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„I was like a boy playing on the sea-shore, and diverting myself now and then finding a 

smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all 

undiscovered before me.”  (Isaac Newton) 
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Executive Summary 
 

Computational finance is one of the most dynamically advancing fields of research over the 
last 60 years [80]. With the advancement in computational hardware speed and heuristic techniques, 
many problems which were once believed to be intractable have been solved or sufficiently good 
approximations have been found. Recent research works in computational finance focus on finding 
fast approximations which can be applied in real-time, high frequency algorithmic trading 
applications ([12],[26],[56],[80]) as well as finding reliable approximate solutions to hard problems 
which have desirable runtime and generalization characteristics ([11],[22],[23],[28],[57]). 

This dissertation has the same aims in two critically important research areas: portfolio 
selection and optimal scheduling, both of which have profound importance in present day financial 
computing. Optimal portfolio selection is one of the very first problems posed in the field in the 
1950’s and remains relevant to this day. Rather than the classical mean-variance approach [62], we 
look at the problem of selecting sparse portfolios which maximize mean reversion. I apply various 
search heuristics and stochastic search techniques which find approximate solutions to the resulting 
NP hard problem in polynomial time. My related results can be found in [1],[2],[5]. Scheduling 
theory is also a very pertinent area of research with applications in many different disciplines, 
including computational finance. I look at a classical problem in the field and develop a number of 
near-optimal heuristics to find good approximate solutions with extremely favorable scalability 
properties. My related results can be found in [3],[4]. 

In both cases, I show the viability and superiority of my methods on both a vast number of 
randomly generated synthetic data series as well as on real historical data, such as historical time 
series of major equity indices (S&P 500) and interest rate swap rates. For selecting sparse portfolios 
which maximize mean reversion, I do not only explain how to elegantly adapt stochastic search 
techniques to the problem, but I make a number of improvements upon the results found in the 
literature in terms of parameter fitting based on historical data for both the VAR(1) and the 
Ohrnstein-Uhlenbeck models. For scheduling tasks on identical machines such that total weighted 
tardiness is minimized, I show how the problem can be converted to a quadratic optimization form 
to be able to apply well-known heuristic algorithms. I further improve the method by smart choice 
of initial point for the iterative algorithm and suggest a method to further improve by perturbing this 
smart initial value. Using these results, large-scale Monte Carlo simulation computations can be 
significantly sped up for financial computations. 

In both cases, the suggested methods result in double digit percentage improvement over the 
next best known heuristic method on both generated and real historical time series. I also conclude 
that the newly developed heuristic methods have good generalization properties which allow them to 
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be applied successfully to a broad range of problems within computational finance. I also suggest 
further ideas and directions of research for the specific problems and suggested heuristic methods. 

These results contribute significantly to making financial computing faster and more reliable 
for financial institutions, which has an impact on the efficiency of the banking system and thus 
benefit society as a whole. 



Polynomial time heuristic optimization methods applied to problems in computational finance 

7 

 

POLYNOMIAL TIME HEURISTIC OPTIMIZATION METHODS 
APPLIED TO PROBLEMS IN COMPUTATIONAL FINANCE 

Executive Summary.......................................................................................................................... 5 

List of Figures................................................................................................................................. 10 

List of Tables .................................................................................................................................. 13 

List of Algorithms .......................................................................................................................... 14 

CHAPTER 1 

1. INTRODUCTION ........................................................................................................................ 15 

1.1. Objectives of the dissertation.............................................................................................. 17 

1.2. Models and methods used in the research .......................................................................... 18 

1.3. Structure of the dissertation ................................................................................................ 20 

CHAPTER 2 

2. OPTIMAL SPARSE, MEAN REVERTING PORTFOLIO SELECTION ............................ 21 

2.1. Introduction......................................................................................................................... 21 

2.2. Modeling mean reverting portfolios ................................................................................... 22 

2.3. Mean reverting portfolio as a generalized eigenvalue problem.......................................... 23 

2.4. Optimal sparse portfolio selection ...................................................................................... 25 

