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Abstract. This paper suggests new queuing models, in the Markovian
framework, which can tackle the presence of burstiness in the traffic and
autocorrelations among the inter-arrival times of packets in the perfor-
mance evaluation of next generation networks. These models are essen-
tially based on certain generalizations of the Quasi Birth-Death (QBD)
processes. Efficient steady state solution of these new queuing models,
along with some illustrative applications, is presented. The proposed
models and their further evolutions have the potential to be useful tools
for the performance evaluation of modern telecommunication networks.

1 Introduction

The concept of Quasi Birth-Death (QBD) processes, as a generalization of the
classical birth and death processes (e. g. the M/M/1 queue) was first introduced
in the late sixties by [55] and [26]. A QBD process is a Markov process on a two-
dimensional lattice, finite in one dimension (finite or infinite in the other). A
state is described by two integer-valued random variables: the one in the finite
dimension is the phase and the other is the level [37, 39, 41]. Transitions in a
QBD process are possible within the same level or between adjacent levels. It
is observed that QBD processes create a useful framework for the performabil-
ity analysis pertaining to many problems occurring in telecommunications and
computer networks [4, 8, 18, 20, 23, 36, 40, 42, 45, 56, 57].

In a QBD process, if the nonzero jumps in levels are not accompanied with
changes in a phase, then these processes can be known as Markov modulated
Birth and Death processes. The large or infinite number of states involved makes
the solution of these models nontrivial. There are several methods of solving
these models, either the whole class of models or some of the subclasses.

Seelen has analyzed a Ph/Ph/c queue in the QBD frame work [46]. Seelen’s
method is an approximate one where the Markov chain is first truncated to a



finite state Markov chain. By exploiting the structure an efficient iterative solu-
tion algorithm can be applied. The second method is to reduce the infinite-states
problem to a linear equation involving vector generating function and some un-
known probabilities. The latter are then determined with the aid of the singu-
larities of the coefficient matrix. A comprehensive treatment of that approach,
in the context of a discretetime process with a general M/G/1 type structure, is
presented in [30]. The third way of solving these models is the well known matrix
geometric method, first proposed by Evans [26, 41]. In this method a nonlinear
matrix equation is first formed from the system parameters and the minimal non-
negative solution R of this equation is computed by an iterative method. The
invariant vector is then expressed in terms of the powers of R. Neuts claims this
method has a probabilistic interpretation for the steps in computation. However,
this method suffers from the fact that there is no way of knowing how many it-
erations are needed to compute R to a given accuracy. It can also be shown that
for certain parameter values the computation requirements are uncertain and
formidably large. The fourth method is known as spectral expansion method [5,
6, 39]. It is based on expressing the invariant vector of the process in terms of
eigenvalues and left eigenvectors of a certain matrix polynomial. The generating
function approach and the spectral expansion method are closely related. How-
ever, the latter computes steady state probabilities directly using an algebraic
expansion while the former provides them through a transform.

It is confirmed by a number of works that the spectral expansion method
is better than the matrix geometric method in a number of aspects [5, 32, 33,
39]. It is observed that the spectral expansion method is proved to be a mature
technique for the performance analysis of various problems [5–17, 20–25, 27, 28,
31, 32, 38, 39, 49–51, 53, 54, 52, 58].

Due to heterogeneous requirements concerning network technology and ser-
vices that next generation networks (NGN) [34] are required to support, the issue
of modeling the packet traffic and nodes in modern communication networks has
become complicated because of the existence of burstiness (time varying arrival
or service rates, arrivals or services of packets in batches) and important corre-
lations among inter-arrival times [44]. In addition the traffic arriving at a node
is often the superposition of traffic from a number of sources (homogeneous
or heterogeneous), which further complicates the analysis of the system. Self-
similar traffic models such as the FBM [43] can represent both burstiness and
auto-correlations, but they are not analytically tractable in a queuing context.

The CPP3, defined in [19] and employed in [14, 29] and the
∑K
k=1 CPPk (su-

perposition of K independent CPPs) traffic models often give a good represen-
tation of the burstiness (batch size distribution) of the traffic from one or more
sources (along with mathematical tractability), but not the auto-correlations of
the inter-arrival times (of batches) observed in real traffic. The usefulness and
applicability of these models has been validated by measurements for example
in [8, 23].

3 Throughout this paper when we refer to CPP we mean the compound Poison process
with independent and geometric batch-sizes, this is for convenience of referring.



Recently, we have proposed two new queuing models, the
MM

∑K
k=1 CPPk/GE/c/L G-queue [10] with homogenous servers (the

Sigma queue) and with heterogeneous servers (the HetSigma queue [8]). We
have also developed some transformations which, when applied to the steady
state balance equations, result in QBD-M type computable form. These
models do provide a large flexibility to accommodate geometric as well as
non-geometric batch sizes in both arrivals and services, and hence are capable
of emerging as generalized Markovian node models. In these queues, the GE
service time distribution is widely used, which is motivated by the fact that
only the mean and variance may be computed reliably from the measurements.
Therefore a choice of the distributions which implies least bias is that of the GE
distribution [35, 47]. The parameters of the GE distribution are estimated from
the real traffic trace in our numerical study. Moreover, the accommodation of
large or unbounded batch-sizes, with efficient steady state queuing solutions, is a
definitive advantage of our models besides the ability to accommodate negative
customers.

In this paper, we present the spectral expansion methodology for the QBM-M
queue. Then we give the short overview of the HetSigma queuing model, efficient
computation of its steady state performance, possible extensions, along with
some non-trivial applications to the performance evaluation of some problems
in telecommunications networks.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the important stochastic processes and distributions used in the new queuing
model. It also presents the spectral expansion for QBD-M processes. The Het-
Sigma queue is described in Section 3. The required steady state solution and
an application are given in Sections 4 and 5, respectively. Some extensions are
discussed in Section 6. Future directions to this research and conclusions are
dealt in Section 7.

2 A Brief Overview of the Stochastic Processes and
Distributions Involved

2.1 The QBD-M process

The QBD-M (Quasi Simultaneous-Bounded-Multiple Births and Simultaneous-
Bounded-Multiple Deaths) process is a two-dimensional Markov process on a
finite or semi-infinite lattice strip [5, 6, 39]. The state at any time t is denoted
by two integer valued random variables, I(t) and J(t). I(t) takes a finite set of
values (phases) {1, 2, . . . , N}, and J(t) takes a set of values (levels) {0, 1, . . . , L},
where L can be finite or infinite. We assume that the Markov process, Y if L is
infinite, and Y if L is finite, is denoted by {[I(t), J(t)]; t ≤ 0} and is irreducible.

The possible transitions underlying this Markov process are given by the
following transition rate matrices, each of size N ×N :

Aj : purely lateral (phase) transitions – Aj(i, k) is the transition rate from state
(i, j) to state (k, j) (i 6= k; 0 ≤ i, k ≤ N ; j = 0, 1, . . . , L).



Bj,j+s : bounded s−step upward transitions – Bj,j+s(i, k) is the transition rate from
the state (i, j) to state (k, j+s) (0 ≤ i, k ≤ N ; 1 ≤ s ≤ y1; j = 0, 1, . . . , L−1).
Bj,j+s = 0 if j + s > L.

