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Abstract

Kumar et al. consider the M/M/c/N+c feedback queue with tamtsetrial rate [1]. They
provide a solution for the steady state probability basethemmatrix-geometric method.
We show that there exists a more efficient computation metihaédlculate the steady state
probabilities whenV + c¢ is large. We prove that the number of zero-eigenvalues of the
characteristic matrix polynomial associated with the bedaequation i$(N + ¢ + 2)/2].

As consequence, the remaining eigenvalues inside the udi¢é can be computed in a
quick manner based on the Sturm sequences. Therefore gty sttate probabilities can
be determined in an efficient way.

1 Introduction

The concept of Quasi Birth-Death (QBD) processes, as a ghkzadron of the clas-
sical birth and death M/M/1 queues was first introduced byaf#] [3] in the late
sixties. The states of a QBD process are described by twordiimeal random
variables called a phase and a level [4—6] and transitioag)B8D process are only
possible between adjacent levels. It is observed that QBDasses create a useful
framework for the performability analysis of many problemselecommunica-
tions and computer networks [1,7-15].

There are two main methods to find the steady state probebiftr QBD pro-
cesses on semi-infinite strips. The matrix-geometric [4i{hoé (which is widely
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used to analyze queues [7,16]) and its variants [6,12] areenigal approaches
to recursively compute the rate matrix (the minimal nontigganatrix solution)
of the matrix quadratic equation. The spectral expansiothatkis based on the
eigenvalues and eigenvectors of the characteristic mptiynomial [5,17]. It is
confirmed by a number of works that the spectral expansiohodes better than
the matrix geometric one from some aspects [5,18,19]. lbiklmemphasizing that
there have been no works which consider or develop an agorior queues in-
volving zero-eigenvalues (see [5,8,20-22] for more dethilthis paper, we deal
with an algorithm to find the eigenvalues of the matrix quédraquation of a
tridiagonal form based on the sign variations of the Sturqusaces. We consider
a case where multiple zero-eigenvalues are involved.

The example for investigation is the M/M/c/N+c feedback ugigvith constant re-
trial rate, which is solved by the matrix-geometric methad1]. However, the
existing approaches face the state explosion problem wiegueueing capacity
(N + ¢) is large. We prove that the number of zero-eigenvalues ettraracter-
istic matrix polynomial associated with the balance equmis | (N + ¢ + 2)/2].
As consequence, the remaining eigenvalues inside theiuigé can be computed
in a quick manner based on the Sturm sequences. It is worthasging that the
algorithm of [22] should be slightly modified in order to detene the remaining
eigenvalues of the characteristic matrix polynomial iegtte unit circle. Numerical
results are presented to compare computation times whechesaded by the matrix
geometric method, the pure spectral expansion approaeméthod proposed by
Naoumov et al. and the new algorithm to calculate the stetatg probabilities.
The comparison clearly demonstrates the advantage of thealgorithm on the
computation of the steady state probabilities of the queitle avlarge queueing
capacity.

The rest of this paper is organized as follows. In Sectiom@ ,M/M/c/N+c feed-
back queue with constant retrial rate is described. A madorgtical result con-
cerning the number of zero-eigenvalues of the charadtemsatrix polynomial
associated with the balance equation and the modified #igoiio calculate the
eigenvalues is presented in Section 3. Numerical resudtsl@monstrated in Sec-
tion 4. Finally, Section 5 concludes the paper.

2 A system description

The M/M/c/N+c feedback queue with constant retrial rate fdsnited waiting
position of sizeV andc homogeneous servers. Service times are exponentially dis-
tributed with parameter. External customers arrive according to a Poisson process
with rate \. Upon the arrival, an external customer

e either is served if there is a free server,



e Or occupies a waiting position if allservers are busy and there is a free waiting
position,

e or is blocked and is forced to leave the system forever it aérvers are busy
and waiting positions are occupied.

When one of the servers becomes free, the customer in thevAishg position
immediately starts getting served.

A customer who leaves a system after service either joinegtreal group (orbit)

for another service with probability (0 < ¢ < 1) or leave the system forever
with probabilityp = 1 — ¢. Customers in the retrial group request service with
constant retrial rater, which is independent of the number of customers in the
retrial group [1]. Note that a customer in the orbit can etiterservice facility at
the retrial instant only when there are idle servers.