2.4.1. Exhaustive search method .......................................................................................... 25 

2.4.2. Greedy method............................................................................................................ 25 

2.4.3. Truncation method...................................................................................................... 26 

2.4.4. Simulated annealing with random projections for  constraint satisfaction over a 
discretized grid ........................................................................................................................... 27 

2.5. Estimation of VAR (1) model parameters .......................................................................... 29 

2.5.1. Estimation of matrix A ............................................................................................... 30 

2.5.2. Estimation of the covariance matrix of W .................................................................. 31 

2.5.3. Estimation of covariance matrix G ............................................................................. 31 

2.6. Trading as a problem of decision theory ............................................................................ 32 

2.6.1. Sample Mean estimator .............................................................................................. 33 

2.6.2. Mean Estimation via least squares linear regression .................................................. 33 

2.6.3. Mean Estimation via pattern matching ....................................................................... 34 



Norbert Fogarasi, Ph.D. dissertation 

8 

2.6.4. A simple convergence trading strategy ...................................................................... 36 

2.6.5. Some financial and practical considerations of trading .............................................. 37 

2.7. Performance analysis of sparse portfolio optimization....................................................... 38 

2.7.1. Performance of VAR(1) model parameter estimation ................................................ 38 

2.7.2. Performance of Ornstein-Uhlenbeck model parameter estimation............................. 41 

2.7.3. Performance of portfolio selection and trading on generated data ............................. 43 

2.7.4. Performance of portfolio selection and trading on historical data .............................. 47 

2.8. Conclusions and directions for future research................................................................... 48 

CHAPTER 3 

3. TASK SCHEDULING ON IDENTICAL MACHINES ............................................................ 50 

3.1. Introduction......................................................................................................................... 50 

3.2. Problem Formulation .......................................................................................................... 53 

3.3. Existing Heuristic Methods ................................................................................................ 54 

3.3.1. Earliest Due Date (EDD) Heuristic ............................................................................ 54 

3.3.2. Weighted Shortest Processing Time (WSPT) Heuristic ............................................. 55 

3.3.3. Largest Weighted Process First (LWPF) Heuristic .................................................... 55 

3.3.4. Load Balancing Scheduling (LBS) Algorithm ........................................................... 55 

3.3.5. Random Method ......................................................................................................... 55 

3.4. Quadratic Programming and Hopfield Neural Network Based Approach for Scheduling. 56 

3.5. Improvements to HNN and other heuristics ....................................................................... 59 

3.5.1. Smart Hopfield Neural Network (SHNN) .................................................................. 60 

3.5.2. Perturbed Smart Hopfield Neural Network (PSHNN)................................................ 60 

3.5.3. Perturbed Largest Weighted Process First (PLWPF) ................................................. 62 

3.6. Numerical Results............................................................................................................... 62 

3.6.1. Simulation method...................................................................................................... 62 

3.6.2. Comparison of HNN performance versus other known heuristics ............................. 64 

3.6.3. Analysis of the performance of the improved HNN methods .................................... 66 

3.6.4. Parallel implementation of the algorithms.................................................................. 68 

3.6.5. Practical case study on large problem size ................................................................. 70 

3.7. Conclusions and Directions of Future Research................................................................. 72 

 



Polynomial time heuristic optimization methods applied to problems in computational finance 

9 

CHAPTER 4 

4. SUMMARY OF RESULTS AND THESES ............................................................................... 73 

4.1. Unified approach to complex financial modeling problems............................................... 75 

CHAPTER 5 

5. LIST OF REFERENCE PUBLICATIONS................................................................................ 77 

5.1. Publications of the author ................................................................................................... 77 

5.2. Publications connected to the dissertation .......................................................................... 78 

 



Norbert Fogarasi, Ph.D. dissertation 

10 

List of Figures 
 

Fig. 1: Overall framework for identifying and trading sparse mean reverting portfolios 

 

Fig. 2: Trading as a walk in a binary state-space 

 

Fig. 3: Some sample patterns of ( )tμ  

 

Fig. 4: Flowchart for simple convergence trading of mean reverting portfolios 

 