Cj,j−s : bounded s−step downward transitions – Cj,j−s(i, k) is the transition rate
from state (i, j) to state (k, j − s) (0 ≤ i, k ≤ N ; 1 ≤ s ≤ y2; j = 1, 2, . . . , L).
Cj,j−s = 0 if j − s < 0.

There is a threshold T such that, Aj = A (j ≥ T ), Bj,j+s = Bs (j ≥
T − y1), Cj,j−s = Cs (j ≥ T ), thus these matrices are independent of j.

The spectral expansion solution of the QBD-M process is based on the ob-
servation that the steady state balance equations can be written in the form

y∑
k=0

vj+kQk = 0 (T − y1 ≤ j ≤ L− y − 1; y = y1 + y2), (1)

where the coefficient matrices Qk can be obtained from system parameters, fol-
lowing the methodology in [6, 8, 14].

Therefore, when L is finite, the probability invariant vector vj is given by [5,
6, 39]

vj =

y1N∑
l=1

alψlλ
j−T+y1
l +

y2N∑
l=1

blγlξ
L−1−j
l (T − y1 ≤ j ≤ L− 1), (2)

where (λk, ψk) are the left-eigenvalue and eigenvector pairs of the character-

istic, quadratic matrix-polynomial Q(l) =

y∑
k=0

Qkλ
k pertaining to the Markov

process Y , and (ξk, γk) are the left-eigenvalue and eigenvector pairs of the char-

acteristic, quadratic matrix polynomial Q(l) =

y∑
k=0

Qy−kλ
k. al and bl are the

constants, which can be determined with the aid of the state-dependent balance
equations [5].

When L is infinite (unbounded) and the ergodicity condition is satisfied, then
the above solution reduces to

vj =

Ny1∑
l=1

alψlλ
j−T+y1
l (j = T − y1, T − y1 + 1, . . .) . (3)

2.2 The QBD-U process

In a QBD-M process, if y1 or y2 is unbounded, it becomes a QBD-U
process (Quasi Simultaneous-Unbounded-Multiple Births and Simultaneous-
Unbounded-Multiple Deaths). QBD-U processes are very useful in performance
modeling of NGN as we shall see in the rest of this paper. Only in certain spe-
cial cases of the QBD-U processes, there have been efficient, exact steady state
solution methods [14, 15].



2.3 The Generalized Exponential (GE) distribution

Excellent treatment of the GE distribution, its usefulness and applications
are available in [35, 47]. The GE distribution is versatile, possessing pseudo-
memoryless properties. This makes the solution of many queuing systems and
networks employing GE distribution analytically tractable [35]. The GE distri-
bution is given in the following form:

F (t) = P (W ≤ t) = 1− (1− φ)e−µt (t ≥ 0), (4)

where W is the GE random variable with parameters µ, φ. Thus, the GE pa-
rameter estimation can be obtained by 1/ν, the mean, and C2

coeff , the squared
coefficient of variation of the inter-event time of the sample as

1− φ = 2/(C2
coeff + 1) ; µ = ν(1− φ) . (5)

For C2
coeff > 1, the GE model is a mixed-type probability distribution, e.g.

Hyperexponential-2 having the same mean and coefficient of variation, and with
one of the two phases having zero service time, or, a bulk type distribution with
an underlying counting process equivalent to a Batch (or Bulk) Poisson Process
(BPP) with batch-arrival rate µ and geometrically distributed batch size with
mean 1/(1−φ) and SCV (C2

coeff −1)/(1 +C2
coeff ) (c.f. [47]). It can be observed

that there is an infinite family of BPPs with the same GE-type inter-event
time distribution. It is shown that, among them, the BPP with geometrically
distributed bulk sizes (referred as the CPP through this paper) is the only one
that constitutes a renewal process (the zero inter-event times within a bulk/batch
are independent if the bulk size distribution is geometric [35]).

The choice of the GE distribution is often motivated by the fact that mea-
surements of actual inter-arrival or service times may be generally limited in
accuracy, and so only a few parameters (for example the mean and variance)
can be computed reliably. Typically, when only the mean and variance can be
relied upon, a choice of a distribution which implies least bias (bias means, intro-
duction of arbitrary and false assumptions) is that of GE-type distribution [35,
47].

2.4 The CPP, MMCPP and MM
∑K

k=1CPPk processes

Though BPP and CPP are synonymous, when we refer to a CPP in this paper,
we actually refer to a CPP with independent and geometric batch-sizes, for
convenience of referring.

When the parameters of a CPP are modulated by an external Markov chain,
we obtain the MMCPP (Markov modulated CPP) process. Let the generator
matrix of the modulating CTMC (continuous time Markov chain) be given by,

Q =


−q1 q1,2 . . . q1,N
q2,1 −q2 . . . q2,N

...
...

. . .
...

qN,1 qN,2 . . . −qN

 ,



where qi,k(i 6= k) is the instantaneous transition rate from phase i to phase k,

qi,i = 0 ∀i, and qi =
∑N
j=1 qi,j , (i = 1, . . . , N). Let r = (r1, r2, . . . , rN ) be the

vector of equilibrium probabilities of the modulating phases. Then, r is uniquely
determined by the equations, rQ = 0; reN = 1, where eN stands for the
column vector with N elements, each of which is unity. In the MMCPP arrival
process, the inter-arrival time distribution of customers, in phase i, is GE with
parameters (σi, θi).

The MM
∑K
k=1 CPPk is obtained by Markov modulation of the parameters of

the superposition of K independent CPP streams. That is, all the K independent
CPPs are jointly Markov modulated.

3 The HetSigma Queuing Model

We introduce the terminology HetSigma to denote the MM

K∑
k=1

CPPk/GE/c/L

G-queue with heterogenous servers. In the queue, the effective customer arrival
process is MM

∑K
k=1 CPPk in which the superposed K CPPs are independent

and their parameters are jointly Markov modulated. The same modulating pro-
cess also modulates the parameters of the service time and those of the CPP of
the negative customers, as we shall see below in detail.

3.1 The arrival process

The arrival and service processes are modulated by the same continuous time,
irreducible Markov phase process with N states. Let Q be the generator ma-
trix of this process. The arrival process, in any given modulating phase, is the
superposition of K independent CPP arrival streams of customers (or packets,
in packet-switched networks) and an independent CPP of negative customers.
Customers of different arrival streams are not distinguishable. The parameters
of the GE inter-arrival time distribution of the kth (1 ≤ k ≤ K) customer ar-
rival stream, in modulating phase i, are (σi,k, θi,k), and (ρi, δi) are those of the
negative customers. That is, the inter-arrival time probability distribution func-
tion is 1 − (1 − θi,k)e−σi,kt, in phase i, for the kth stream of customers, and
1 − (1 − δi)e

−ρit for the negative customers. Thus, in a given phase, all the
K + 1 arrival point-processes are Compound Poisson, with batches arriving at
each point having geometric size distribution. Specifically, in phase i, the prob-
ability that a batch is of size s is (1− θi,k)θs−1i,k for the kth stream of customers,

and (1− δi)δs−1i for the negative customers. Strictly during a given phase i, the

effective arrival process is
∑K
k=1 CPPi,k, where CPPi,k is the kth CPP arrival

process in the modulating phase i.