The system is ergodic if the following expression holds. (&)
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The system is completely described by two random varialilgs.(0 < I(t) <

¢ + N) is a random variable to denote the number of customers irsyeem
(being served by servers or waiting in the waiting positjon&t) (J(t) > 0)

is a random variable to represent the number of customerseindtrial group.

Y = {I(t), J(t)} is a Continuous Time Markov Chain (CTMC) with a state space
{0,1,...,¢c+ N} x {0,1,...}. We denote the steady state probabilitieshy =

Jim Prob(I(t) =1, J(t) = j), and introducev; = (mg ;, ..., Tetn,j)-

The evolution ofY” is driven by the following transitions.

(@) A,(i, k) denotes a transition rate from statej) to state(k,j) (0 < i,k <
n=c+ N;j=0,1,...). These transitions happen due to either the arrival of
an external customer or the departure of a customer fromysters. A, (i, k)
does not depend gj) so we can write

ppmin(i,c) ifk=i—1andi > 1
A;(i k) = A(i, k) = A if b=i+1 - (2
0 otherwise
(b) B;(i, k) represents one step upward transition from statg to state(k, j +

1)(0<ik<n=c+N;j=0,1,...). These transitions are due to customers
who join the retrial group.



B;(i, k) is independent of, thus it is valid

gumin(i,c) ifk=i—1andi>1

0 otherwise

B;(i, k) = B(i, k) = @)

(c) C;(i, k) is the transition rate from state, j) to state(k,j — 1) (0 < i,k <
n =c+ N;j = 1,...). These transitions are initiated by requests from the
retrial group.C; (7, k) does not depend ofy so we can write

. ‘ o ifk=i+1andi<c
Cj(la k) = C(Z> k) = . (4)
0 otherwise
[0 x 0 0 0 o] [0 0 0 0o 0o o]
pp0 A 0 0 0 au0 0 0 0 0
0 2 0 A 0 0 0 2 0 0 0 0
A= iQ=5=| " :
00 20 XA 0 00 20 0 0
00 0 20 X\ 00 0 2u0 0
00 0 0 2pu0 00 0 0 2gu0
[000000]
000000
000000O0
QQZC:
00000O0
000000O0
_000000_
[—x—0 A 0 0 0 o ]
pu “A—pu—0o A 0 0 0
0 2pp —A—2u A 0 0
Qi = ;
0 0 2pp —A—=2u A 0
0 0 0 2pp —A—=2u A
L 0 0 0 0 2pp —2p |
_(7)\70)50 Az + oz? 0 0 0 0 ]
qu+pur (=X —p—o)r Az +ozx?> 0 0 0
0 2qu + 2pux (=X —2u)z Az 0 0
Qz) =
0 0 2qu + 2ppzr (=X —2p)z Az 0
0 0 0 2qu + 2ppzr (=X —2p)T Az
| 0 0 0 0 2qp + 2ppx —2px |
Table 1

Matrices forc = 2 and N = 3

A(i, k), B(i, k) andC(i, k) are the elements of, B andC matrices, respectively.
We introduce diagonal matricgs*, D? and D¢. The diagonal elements are the



sum of the elements in the row df, B andC'. The infinitesimal generator matrix

of Y can be written as follows:

A Qo O

Q2 @1 Qo O

0 @ @i Q O

0 0 @ @1 @Q O

()

wheredyp = A— DA — DB Qy=B,Q, = A— D*— DP — D% andQ, = C.

The forms of the matrices are illustrated in Table 1.

3 An efficient computation algorithm

3.1 The number of zero-eigenvalues

Forj > 1, the balance equations is written as follows:

Vi_1Qo + v;Q1 +v31Q2 =0 (7 > 1).