Fig. 5: ˆ −A A vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent time series for each t and 

plotting the average norm of error 

 

Fig. 6: 1 2
ˆ ˆ−G G vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent time series for each t 

and plotting the average norm of error 

 

Fig. 7: 
1 2

1

ˆ ˆ

ˆ
−G G

G
 vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent time series for each t 

and plotting the relative difference of covariance estimators 

 
Fig. 8: Sample covariance and recursive covariance estimates over sliding windows of size 50 over 
5000 samples for σ =0.1, 0.3, 0.5, 1 (note the differences in scaling of the plots) 

 

Fig. 9:  MSE of each μ estimate as a function of σ . Fixing 1λ = , 0 0μ =  and sample size of 100, 

I generated noisy sequences as per (37) with 0,1, 2,...,50μ = and 0.01,0.02,..., 2.00σ = . 

 

Fig. 10:  MSE of each μ estimate as a function of σ .λ =0.5, 1, 2, 5 , 0 0μ =  and sample size of 20. 

 

Fig. 11: Comparison of portfolio selection methods of various cardinalities on n=10-dimensional 
generated VAR(1) data. 



Polynomial time heuristic optimization methods applied to problems in computational finance 

11 

 

Fig. 12: CPU runtime (in seconds) versus total number of assets n, to compute a full set of sparse 
portfolios, with cardinality ranging from 1 to n, using the different algorithms. 

 

Fig. 13: Typical example of convergence trading over 250 time steps on a sparse mean-reverting 
portfolio. Weighted mix of L=5 assets were selected from n=10-dimensional generated VAR(1)  
process by simulated annealing during the first 20 time steps. A profit of $1,440 was achieved with 
an initial cash of $100 after 85 transactions. 

 

Fig. 14: Histogram of profits achieved over 2,000 different generated VAR(1) series by simulated 
annealing.  

 

Fig. 15: Comparison of minimum, maximum, average and final return on S&P500 historical data of 
the greedy and simulated annealing methods for sparse mean-reverting portfolios of size L=3 and 
L=4 

 

Fig. 16: Comparison of minimum, maximum, average and final return on historical US swap data of 
the truncation method for sparse mean-reverting portfolios of cardinality L=1-8 

 

Fig. 17: Summary flow diagram of the heuristic approach to solving the Total Weighted Tardiness 
scheduling problem. 

 

Fig. 18: Overall flow diagram of my novel HNN approach to solving scheduling problems 

 

Fig. 19: Block diagram of the SHNN method 

 

Fig. 20: Block diagram of the PSHNN method 

 

Fig. 21: Illustration of the advantage of multiple perturbed starting points in finding the global 
minimum 

 

Fig. 22: Block diagram of the PLWPF method 



Norbert Fogarasi, Ph.D. dissertation 

12 

 

Fig. 23: Average TWT produced by each heuristic over randomly generated problems depicted as a 
function of the number of jobs in the problem. 

 

Fig. 24: Relative average TWT gain produced by HNN versus the other heuristics over randomly 
generated problems as a function of the number of jobs in the problem. 

 

Fig. 25: Ratio of average TWT produced by HNN versus EDD, WSPT and LWPF as a funciton of 
the problem size 

 

Fig. 26: The difference between the average TWT produced by each heuristic and the theoretical 
best schedule obtained by exhaustive search, over 100 randomly generated problems for each 
problem size. 

 

Fig. 27: The difference between the average TWT produced by each heuristic and the average TWT 
produced by the best method, PSHNN over 100 randomly generated problems for each problem size 

 

Fig. 28: Illustration of how each run of the perturbed starting point may be parallelized in a GPGPU 
infrastructure. 

 

Fig. 29: Runtimes of the different algorithms, as a function of job size. 

 

Fig. 30: Flowchart showing step-by-step unified approach to finding fast heuristic approximate 
solutions to complex problems in computational finance and beyond 

 

 

 



Polynomial time heuristic optimization methods applied to problems in computational finance 

13 

List of Tables 
 

Table 1. Practical applications of the problems examined in the dissertation 

 

Table 2. Models, methods and validation used to derive the results of this dissertation. 