Let σi,., σi,. be the average arrival rate of customer batches and customers in
phase i respectively. Let σ, σ be the overall average arrival rate of batches and



customers respectively. Then, it can be written

σi,. =

K∑
k=1

σi,k, σi,. =

K∑
k=1

σi,k
(1− θi,k)

, σ =

N∑
i=1

σi,.ri, σ =

N∑
i=1

σi,.ri (6)

3.2 The GE multi-server

The HetSigma queue is the extension of the Sigma queue in [10], where the
service facility has c heterogeneous servers in parallel. The servers are num-
bered just as their service priorities, i.e. 1, 2, . . . , c, without loss of general-
ity. The GE-distributed service time parameters of server n, in phase i, are
µi,n, φi,n (n = 1, 2, . . . , c). A number of scheduling policies can be thought of.
Though, in principle, a number of scheduling policies can indeed be modeled by
following our methodology, the one that we have adopted in this paper, for illus-
tration and detailed study, is as follows. A set of service priorities is chosen by
giving each server a unique service priority, 1 is the highest and c is the lowest.
This set can be chosen arbitrarily from the c! different possible ways. However,
the impact of choosing service priorities can be very high on the performance
measures, whose study is not in the scope of this paper. The optimal allocation
of service priorities can be an interesting research item for investigation.

The service discipline is FCFS (First Come First Scheduled, for service) and
each server serves at most one positive customer at any given time. Customers,
on their completion of service, leave the system. When the number of customers
in the system, j, (including those in service if any) is ≥ c, then only c customers
are served with the rest (j − c) waiting for service. When j < c, only the first
j servers, (i.e., servers numbered 1, 2, . . . , j), are occupied and the rest are idle.
This is made possible by what is known as customer switching. Thus, when
server n becomes idle, an awaiting customer would be taken up for service.
If there is no awaiting customer, then a customer that is being served by the
lowest possible priority server (i.e., among servers (c, c− 1, . . . , n+ 1)) switches
to server n. In such a switching, the (batch) service time is governed by either
resume or repeat with resampling, thus preserving the Markovian property. The
switching is instantaneous or the switching time is treated negligible. Negative
customers neither wait in the queue, nor are served.

The operation of the GE server is similar to that described above in the Sigma
case [10]. The batch size associated with a service completion is bounded by one
more than the number of customers waiting to commence service at the departure
instant. When c ≤ j < L + 1, the maximum batch size at a departure instant
obviously is j − c+ 1, only one server being able to complete a service period at
any one instant under the assumption of exponentially distributed batch-service
times. Thus, in phase i, the probability that a departing batch is of size s can

be shown as,
∑c
n=1

µi,n(1−φi,n)φ
s−1
i,n

µi.
for 1 ≤ s ≤ j − c and

∑c
n=1

µi,nφ
j−c
i,n

µi.
for

s = j − c + 1, where µi. =
∑c
n=1 µi,n. However, when 1 ≤ j ≤ c, the departing

batch has size 1 since each customer is already engaged by a server and there
are no customers waiting to commence service.



3.3 Negative customer semantics

A negative customer removes a positive customer in the queue, according to a
specified killing discipline. A number of different killing disciplines are indeed
possible, suitable in different contexts.

The RCE killing discipline We consider here a variant of the RCE killing
discipline (removal of customers from the end of the queue), where the most
recent positive arrival is removed, but which does not allow a customer actu-
ally in service to be removed: a negative customer that arrives when there are
no positive customers waiting to start service has no effect. We may say that
customers in service are immune to negative customers or that the service itself
is immune servicing. Such a killing discipline is suitable for modeling e.g. load
balancing, where work is transferred from overloaded queues but never work,
that is, actually in progress.

When a batch of negative customers of size l (1 ≤ l < j−c) arrives, l positive
customers are removed from the end of the queue leaving the remaining j − l
positive customers in the system. If l ≥ j − c ≥ 1, then j − c positive customers
are removed, leaving none waiting to commence service (queue length becomes
c). If j ≤ c, the negative arrivals have no effect since all customers are in service.

ρi, the average arrival rate of negative customers in phase i and ρ, the overall
average arrival rate of negative customers are given by

ρi =
ρi

1− δi
; ρ =

N∑
i=1

riρi. (7)

Other killing disciplines Apart from the RCE with immune servicing, there
are two other popular killing disciplines, the RCE-inimmune servicing and the
RCH killing disciplines. The applicability of the killing disciplines rather de-
pends on the situation and the purpose, and hence depending on these, many
more killing disciplines are theoretically possible. Our methodology can easily
be extended to many other killing disciplines also, this is explained briefly in
this section.

The RCE-inimmune servicing- In this, the negative customer removes the most
recent positive arrival regardless of whether it is in service or waiting. This
is the traditional killing discipline suited to the modeling of killing signals in
speculative parallelism. It can also be used to model cell losses caused by the
arrival of a corrupted cell or one encountering a full buffer, when the preceding
cells of a packet would be discarded.

The RCH discipline- Another popular killing discipline is the RCH (Removal of
customers from the head of the queue) killing discipline. This is appropriate for
modeling server breakdowns, where a customer in service will be lost for sure and
may be also a portion of queue of waiting customers. The RCH killing discipline
is already applied to the case of the MM CPP/GE/c/1 G-queue in [14].



3.4 Condition for stability

When L is finite, the system is ergodic since the representing CTMC is irre-
ducible. Otherwise, i.e. when the queuing capacity is unbounded, the overall
average departure rate increases with the queue length, and its maximum (the
overall average departure rate when the queue length tends to ∞) can be deter-
mined as,

µ =

c∑
n=1

N∑
i=1

riµi,n
1− φi,n

. (8)

Hence, the necessary and sufficient condition for the existence of steady state
probabilities is, σ < ρ+ µ.

3.5 The Markov model

The state of the system at any time t can be specified completely by two integer-
valued random variables, I(t) and J(t). I(t) varies from 1 to N , representing the
phase of the modulating Markov chain, and 0 ≤ J(t) < L + 1 represents the
number of positive customers in the system at time t, including any in service.
The system is now modeled by a CTMC Y (Y if L is infinite), on a rectangu-
lar lattice strip. Let I(t), the phase, vary in the horizontal direction and J(t),
the queue length or level, in the vertical direction. We denote the steady state
probabilities by {pi,j}, where pi,j = limt→∞ Prob(I(t) = i, J(t) = j), and let
vj = (p1,j , . . . , pN,j). The process Y evolves due to the following instantaneous
transition rates:

(a) qi,k – purely lateral transition rate – from state (i, j) to state (k, j), for all
j ≥ 0 and 1 ≤ i, k ≤ N (i 6= k), caused by a phase transition in the
modulating Markov process (qi,i = 0);

(b) Bi,j,j+s – s-step upward transition rate – from state (i, j) to state (i, j + s),
caused by a new batch arrival of size s of positive customers in phase i. For
a given j, s can be seen as bounded when L is finite and unbounded when
L is infinite;

(c) Ci,j,j−s – s-step downward transition rate – from state (i, j) to state (i, j−s),
(j − s ≥ c + 1) , caused by either a batch service completion of size s or a
batch arrival of negative customers of size s, in phase i;

(d) Ci,c+s,c – s-step downward transition rate – from state (i, c + s) to state
(i, c), caused by a batch arrival of negative customers of size ≥ s or a batch
service completion of size s (1 ≤ s ≤ L− c), in phase i;

(e) Ci,c−1+s,c−1 – s-step downward transition rate, from state (i, c − 1 + s) to
state (i, c− 1), caused by a batch departure of size s (1 ≤ s ≤ L− c+ 1), in
phase i;

(f) Ci,j+1,j – 1-step downward transition rate, from state (i, j+1) to state (i, j),
(c ≥ 2 ; 0 ≤ j ≤ c− 2), caused by a single departure, in phase i.