(6)

Q(x) = Qy + Q1x + Q2z* is defined as the characteristic matrix polynomial asso-
ciated with equations (6). In the present pap#r) is a tridiagonal matrix

9,0(x) go1(x) 0 0 0
qo0(®) qi(x) o) ... 0 0
0 q1(x) g22(x) g22(x) 0
Qlz)=| . . .
0 0 In—-1,n—-2(%) Gn-1,n—1() Gn-1,n(x)
|0 0 e 0 dnn—1(x)
where

(7)



Qoo(z) =—(A+ o)z,
¢ii—1(z) = qumin(i, ¢) + pumin(i, c)x (1=1,...,n),
¢ii(x) ==\ + pmin(i,c) + C(i,i + 1))z (i=1,...,n—1),
Gii1(z)=Mv + C(i,i + 1)2? (1=0,...,n—1),
Gnn (1) = —cpx

The steady state probabilities are closely related to trenealue-eigenvector pairs
(xi, ;) of Q(z), which satisfyyQ(z) = 0 anddet[Q(z)] = 0 (c.f. [5,23]). If the
system is ergodic (which is so when inequation (1) holdgntthe number of
eigenvalues of the characteristic polynontl:) with a degree of. + 1, which
are strictly inside the unit disk, has to bet 1 (see the proof in [23]). So we can
write

\Z Z&il’g’/% (j > O)a (8)
i=0

wherez; are the eigenvalues inside the unit circle. Coefficieptsan be determined
from the balance equation for level= 0 and the normalization equation.

Theorem 1 The number of zero-eigenvaluesi@fr) is [ (n + 2)/2].

Proof. We provide a proof with mathematical induction. L&x(x)]..,
a submatrix formed by the first + 1 rows and columns of)(z). It is easy to
verify thatdet[Q(z)](01; = 0 has one zero-root antkt[Q(x)](0,1,2y = 0 has two
zero-roots.

.....

.....

3.2 A computation algorithm

Following [22],%Q(z) = 0 can be written as,



0="10q0,0() + V1¢10(2),
0=1i-1¢i—1,i(x) + ¥iq;i(x) + Yir1qip1,(x), i=1,...,n—1
0= 77Z)n—1qn—1,n(x) + ¢nqn,n(‘r>7

wherey = {1, ..., ¥n}

We sety, = 1 andq,,+1,, = 1 + z, therefore

U1 () = —qo0(x)/q10(2),
Yig1(z)=— Vil)gii(x) + ¢.z‘—1($)q,»_17,»(x)
qz+1,z($>

i=1,...,n 9)

It is proved by [22] that the sequen€e;(x),i = 0,...,n+ 1} associated with the
characteristic matrix polynomial of tridiagonal form is aun sequence within a
given interval if for any fixede within this intervalyy(z) = 1 and;(z) = 0, =
1,...,nimpliesy;_1(x)Y;11(z) < 0. Furthermore, the number of sign variations
is defined by [22]

nsv(x) = #{Y;(x)hi1(x) < 0,0 <i<n}+ #{i(x) =0,0 <i<n}. (10)

Grassmann [22] has reported a divide-and-conquer proeddalledget x in Al-
gorithm 1) to find eigenvalues inside the unit circle for QBB gesses with the
characteristic polynomial matrix of a tridiagonal form figy are all non-zero.
Grassmann’s algorithm discards any interya, x| if nsv(x;) = nsv(xq). To
compute the eigenvalues in intervdl, 1), it is proposed to start the algorithm
with get x( 0, n+1, 1, 0) (c.f.: [22]). Itis also mentioned [22] that handling zero-
eigenvalues will be developed in future.

If the QBD process of the M/M/c/N+c feedback queue with canstetrial rate is
ergodic, then the number of eigenvalues inside the uniteciecn + 1. We have
proved that the number of zero-eigenvalue$(is + 2)/2|. In order to deal with
zero-eigenvalues, two modifications are needed.

¢ the modified function for the number of sign variations is edi as follows:

mnsv(x) = #{;(z)i41(x) < 0,0 < i < n}. (11)

The new function for the number of sign variations should jyeliad inside the
get x function as well.

¢ the modified initialization can be applied as illustratedAligorithm 2 to find
the remaining non-zero eigenvalues@fr). Note thatmnsv(e) = n — [n/2]
because the number of other eigenvalues inside the urli¢ &re — [n/2].