 

Table 3. Percentage of problems in which HNN provides an improved solution over the next best 
heuristic, LWPF 

 

Table 4. Percentage of problems in which PSHNN provides an improved solution over the next best 
heuristic, HNN. 

 

Table 5. Theoretical runtime of the algorithms 

 

Table 6. Table of total (weighted) tardiness for jobs of each weight, provided by the different 
methods for the Morgan Stanley scheduling problem 

 

Table 7.  Summary achievements of numerical tests of my research work on real-world problems 

 



Norbert Fogarasi, Ph.D. dissertation 

14 

List of Algorithms 
 

Algorithm 1. High-level pseudocode for the simulated annealing methodology used. 

 

Algorithm 2. Pseudocode for neighbor selection in simulated annealing 

 

Algorithm 3. Aglorithm for randomly perturbing scheduling matrices 

 

Algorithm 4. Algorithm for adjusting the heuristic parameters 

 

Algorithm 5. Correction algorithm for the scheduling matrix produced by the HNN 

 

 

 

 



Polynomial time heuristic optimization methods applied to problems in computational finance 

15 

CHAPTER 1 

1.INTRODUCTION 

Computational finance is a branch of applied computer science that deals with problems of 
practical interest in finance [80]. It is a relatively new discipline the birth of which can be traced 
back to the work of Harry Markowitz in the 1950s and since then has provided many problems of 
deep algorithmic interest. Presently, it encompasses various new numerical methods in the fields of 
optimization, statistics, and stochastic processes developed for different financial applications. 

Markowitz conceived of the portfolio selection problem as an exercise in mean-variance 
optimization. His key finding was that diversification, as a means of reducing the variance and 
therefore increasing the predictability of an investment portfolio is of critical importance, even at the 
cost of reducing expected return [62]. For his groundbreaking work, Markowitz received the Nobel 
Prize in 1990. There are many other problems in finance which have been raised since the 1950’s 
such as algorithmic trading, the validation of efficient markets hypothesis, option pricing, financial 
time series analysis and prediction.  

The area of algorithmic trading, the use of electronic platforms for entering trading orders 
with an algorithm deciding on aspects of the order such as timing, price or quantity, has attracted a 
lot of attention over the last decade. In particular, high frequency trading has gained a lot of ground 
in international markets, in which computers make algorithmic decisions on high frequency, often 
sub-second, tick-by-tick data, before human traders are capable of processing the information they 
observe. It is estimated that as of 2009, high frequency trading algorithms are responsible for over 
70% of all equity trading volume in the US [39], so the area has also attracted a lot of academic 
attention in recent years. At the same time, parallel computational techniques on hardware, such as 
GPGPU and FPGA have also evolved, so traditional methods which could historically only been 
used in low or medium frequency trading can now be applied in real-time settings. On the other 
hand, many of the problems which arise during the development of optimal trading algorithms are of 
high complexity which makes the application of fast approximation methods necessary for practical 
use in high frequency trading. 

Another developing area of computational finance is the increased use of Monte Carlo 
techniques for simulation of market processes under certain stochastic model assumptions. This 
large scale task requires the use of an increasing amount of computational resources and gives rise to 
problems of optimal usage of the resources via scheduling. Many of the combinatorial problems of 
optimal scheduling have been proven to be of exponential or NP hard complexity which have made 
the use of polynomial approximation techniques necessary. 
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The main motivation for research into these topics is their direct applicability to the real 
world. Many financial services companies, including banks, hedge funds and portfolio managers 
work on assembling portfolios with predictable characteristics which can be used as a reliable form 
of investment for individuals and institutions. The approach to maximize predictability by 
considering mean reverting portfolios is a relatively new idea, introduced in [26] which does not 
follow the Markowitz approach. The practical application is the implementation of so-called 
convergence trading algorithms which take advantage of the predictable nature of the portfolio. The 
sparseness constraint, which makes the problem computationally difficult, is very important in real 
life, as it ensures that the transaction cost required to purchase the portfolio is limited. My 
contribution is the application of stochastic search techniques to this NP hard problem which find 
good approximate solutions within polynomial time. 