Notice that Y and Y (i.e., when L =∞) are essentially QBD-U processes.



3.6 The transition rate matrices

The transition rate matrices and parameters can be obtained as [8].

Bi,j−s,j =

K∑
k=1

(1− θi,k)θs−1i,k σi,k (∀i ; 0 ≤ j − s ≤ L− 2 ; j − s < j < L) ;

Bi,j,L =

K∑
k=1

∞∑
s=L−j

(1− θi,k)θs−1i,k σi,k =

K∑
k=1

θL−j−1i,k σi,k (∀i ; j ≤ L− 1) ;

Ci,j+s,j =

c∑
n=1

µi,n(1− φi,n)φs−1i,n + (1− δi)δs−1i ρi

(∀i ; c+ 1 ≤ j ≤ L− 1 ; 1 ≤ s ≤ L− j)

=
c∑

n=1

µi,n(1− φi,n)φs−1i,n + δs−1i ρi (∀i ; j = c ; 1 ≤ s ≤ L− c)

=

c∑
n=1

φs−1i,n µi,n (∀i ; j = c− 1 ; 1 ≤ s ≤ L− c+ 1)

= 0 (∀i ; c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s ≥ 2)

=

j+1∑
n=1

µi,n (∀i ; c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s = 1) ;

Define,

Bj−s,j = Diag [B0,j−s,j , B1,j−s,j , . . . , BN,j−s,j ] (j − s < j ≤ L) ;

Bs = Bj−s,j (j < L)

= Diag

[
K∑
k=1

σ0,k(1− θ0,k)θs−10,k , . . . ,

K∑
k=1

σN,k(1− θN,k)θs−1N,k

]
;

Σk = Diag [σ0,k, σ1,k, . . . , σN,k] (k = 1, 2, . . . ,K) ;

Θk = Diag [θ0,k, θ1,k, . . . , θN,k] (k = 1, 2, . . . ,K) ;

Σ =

K∑
k=1

Σk ;

R = Diag [ρ0, ρ1, . . . , ρN ] ; ∆ = Diag [δ0, δ1, . . . , δN ] ;

Mn = Diag [µ0,n, µ1,n, . . . , µN,n] (n = 1, 2, . . . , c) ;

Φn = Diag [φ0,n, φ1,n, . . . , φN,n] (n = 1, 2, . . . , c) ;



Cj =

j∑
n=1

Mn (1 ≤ j ≤ c) ;

=

c∑
n=1

Mn = C (j ≥ c) ;

Cj+s,j = Diag [C0,j+s,j , C1,j+s,j , . . . , CN,j+s,j ] ;

E = Diag(e
′

N ) .

Then, we get,

Bs =

K∑
k=1

Θs−1k (E −Θk)Σk ; B1 = B =

K∑
k=1

(E −Θk)Σk ;

BL−s,L =

K∑
k=1

Θs−1k Σk ;

Cj+s,j =

c∑
n=1

Mn(E − Φn)Φs−1n +R(E −∆)∆s−1

(c+ 1 ≤ j ≤ L− 1 ; s = 1, 2, . . . , L− j) ;

=

c∑
n=1

Mn(E − Φn)Φs−1n +R∆s−1 (j = c ; s = 1, 2, . . . , L− c) ;

=

c∑
n=1

MnΦ
s−1
n (j = c− 1 ; s = 1, 2, . . . , L− c+ 1) ;

= 0 (c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s ≥ 2) ;

= Cj+1 (c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s = 1) .

4 Steady State Solution

The method presented in this Section is done for sufficiently large L such that
L ≥ 2c+K+3. When L < 2c+K+3, then the Markov process Y can be solved
by traditional methods [48].

First, the steady state balance equations are obtained [8]. Let the term < j >
denote the vector balance equation for level j. A novel methodology is developed
to solve these equations exactly and efficiently. First these complicated equations
are transformed to a computable form by using mathematically oriented trans-
formations. The resulting transformed equations are of the QBD-M type and
hence can be solved.



Define the functions, FK,l (l = 1, 2, . . . ,K) and Hc,n (n = 1, 2, . . . , c) using
their properties and recursions as given below.

Fk,0 = E , Fk,k =

k∏
i=1

Θi (k = 1, 2, . . . ,K);

Fk,l = 0 (k = 1, 2, . . . ,K; l < 0) ; Fk,l = 0 (k = 1, 2, . . . ,K; l > k) ;

F1,0 = E ; F1,1 = Θ1 ;

Fk,l = Fk−1,l +ΘkFk−1,l−1 (2 ≤ k ≤ K , 1 ≤ l ≤ k − 1) ; (9)

Hm,0 = E , Hm,m =

m∏
i=1

Φi (m = 1, 2, . . . , c);

Hm,n = 0 (m = 1, 2, . . . , c; n < 0) ; Hm,n = 0 (m = 1, 2, . . . , c; n > m) ;

H1,0 = E ; H1,1 = Φ1 ;

Hm,n = Hm−1,n + ΦmHm−1,n−1 (2 ≤ m ≤ c , 1 ≤ n ≤ m− 1) . (10)

Please note E is the Identity matrix of size N ×N . The parameters Θi are
the same as in [8].

Transformation 1 Modify simultaneously the balance equations for lev-
els j (L− 2− c ≥ j ≥ c+K + 1), by the transformation:

< j >(1) ←− < j >+

K∑
l=1

(−1)l< j− l >FK,l(c+K + 1 ≤ j ≤ L− 2− c);

< j >(1) ←− < j > (j > L− 2− c or j < c+K + 1).

Apply the second transformation to the resulting equations.

Transformation 2 Modify simultaneously the balance equations for lev-
els j (L− 2− c ≥ j ≥ c+K + 1), by the transformation:

< j >(2) ←− < j >(1) +

c∑
n=1

(−1)n< j + n >(1)Hc,n

(c+K + 1 ≤ j ≤ L− 2− c);
< j >(2) ←− < j >(1) (j > L− 2− c or j < c+K + 1).

Apply the third and final transformation to the resulting equations.

Transformation 3 Modify simultaneously the balance equations for lev-
els j (L− 2− c ≥ j ≥ c+K + 1), by the transformation:

< j >(3) ←− < j >(2) −< j + 1 >(2)∆ (c+K + 1 ≤ j ≤ L− 2− c);
< j >(3) ←− < j >(2) (j > L− 2− c or j < c+K + 1) .



Theorem 1. With these above three transformations, the transformed balance
equation, < j >(3)’s, for the rows (c + K + 1 ≤ j ≤ L − 2 − c), will be of the
form:

vj−KQ0 + vj−K+1Q1 + . . .+ vj+c+1QK+c+1 = 0

(j = L− 2− c, L− 1− c, . . . , c+K + 1), (11)

where Q0, Q1, . . . , QK+c+1 are K+c+2 number of j-independent matrices which
can be derived algebraically from the system parameters

Proof. With Transformation 1, we get

< j >(1) ←− < j >+

K∑
l=1

(−1)l< j− l >FK,l. (12)

Applying Transformation 2 to the jth row, from the above (12), we get

< j >(2) ←− < j >(1) +

c∑
n=1

(−1)n< j + n >(1)Hc,n. (13)

Expanding the terms, equation (13) can be written as

< j >(2) ←− < j >+

K∑
l=1

(−1)l< j− l >FK,l

+

c∑
n=1

(−1)n

[
< j + n >+

K∑
l=1

(−1)l< j− l + n >FK,l

]
Hc,n.

