

vj =
n
∑

i=0

aix
j
iψi (j ≥ 0), (8)

wherexi are the eigenvalues inside the unit circle. Coefficientsai can be determined
from the balance equation for levelj = 0 and the normalization equation.

Theorem 1 The number of zero-eigenvalues ofQ(x) is b(n+ 2)/2c.

Proof. We provide a proof with mathematical induction. Let[Q(x)]{0,...,k} denote
a submatrix formed by the firstk + 1 rows and columns ofQ(x). It is easy to
verify thatdet[Q(x)]{0,1} = 0 has one zero-root anddet[Q(x)]{0,1,2} = 0 has two
zero-roots.

Assume thatdet[Q(x)]{0,...,k−2} = 0 (k ≥ 3) hasbk/2c zero-roots anddet[Q(x)]{0,...,k−1} =
0 hasb(k + 1)/2c zero-roots.

[Q(x)]{0,...,k} is a tridiagonal matrix. Therefore, we can write

det[Q(x)]{0,...,k} = qk,k(x)det[Q(x)]{0,...,k−1}−qk,k−1(x)qk−1,k(x)det[Q(x)]{0,...,k−2}.

Note thatqk,k(x) and qk−1,k(x) is divideable byx, while qk,k−1(x) is not. As a
consequence,det[Q(x)]{0,...,k} = 0 hasbk/2c+1 = b(k+2)/2c zero-roots. 2

3.2 A computation algorithm

Following [22],ψQ(x) = 0 can be written as,
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0=ψ0q0,0(x) + ψ1q1,0(x),

0=ψi−1qi−1,i(x) + ψiqi,i(x) + ψi+1qi+1,i(x), i = 1, . . . , n− 1

0=ψn−1qn−1,n(x) + ψnqn,n(x),

whereψ = {ψ0, . . . , ψn}.

We setψ0 = 1 andqn+1,n = 1 + x, therefore

ψ1(x) =−q0,0(x)/q1,0(x),

ψi+1(x) =−
ψi(x)qi,i(x) + ψi−1(x)qi−1,i(x)

qi+1,i(x)
, i = 1, . . . , n (9)

It is proved by [22] that the sequence{ψi(x), i = 0, . . . , n+1} associated with the
characteristic matrix polynomial of tridiagonal form is a Sturm sequence within a
given interval if for any fixedx within this intervalψ0(x) = 1 andψi(x) = 0, i =
1, . . . , n impliesψi−1(x)ψi+1(x) < 0. Furthermore, the number of sign variations
is defined by [22]

nsv(x) = #{ψi(x)ψi+1(x) < 0, 0 ≤ i ≤ n} +#{ψi(x) = 0, 0 ≤ i ≤ n}. (10)

Grassmann [22] has reported a divide-and-conquer procedure (calledgetx in Al-
gorithm 1) to find eigenvalues inside the unit circle for QBD processes with the
characteristic polynomial matrix of a tridiagonal form if they are all non-zero.
Grassmann’s algorithm discards any interval(x1, x2] if nsv(x1) = nsv(x2). To
compute the eigenvalues in interval(0, 1), it is proposed to start the algorithm
with getx(0,n+1,1,0) (c.f.: [22]). It is also mentioned [22] that handling zero-
eigenvalues will be developed in future.

If the QBD process of the M/M/c/N+c feedback queue with constant retrial rate is
ergodic, then the number of eigenvalues inside the unit circle is n + 1. We have
proved that the number of zero-eigenvalues isb(n + 2)/2c. In order to deal with
zero-eigenvalues, two modifications are needed.

• the modified function for the number of sign variations is defined as follows:

mnsv(x) = #{ψi(x)ψi+1(x) < 0, 0 ≤ i ≤ n}. (11)

The new function for the number of sign variations should be applied inside the
getx function as well.