Algorithm 1 get x procedure
{Xeg is the vector of eigenvalugq¢ is the required accuragy
PROCEDURE getxf;, nxy, x2, nxs)

if nt; == nx, then
Return
end if
if 2o —x; < ethen
if ne;y == nay + 1 then
Xegnm =
end if
Return
end if

_ x1+4T2
rT="7

nx = nsv(x)

Call getx(, nxy, x, nx)

Call getx{, nx, x9, nxs)

END OF PROCEDURE getx

Note that for each eigenvalue, the corresponding eigeorveein be determined
with equation (9), then the steady state probabilities aaodmputed.

4 Numerical results

In this Section, we illustrate the efficiency of the compatatmethod for large
gueueing capacity vs other methods (direct computatioh@gigenvalues of the
characteristic matrix polynomial and the matrix geomatrgthod). As already an-
alyzed in [17], both the spectral expansion and the mateixrgetric method have
the same complexity of solving the unknowns after the comatput of eigenvalue-
eigenvectors and the rate matrix. Therefore, we comparedh®utational time
needed to obtain the eigenvalues/eigenvectors (for the methhod and the di-
rect calculation of the eigenvalues) and the rate matrihéendase of the matrix-
geometric method. Four methods are compared in this se¢hieroriginal spec-
tral expansion method [23], the successive substitutiocgrure of the matrix-
geometric method [4] proposed by Kumar et al. [1] for the MezNi+c feedback
gueue with constant retrial rate, the variant of the magewometric method [12]
(which is considered as one of the best and latest improvenienthe original

matrix-geometric method) and the new algorithm.

For the numerical study, we choose the following parametérs:- 3, o = 2.0,

u = 1.0/c,p = 0.6, ¢ = 0.4. The accuracy is = 107!, This value is also
the stopping criteria for the matrix geometric approachsuks were produced
in a machine with Inté? Xeor®® E5410 2.33GHz processor. In Figure 1, we plot
the computation time versus the queueing capacéynd ). In the plots the GEO,



SPE, NAO and NEW denotes results obtained by successivatstiba procedure,
original spectral expansion, an improvement for the majarmetric method by
Naoumov et al. and the new method, respectively. It is olesetliat the matrix
geometric method (the successive substitution proceauwta @rocedure proposed
by Naoumov et al.) takes the smallest time to compute thelgtsate probabilities
whenn is smaller than 300. Note that the difference between Naeismoethod
and the successive substitution (SS) procedure is that$her&edure involves
a less computation effort (matrix multiplication, substran and addition) in one
iteration than Naoumov’s method. However, the convergafitbe SS procedure
is slower than the Naoumov’s method. Wheis small, the computation effort is
a dominant factor in the case of Naoumov’s method, so we caerueb that the
computation time is higher than the SS procedure in the plots

Forn < 50, the original spectral expansion method needs less tinrettteanew
method. The new method outperforms other methods for300, where the com-
putation time of the successive substitution procedurggita very high. The dif-
ference is more than one order of magnitude. It is worth neemg that the mem-
ory requirement of the new method is minimal (e.g., no neesldce matrices).

Algorithm 2 Initialization to findn — |n/2| non-zero eigenvalues inside the unit
circle

{ e is the required accuragy

{Xeg is the vector of eigenvalues indexed frono n — [n/2]}

T, =€
Ty :=1—¢€

nxy := mnsv(xy)

nxe := mnsv(xs)

Call getx1, nxy, 2, nxs)

5 Conclusions

We have proved that the number of zero-eigenvalues of theactesistic matrix
polynomial associated with the balance equatiopni§ + ¢ + 2)/2]. We present
an approach to deal with the multiple zero-eigenvalues.ohsequence, the steady
state probabilities are determined in an efficient way ferMiM/c/N+c feedback
gueue with a large queueing capacity.

Numerical results are presented to compare computatiagstimhich are needed
by the matrix geometric method, the pure spectral exparagpnoach, Naoumov’s
method and the new algorithm to calculate the steady statepilities. The com-

parison clearly demonstrates the advantage of the newithigoon the computa-

tion of the steady probability of the queue with large quegaiapacity.
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