(14)

Applying Transformation 3 to the jth row, and substituting from the above (14),
for < j + 1 >(2)

< j >(3) ←− < j >+

K∑
l=1

(−1)l< j− l >FK,l

+

c∑
n=1

(−1)n

[
< j + n >+

K∑
l=1

(−1)l< j− l + n >FK,l

]
Hc,n

−

[
< j + 1 >+

K∑
l=1

(−1)l< j + 1− l >FK,l

]
∆

−
c∑

n=1

(−1)n

[
< j + 1 + n >+

K∑
l=1

(−1)l< j + 1− l + n >FK,l

]
Hc,n∆.

(15)



Expanding and grouping the terms together, equation (15) can be written as

< j >(3) ←−
K∑

m=−c−1
< j−m >GK,c,m, (16)

where

GK,c,m =
∑

l−n=m
l=−1,...,K

n=0,...,c

(−1)l+n[FK,lHc,n + FK,l+1Hc,n∆]

=

c∑
n=0

(−1)m+2n[FK,m+n + FK,m+n+1∆]Hc,n

= (−1)m
c∑

n=0

[FK,m+n + FK,m+n+1∆]Hc,n (m = −1− c, . . . ,K).

(17)

The balance equations < j + c + 1 >,. . . ,< j >, . . ., < j− l >, . . .,
< j−K >, respectively are given by,

j+c+1∑
s=1

K∑
k=1

vj+c+1−sΘ
s−1
k (E −Θk)Σk + vj+c+1 [Q−Σ − Cj+c −R]

+

L−j−c−1∑
s=1

vj+c+1+sCj+c+1+s,j+c+1 = 0;

...

j∑
s=1

K∑
k=1

vj−sΘ
s−1
k (E −Θk)Σk + vj [Q−Σ − Cj −R]

+

L−j∑
s=1

vj+sCj+s,j = 0 ;

...

j−l∑
s=1

K∑
k=1

vj−l−sΘ
s−1
k (E −Θk)Σk + vj−l [Q−Σ − Cj−l −R]

+

L−j+l∑
s=1

vj−l+sCj−l+s,j−l = 0 ;

...



j−K∑
s=1

K∑
k=1

vj−K−sΘ
s−1
k (E −Θk)Σk + vj−K [Q−Σ − Cj−K −R]

+

L−j+K∑
s=1

vj−K+sCj−K+s,j−K = 0 .

Substituting or applying the above to (16), for the coefficients (QK−m) of
vj−m in < j >(3), we get

QK−m =

m−1∑
l=−1−c

[
K∑
n=1

Θm−l−1n (E −Θn)Σn

]
GK,c,l + [Q−Σ − Cj−m −R]GK,c,m

+

K∑
l=m+1

[Cj−m,j−l]GK,c,l

(m = j − L, . . . ,−2,−1, 0, . . . ,K, . . . , j) . (18)

Also, for m = −1 − c, 0, . . . ,K, substituting Cj−m = C and Cj−m,j−l =

Cj−l+l−m,j−l =

c∑
n=1

Mn(E − Φn)Φl−m−1n +R(E −∆)∆l−m−1 in (18), we get

QK−m =

m−1∑
l=−1−c

[
K∑
n=1

Θm−l−1n (E −Θn)Σn

]
GK,c,l + [Q−Σ − C −R]GK,c,m

+

K∑
l=m+1

[
c∑

n=1

Mn(E − Φn)Φl−m−1n +R(E −∆)∆l−m−1

]
GK,c,l

(m = −1− c, . . . , 0, . . . ,K). (19)

Using the above, the required Ql’s can be computed easily. Notice the above
Ql’s in equation (19) are j- independent. The other coefficients, i.e. those of
vj−K−1,vj−K−2, . . . ,v0 and of vj+c+2,vj+c+3, . . ., can be shown to be zero,
case wise, by using computer programs in Mathematica or other symbolic ma-
nipulation languages. A rigorous proof is indeed possible, but it is beyond the
scope of the present paper ut

It is observed that the solution of the HetSigma queue can be performed within
the framework of the QBD-M processes with the following threshold parameters
y1 = K; y = K + c+ 1;T1 = c+K + 1.

After obtaining FK,l’s and Hc,n’s thus, GK,c,k, (k = −1 − c, . . . ,K) can be
computed from (17). Then, using them directly in (19), the required Ql (l =
0, 1, . . . ,K+ c+ 1) can be computed. An alternate way of computing the GK,c,l’s
is by the following properties and recursion which are obtained from (9),(10) and
(17) as

Gk,n,l = Gk,n−1,l − ΦnGk,n−1,l+1

(2 ≤ k ≤ K , −1 ≤ l + c ≤ k + n ≤ k + c),

Gk,c,l = Gk−1,c,l −ΘkGk−1,c,l−1 (2 ≤ k ≤ K , −1 ≤ l ≤ k + c). (20)



Thus, the resulting equations (11) corresponding to the rows from c + K + 1
to L− 2− c, are of the same form as those of the QBD-M processes and hence
have an efficient solution by several alternative methods such as the spectral
expansion method, Bini-Meini’s method [3] and the matrix-geometric methods
with folding and block-size enlargement. In our implementation, we have used
the spectral expansion method. The required unknowns in the spectral expansion
solution and the steady state probabilities can be computed using the remaining
balance equations and the normalisation equation.

5 Applications

The HetSigma queue has been applied to evaluate performance problems in
telecommunication systems [8, 23]. In this section, we present the application of
the HetSigma queue to the performance analysis of MPLS networks which are
being used in the backbone of IP networks.

5.1 A model for a multipath routing in MPLS networks

An example of an MPLS domain with routers and links is illustrated in Figure 1.
Traffic demands traversing the MPLS domain are conveyed along pipes called
Label Switched Paths (LSPs). When a packet arrives at the ingress router – a
Label Edge Router (LER) of the MPLS domain, the LER classifies incoming IP
(or other packets for example Ethernet or even MPLS) packets to the appropriate
FEC (Forward Equivalence Class) and encapsulates the packets within MPLS
packets. Labels are automatically assigned with the use of appropriate protocols,
though labeling can also be allocated manually by the network administrator.
A routing table (as the result of assignments of labels) in the LER is used to
switch packets in MPLS networks.
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Fig. 2. Model of an ingress node performing load balancing

In what follows, we describe the proposed model for an ingress-egress router
pair illustrated in Figure 2. Several paths can be defined and determined between
a given ingress-egress (IE) node pair in the MPLS network according to some
predefined criteria of the MPLS traffic engineering that is applied (e.g.: paths
with disjoint edges) for a single service class. Assume that there are c paths with
different bandwidths to be established between the IE node pair for a specific
service class. We model the c distinct paths (LSPs) in the system as the c distinct
heterogeneous servers in parallel in the corresponding queuing model that we
are introducing here for modeling the communication between the IE pair. The
LSPs in the network and the corresponding servers in the model are numbered
in the same order. The GE-distributed service time parameters of the nth server
(n = 1, 2 . . . , c) are denoted by (µn, φn) when the server is functional. L is the
queuing capacity (finite or infinite), in all phases, including the customers in
service, if any.