• the modified initialization can be applied as illustrated inAlgorithm 2 to find
the remaining non-zero eigenvalues ofQ(x). Note thatmnsv(ε) = n − bn/2c
because the number of other eigenvalues inside the unit circle isn− bn/2c.
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Algorithm 1 getx procedure
{Xeg is the vector of eigenvalues} {ε is the required accuracy}

PROCEDURE getx(x1, nx1, x2, nx2)
if nx1 == nx2 then

Return
end if
if x2 − x1 < ε then

if nx1 == nx2 + 1 then
Xegnx2

= x1
end if
Return

end if
x = x1+x2

2

nx = nsv(x)
Call getx(x1, nx1, x, nx)
Call getx(x, nx, x2, nx2)
END OF PROCEDURE getx

Note that for each eigenvalue, the corresponding eigenvector can be determined
with equation (9), then the steady state probabilities can be computed.

4 Numerical results

In this Section, we illustrate the efficiency of the computation method for large
queueing capacity vs other methods (direct computation of the eigenvalues of the
characteristic matrix polynomial and the matrix geometricmethod). As already an-
alyzed in [17], both the spectral expansion and the matrix-geometric method have
the same complexity of solving the unknowns after the computation of eigenvalue-
eigenvectors and the rate matrix. Therefore, we compare thecomputational time
needed to obtain the eigenvalues/eigenvectors (for the newmethod and the di-
rect calculation of the eigenvalues) and the rate matrix in the case of the matrix-
geometric method. Four methods are compared in this section: the original spec-
tral expansion method [23], the successive substitution procedure of the matrix-
geometric method [4] proposed by Kumar et al. [1] for the M/M/c/N+c feedback
queue with constant retrial rate, the variant of the matrix-geometric method [12]
(which is considered as one of the best and latest improvements for the original
matrix-geometric method) and the new algorithm.

For the numerical study, we choose the following parametersN = 3, σ = 2.0,
µ = 1.0/c, p = 0.6, q = 0.4. The accuracy isε = 10−10. This value is also
the stopping criteria for the matrix geometric approach. Results were produced
in a machine with Intelr Xeonr E5410 2.33GHz processor. In Figure 1, we plot
the computation time versus the queueing capacityn andλ. In the plots the GEO,
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SPE, NAO and NEW denotes results obtained by successive substitution procedure,
original spectral expansion, an improvement for the matrix-geometric method by
Naoumov et al. and the new method, respectively. It is observed that the matrix
geometric method (the successive substitution procedure and a procedure proposed
by Naoumov et al.) takes the smallest time to compute the steady state probabilities
whenn is smaller than 300. Note that the difference between Naoumov’s method
and the successive substitution (SS) procedure is that the SS procedure involves
a less computation effort (matrix multiplication, substraction and addition) in one
iteration than Naoumov’s method. However, the convergenceof the SS procedure
is slower than the Naoumov’s method. Whenn is small, the computation effort is
a dominant factor in the case of Naoumov’s method, so we can observe that the
computation time is higher than the SS procedure in the plots.

For n < 50, the original spectral expansion method needs less time than the new
method. The new method outperforms other methods forn > 300, where the com-
putation time of the successive substitution procedure jumps to very high. The dif-
ference is more than one order of magnitude. It is worth mentioning that the mem-
ory requirement of the new method is minimal (e.g., no need tostore matrices).

Algorithm 2 Initialization to findn − bn/2c non-zero eigenvalues inside the unit
circle

{ ε is the required accuracy}
{Xeg is the vector of eigenvalues indexed from0 to n− bn/2c}

x1 := ε
x2 := 1− ε
nx1 := mnsv(x1)
nx2 := mnsv(x2)
Call getx(x1, nx1, x2, nx2)

5 Conclusions

We have proved that the number of zero-eigenvalues of the characteristic matrix
polynomial associated with the balance equation isb(N + c + 2)/2c. We present
an approach to deal with the multiple zero-eigenvalues. As consequence, the steady
state probabilities are determined in an efficient way for the M/M/c/N+c feedback
queue with a large queueing capacity.

Numerical results are presented to compare computation times which are needed
by the matrix geometric method, the pure spectral expansionapproach, Naoumov’s
method and the new algorithm to calculate the steady state probabilities. The com-
parison clearly demonstrates the advantage of the new algorithm on the computa-
tion of the steady probability of the queue with large queueing capacity.
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Fig. 1. Computation time in seconds
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