The packet arrival stream is represented by theMM
∑K
k=1 CPPk arrival pro-

cess, this can accommodate traffic-burstiness, correlations among inter-arrival
times and correlations among batch sizes. It has been shown in the recent
work [21, 23] that the CPP is accurate enough to model real traffic (when CPP
parameters are estimated from the captured traffic) and can be used for the per-

formance evaluation of real systems. The arrival process(the MM
∑K
k=1 CPPk)

is inherently modulated by a CTMC X with N1 states, with generator matrix
QX .

LSPs are prone to failures because of various reasons (e.g.: unreliable equip-
ment, hardware failures, software bugs or cable cut). Such faults and failures
may affect the operation of LSPs and cause packet losses and delays. In case of
failures, the load balancing mechanism can move packets that are queued for the
affected LSPs to the unaffected LSPs.



When the failed link is repaired, the repaired LSP can be used again. Repair
strategy defines the order of repairing failed links, when there are more failed
links than repairmen (it is assumed simultaneous repairs can happen). Repair
strategies can be preemptive or non-preemptive. However, it is not very realistic
to apply a preemptive-priority repair strategy for the operation of networks in
the case of link cuts because of the travel cost of a maintenance team. In this
paper, we assume that one maintenance team is available to repair failures in
the network. However, the analysis can be easily extended to the case of multiple
maintenance facilities as well.

We consider four repair strategies, FCFS (First-Come-First-Served), LCFS
(Last- Come-First-Served non-preemptive) and two based on link-priorities. In
the strategies based on link-priorities, links with higher priorities should be set
into repair sooner, even if these failures have occurred later. The priority list of
links may then be constructed in a greedy way, with a view to repair earlier the
link which would fetch larger gain in performance.

We assume the LSP states (or LSP configurations) that arise due to failures
and repairs of the LSPs can be described by a CTMC called Z. These LSP con-
figurations would indeed correspond to all possible multi-server configurations
(also termed, operative states of the multi-server) with functional as well as
failed servers, in the corresponding queuing model. This can well be so when ex-
ponential or phase-type failures and repairs are assumed. Let N2, QZ denote the
number of server-configurations and the generator matrix of the arising CTMC
Z. Indeed N2 and QZ would depend on the parameters of the parallel servers,
number of repairmen and the repair strategy.

In the presence of one repair team, we would need N2 =
∑c
l=0 Pe(c, l) = 2c+1

operative states for FCFS and LCFS repair strategies, where Pe(c, l) is the
number of permutations of c distinct elements taken l at a time. Pe(c, l) = c!

(c−l)! .

Let ξk and ηk be the failure and repair rates respectively, of the kth LSP (that is,
kth server in the multi-server model). Then QZ can be determined (illustration
for c = 3 is presented below). Many other repair strategies can also be modeled,
however, that is not in the scope of the present paper.

Both the arrival and the service processes can be thought of being jointly
modulated by the same continuous time, irreducible Markov process, with N
states where N = N1 ·N2. That generator matrix of this joint modulating process
is denoted by Q where Q is determined as

Q = QZ
⊕

QX . (21)

Let the random variable I1(t) (1 ≤ I1(t) ≤ N1) represent the phase of the mod-
ulating process X at any time t. We introduce I2(t) – an integer-valued random
variable to describe the server configuration of the model (which corresponds
to the network state) at time t. We define the following function,

γ(I2(t), n) =

{
1 the nth server is functional
0 otherwise

. (22)



The state I(t) (1 ≤ I(t) ≤ N ; N = N1 · N2) of the joint modulating pro-
cess is constructed by lexicographically sorting the two variables (I1(t), I2(t)) as
illustrated in Table 1.

Table 1. Order of the phase variable

I 1 2 . . . N1 N1 + 1 . . . 2N1 . . . N1N2 −N1 + 1 . . . N1N2

(I1, I2) (1, 1) (2, 1) . . . (N1, 1) (1, 2) . . . (N1, 2) . . . (1, N2) . . . (N1, N2)

From table 1, we can write the following equations,

I(t) = I1(t) + (I2(t)− 1)N1, I2(t) = f2(I(t)) =

⌊
I(t)− 1

N1

⌋
+ 1,

I1(t) = f1(I(t)) = [(I(t)− 1) mod N1] + 1. (23)

Consequently, the parameters of the arrival process are mapped as follows.
The parameters of the GE inter-arrival time distribution of the kth (1 ≤ k ≤ K)
customer arrival stream in phase i (i = 1, ..., N) are (σf1(i),k, θf1(i),k). The service

time parameters of the nth server (n = 1, 2, ..., c) in phase i (1 ≤ i ≤ N), denoted
by (µi,n, φi,n) can be determined as,

µi,n = γ(f2(i), n)µn , φi,n = γ(f2(i), n)φn. (24)

5.2 Numerical results

An elaborate case study is carried out to determine the performance of a spe-
cific ingress-egress node pair in an European Optical Network topology [1]. The
network in Figure 3 contains 19 nodes and 78 optical links.

Traffic to the ingress node to be carried to the egress node, shown in the
figure, is assumed follow the ON- OFF process with two states (ON − OFF ).
The ON and OFF periods are exponentially distributed with mean 0.4 and 0.5
s respectively. The distribution of inter-arrival times in state ON is GE with
parameters (σ = 150.6698990 (1/s), θ = 0.526471). In state OFF no packets
arrive. These parameters of the arrival stream are indeed derived from the inter-
arrival times of the recorded samples of the real Bellcore traffic trace BC-pAug89
[2], by matching the mean and variance.

Assume that there are three LSPs established between node 11 (ingress) and
node 4 (egress) of the IP/MPLS network as seen in Figure 3. The first LSP is
routed through nodes 10 and 5. The second LSP goes through nodes 17 and
16, while the third one is through node 9. Thus, we have, in the model, c = 3
servers with GE service time parameters (µi, φi (i = 1, 2, 3)) given by, µ1 = 96
(1/s), µ2 = 128 (1/s), µ3 = 160 (1/s); φ1 = φ2 = φ3 = 0.109929. Note that
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these parameters are obtained, based on the service capacity of the LSPs and
the packet lengths from the trace.

A specific LSP fails when a link through which the LSP is routed becomes
inoperative (e.g.: cable cut). Normally, the failure rate of each link can be as-
sumed to depend on its length. Using simple calculations, the failure rates are
obtained as ξ1 = 0.001, ξ2 = 0.001 and ξ3 = 0.0006. The repair rate values (η1,
η2 and η3) are chosen in such a way to have the availability of the connectivity
ensured by the LSPs between the ingress and egress node to be 99.9%.

Four repair strategies are compared in this section as follows. Note that after
the identifications of LSP configurations in each strategy, the corresponding QZ
matrices can be easily determined.

FCFS repairs It can be seen that there would be 16 LSP configurations or op-
erative states represented as: (0, 0, 0)1,2,3, (0, 0, 0)1,3,2, (0, 0, 0)2,1,3, (0, 0, 0)2,3,1,
(0, 0, 0)3,1,2, (0, 0, 0)3,2,1, (0, 0, 1)1,2, (0, 0, 1)2,1, (0, 1, 0)1,3, (0, 1, 0)3,1, (1, 0, 0)2,3,
(1, 0, 0)3,2, (0, 1, 1), (1, 0, 1), (1, 1, 0) and (1, 1, 1). Here, the kth bit from left
within the brackets, is 0 when LSP k is broken, 1 when operative. Also,
the suffix indicates the order in which the failed LSPs are to be repaired,
if they are greater than one. If the above order is numbered from 0 to 15,
then the nonzero and off- diagonal elements of matrix QZ can be given by,
QZ(0, 10) = QZ(1, 11) = QZ(6, 13) = η1, QZ(8, 14) = QZ(12, 15) = η1,
QZ(2, 8) = QZ(3, 9) = QZ(7, 12) = η2, QZ(10, 14) = QZ(13, 15) = η2,
QZ(4, 6) = QZ(5, 7) = QZ(9, 12) = η3, QZ(11, 13) = QZ(14, 15) = η3,
QZ(10, 3) = QZ(11, 5) = QZ(13, 7) = ξ1, QZ(14, 9) = QZ(15, 12) = ξ1,
QZ(8, 1) = QZ(9, 4) = QZ(12, 6) = ξ2, QZ(14, 11) = QZ(15, 13) = ξ2,
QZ(6, 0) = QZ(7, 2) = QZ(12, 8) = ξ3, and QZ(13, 10) = QZ(15, 14) = ξ3.



In the above, for example, the state (1, 0, 0)2,3 means that LSP 1 is functional,
LSPs 2 and 3 are broken, the single repairman is working on LSP 2. From this
state, the possible next states are (0, 0, 0)2,3,1 which happens by the failure of
LSP 1, or, (1, 1, 0) which happens by the repair of LSP 2. These are shown in QZ
as, QZ(10, 3) = ξ1, QZ(10, 14) = η2. All other elements of QZ can be explained
in a similar way.

 5e−005

 0.0002

 0.0008

 0.0032

 0.0128

 0.0512

 110  130  150  170  190

P
ac

k
et

 l
o
ss

 p
ro

b
ab

il
it

y

Arrival intensity

Prior1 strategy
Prior2 strategy

Fig. 4. Packet loss probability versus arrival rate

 1.4

 1.8

 2.2

 2.6

 3

 3.4

 3.8

 110  130  150  170  190

Q
u
eu

e 
le

n
g
th

Arrival intensity

Prior1 strategy
Prior2 strategy

Fig. 5. Mean queue length versus arrival intensity

LCFS In this LCFS non-preemptive repair strategy, the repairman chooses the
failed server according to the LCFS discipline, and a repair is never preempted



by a new breakdown. Following the same representation and order as in FCFS
strategy, the non zero and off-diagonal elements of matrix QZ , in this case, can be
obtained as, QZ(0, 10) = QZ(1, 11) = QZ(6, 13) = η1, QZ(8, 14) = QZ(12, 15) =
η1, QZ(2, 8) = QZ(3, 9) = QZ(7, 12) = η2, QZ(10, 14) = QZ(13, 15) = η2,
QZ(4, 6) = QZ(5, 7) = QZ(9, 12) = η3, QZ(11, 13) = QZ(14, 15) = η3,
QZ(10, 2) = QZ(11, 4) = QZ(13, 7) = ξ1, QZ(14, 9) = QZ(15, 12) = ξ1,
QZ(8, 0) = QZ(9, 5) = QZ(12, 6) = ξ2, QZ(14, 11) = QZ(15, 13) = ξ2,
QZ(6, 1) = QZ(7, 3) = QZ(12, 8) = ξ3, and QZ(13, 10) = QZ(15, 14) = ξ3.

Priority-based strategy In a LSP-priority based repair strategy, it can be
crucial to determine the priority of links according to which failed links are to
be repaired. In this section, we try to derive a decision function based on system
parameters to decide upon the priorities of the failed links.

Let fi and ri be the failure and repair rates of link i respectively and bi, its
bandwidth. The bandwidth of a link is computed from the summation of the
LSPs bandwidths passing through this particular link. This approach ensures
that links used by several LSPs may get higher priority, over the links used only
by one LSP, when the former has larger bandwidth contribution. The wi, the
weight of link i is set to

wi =
ri
fi
∗ bi. (25)

A repair strategy called Prior1 is based entirely on the failure rate of the
links. That is, when there are several failed links, the link with a smallest failure
rate is set into repair by the single repair facility available. Another strategy
called Prior2 is based on the decision function (wi). If wi > wk, then link i is
given higher repair priority than link k in Prior2.

To compare Prior1 and Prior2, we plot the curves concerning packet loss
and average number of customers waiting in the queue are versus the arrival rate
of packets in Figure 4 and 5, respectively. We can observe that applying Prior2
repair strategy results in a better performance characteristics than Prior1. The
Prior2 strategy takes more information into account about the network links
towards the decision of repair order which can explain the better results. It
balances not only failure rates, but also the repair rates and the bandwidth
of links used by the passing-through LSPs. Therefore, we will only investigate
strategies FCFS, LCFS and Prior2 (will be referred as priority strategy) in what
follows.

We now examine the effect of the repair rate of optical links on the perfor-
mance of the system. In order to ensure that the availability of service between
the ingress and egress node to lie between 99.9% and 99.999%, it can be shown
that the repair rate should be in the interval [0.0397703,0.405355]. We investi-
gate the effect of the repair rate of link within that range, on the performance.
The expected queue length was reduced only by a small extent by the increase
of repair rate (see Figure 6). The packet-loss probability varied nearly in inverse-
proportion to the repair rate (see Figure 7). Of course, the results would actually
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depend on many other factors too including the load in the network. Accurate
estimation of the returns on investment that is used to increase repair rate can be
made, only if the cost-patterns involved in increasing the repair rate are known.
It may also be observed, in the considered range of experimentation, the various
repair strategies considered do not have significant impact on the performance
and the availability of the service in the network (in the range of repair rates
that are considered).

Figures 8 and 9, where the strategies are compared versus the arrival rate
also confirm an observation that the priority based repair outperforms the LCFS
and FCFS ones.
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6 Extensions

6.1 Other killing disciplines

Apart from the killing discipline that was used above, there are two other popular
killing disciplines, the RCE-inimmune servicing and the RCH killing disciplines.
The applicability of the killing disciplines rather depends on the situation and
the purpose, and hence depending on these, many more killing disciplines are
theoretically possible. Our methodology can easily be extended to many other
killing disciplines also, this is explained briefly in this section.

The RCE-inimmune discipline In the RCE-inimmune servicing, the nega-
tive customer removes the most recent positive arrival regardless of whether it is
in service or waiting; thus a negative arrival has no effect only when it encoun-
ters an empty queue and all servers idle. This is the traditional killing discipline,
suited to the modeling of killing signals in speculative parallelism, for example.
It can also be used to model cell losses caused by the arrival of a corrupted cell
or one encountering a full buffer, when the preceding cells of a packet would be
discarded. In this case, the later and the upward transitions remain as before,
but the downward transition rates become [13]

Cj+s,j = C(E − Φ)Φs−1 +R(E −∆)∆s−1

(c ≤ j ≤ L− 1 ; s = 1, 2, . . . , L− j)
= CΦs−1 +R(E −∆)∆s−1 (c > 1 ; j = c− 1 ; 1 ≤ s ≤ L− c+ 1)

= CΦs−1 +R∆s−1 (c = 1 ; j = c− 1 = 0 ; 1 ≤ s ≤ L)

= Cj+1 +R(E −∆) (1 ≤ j ≤ c− 2 ; s = 1)

= R(E −∆)∆s−1 (1 ≤ j ≤ c− 2 ; 2 ≤ s ≤ L− j)
= R∆s−1 (c > 1 ; j = 0 ; 2 ≤ s ≤ L)

= C1 +R (j = 0 ; s = 1).

Thus, after obtaining the required transition rates, e.g. lateral, upward and down-
ward, and the balance equations in this case, the same procedure can be used,
perhaps with slight appropriate modifications, to transform the balance equa-
tions to a suitable form (QBD-M type equations) for solving by the existing
methods.

The RCH discipline Another popular killing discipline is the RCH (Removal
of customers from the head of the queue) killing discipline. This is appropriate for
modeling server breakdowns, where a customer in service will be lost for sure and
may be also a portion of queue of waiting customers. Here too, the A matrices
and the B matrices remain unchanged, however the C matrices would be different
and can be determined. For example, to obtain Cj+s,j , consider the system (say,
a single server system with c = 1) in state (i, j + s), where j + s ≤ L. The rate
at which a batch of l negative customers arrives is (1 − δi)δl−1i ρi (l = 1, 2, . . .).



If l ≥ j + s, then all the jobs will be removed by the negative customers. If
l < j + s, then the job in service plus l − 1 jobs waiting for service would be
removed, leaving only j+s−l jobs. However, due to the nature of the generalized
exponential service times, a certain number of customers may be ’leaked out’,
i.e. serviced instantaneously just after the killing takes place. Alternatively, if
we redefine the operation of the system such that this leakage does not occur,
i.e. immediately after a negative arrival, the next customer in the queue (if any)
cannot skip service, then the equilibrium state probabilities would be same as in
the case of the RCE-inimmune servicing.

Assuming leakage, the rate matrices Cj+s,j can be derived as [13],

Cj+s,j = (E − Φ)Φs−1M + (E −∆)R(E − Φ){Φ∆}s−1
(1 ≤ j ≤ L− 1 ; s ≥ 1) ;

= Φs−1M + (E −∆)R{Φ∆}s−1 +R∆s (j = 0 ; s ≥ 2) ;

= M +R (j = 0 ; s = 1) ;

where,

{Φ∆}s−1 =

s−1∑
k=0

Φs−1−k∆k (s ≥ 2) ;

= E (s = 1) .

This case also can be modeled following the previous procedures, perhaps with
minor modifications.

6.2 truncated-CPP(t-CPP)

By incorporating several CPP’s and superposing them, non-geometric batch size
arrivals could be modeled, to certain extent and with certain limitations. That
flexibility can be increased, in fact greatly, by replacing the CPP’s by truncated-
CPP’s (or t-CPP’s). The method of transforming the balance equation for ef-
ficient solution may be applicable in principle, but with some modifications, to
this case as well and hence can be extended with some effort.

Let the parameters of the kth t-CPP in the ith phase be (σi,k, θi,k, bi,k, di,k),
which means the batch size is geometrically distributed and bounded by bi,k as
the minimum batch size and di,k as the maximum. Also, the inter-arrival time
between successive batches, during that modulating phase, is exponential with
parameter σi,k. The probability of batch size being s of this t-CPP is then given

by
(1−θi,k)θs−1

i,k

θ
bi,k−1

i,k −θ
di,k
i,k

if bi,k ≤ s ≤ di,k, 0 otherwise. Hence, the overall batch size

distribution in phase i arrivals is then modified as

πl/i =

K∑
k=1

σi,k
σi,.

(1− θi,k)θl−1i,k

θ
bi,k−1
i,k − θdi,ki,k

fi,k,l, (26)



where fi,k,l = 1 if bi,k ≤ l ≤ di,k, else 0. And, the overall batch size distribution
of arrivals is

πl/. =

N∑
i=1

riπi,l. (27)

Clearly, the superposition of t-CPP’s (26, 27), because of larger number of pa-
rameters and batch size bounds, offers much more flexibility than the superpo-
sition of CPP’s in order to generate/model certain given non-geometric batch
size distributions, by parameter tuning.

6.3 GE with batch size truncation (GE-t)

The service time distribution, GE-t (General Exponential with batch size trun-
cation), is essentially a batch-exponential service, with geometric and bounded
batch size distribution. This is quite analogous to the t-CPP. In the case of
homogeneous servers the parameters of the GE-t, in phase i, are of the form
(µi, φi, gi, hi) where µi is the batch-service rate, gi, hi respectively are lower and
upper bounds of the batch size which is geometrically distributed with parameter
φi. However, as far as the service is concerned, the actual batch size served also
depends on c, j, where j is the number of jobs in the system. If j < gi, then there
will not be any services. If j ≥ hi, then the probability that the size of the batch

being served is s would be
(1−φi)φ

s−1
i

φ
gi−1

i −φhi
i

where gi ≤ s ≤ hi. If gi < j < hi, then

the batch size distribution of the served batch can be estimated if the service
is clearly defined in such a case. Using these expressions and the steady state
probabilities in this case, it is possible to estimate the effective batch size distri-
bution of the served batches. This extension can be incorporated into the main
model with a viable solution following same procedures as before, perhaps with
minor modifications. This modification can result in, by appropriate parameter
tuning, incorporating certain given non-geometric batch size services.

That flexibility can be enhanced even further if we use heterogeneous
servers. In such a case, let the parameters of server n (n = 1, 2, . . . , c)
in phase i be, (µi,n, φi,n, gi,n, hi,n). Extrapolating the earlier analyis to this
case, there are no services in phase i if j < Min(gi,1, gi,2, . . . , gi,c). When
j ≥ Max(hi,1, hi,2, . . . , hi,c) in phase i, then the probability that the batch

size is s for the next service can be derived as
∑c
n=1

µi,n(1−φi,n)φ
s−1
i,n

µi.(φ
gi,n−1

i,n −φ
hi,n
i,n )

where

Min(gi,1, gi,2, . . . , gi,c) ≤ s ≤Max(hi,1, hi,2, . . . , hi,c), and µi. =
∑c
n=1 µi,n. For

all other ranges or values of s, the expressions for the probability distribution
can be obtained.

6.4 Towards abritrary batch size distributions

The consideration of abritrary batch size distributions is most desirable in the
performance evaluation of modern telecommunication networks. To achieve this
now, is not a very far off thing, owing to the above suggested viable extensions.



And thus, we arrive at a much more general and useful model, that is, the MM∑K
k=1 t− CPPk/GE-t/c/L G-queue with heterogeneous servers. Further work is

being carried out on this model.

7 Conclusions

The HetSigma queuing model is developed as a generalization of the QBD pro-
cesses. In this queue, it is possible to accommodate inter-arrival time corre-
lations, service time correlations, batch-size correlations, large and unbounded
batch sizes. All these aspects are useful in order to model emerging communica-
tion systems. Certain non-trivial transformations are conceived on the balance
equations. The transformed balance equations are of the QBD-M type, hence
there is a fast solution using the spectral expansion method. The queue is ap-
plied for the performance evaluation of MPLS networks with unreliable nodes
and can be used to model various problems in telecommunication network as
well. It is possible to extend or further generalize these models to develop highly
generalized Markovian node models for the emerging Next Generation Networks.
That work is underway.
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