However, even if an algorithm with theoretically desirable runtime characteristics has been 
developed, such as above, the practical viability of the methodology often depends on technical 
details of the implementation. In practice, the computations can often be broken up into independent 
tasks which then need to be scheduled on a limited number of resources. This technical problem is, 
in itself, one that has attracted considerable amount of attention in the field. Given its importance to 
the overall applicability of heuristic methods to problems in finance, I decided to focus on it as the 
second main problem of my dissertation. Finding schedules for tasks running on identical machines, 
which minimize the total weighted tardiness has been proven to be NP hard, but I have been able to 
develop heuristic algorithms which run in polynomial time and have better scalability characteristics 
than other methods found in the literature. 

The below table summarizes the practical application of the problems examined in my 
dissertation. 

Theoretical problem description Practical applications in computational 
finance 

Identifying sparse, mean reverting portfolios • Investment portfolio selection for banks, 
hedge funds and portfolio managers 

• Low frequency electronic trading 
strategy based on convergence trading 

• High frequency, real-time electronic 
trading strategy based on convergence 
trading 

Finding schedules for tasks running on identical 
machines which minimize total weighted 
tardiness 

• Real-time scheduling of Monte Carlo 
simulations for intraday pricing 

• End-of-day scheduling of Monte Carlo 
simulations for daily mark to market 
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• Overnight scheduling of Monte Carlo 
simulations for risk and sensitivity 
calculations 

Table 1. Practical applications in computational finance of the problems examined in the 
dissertation 

1.1. Objectives of the dissertation 
One of the basic aims of computational finance over the last 50 years has been the 

development of efficient algorithms which leverage the availability of hardware which has become 
faster and faster over the years. In today’s world, the practical running speed of the algorithm is an 
essential feature which determines its scope of applicability. If the running speed can be improved to 
be sub-second then the algorithm can be applied in high frequency algorithmic trading, but if the 
algorithm takes longer to run, it can only be applied in low frequency trading applications. High 
frequency trading has become crucially important in today’s financial world where new quote and 
trading information arrives tick by tick in sub-second intervals, so the more quickly an automated 
algorithm can react, the more likely that it will be able to act upon up-to-date information. 

At the same time, many of the fundamental problems which have arisen in the field have 
been shown to be of exponential complexity or NP hard. As a result, the fundamental objective of 
computational finance has been to find numerical algorithms yielding approximate solutions within 
practically viable timeframes to these problems.  

The present dissertation has the same aim for two specific problems which are of crucial 
importance to financial institutions today: 

1) the problem of finding sparse portfolios, based on historical data, which maximize 
predictability (or mean reversion); and 

2) the problem of finding optimal schedules for a set of identical computational resources for 
jobs (Monte Carlo simulations)  with prescribed sizes, weights and deadlines which 
minimize total weighted tardiness. 

Even though these two problems are seemingly rooted in different areas they are brought 
together in the area of computational finance (portfolio optimization and optimal resource 
scheduling), and the theme of finding fast, heuristic approximate solutions to NP hard problems with 
applications in finance, is common. As a result, the theses provide novel and important contributions 
to the field of computational finance which have very practical applications. Thus the objective of 
the dissertation can be stated as aiming to bridge the gap between NP hard problems and real-time or 
near real-time solutions which can be used in high frequency trading. 
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1.2. Models and methods used in the research 
 

In order to achieve the results presented in the dissertation, a number of models and 
computational methods have been used and developed. These are outlined in this section. 

For solving the problem of sparse, optimally mean reverting portfolios, I follow the 
construction outlined in [26]. d’Aspremont made a number of assumptions in the construction: he 
assumed the underlying processes follow a VAR(1) model and that the resulting mean reverting 
portfolios can be described by the Ornstein-Uhlenbeck equation [70]. For the estimation of model 
parameters, I used the Moore-Penrose pseudoinverse [68] to solve the equation arising during the 
maximum likelihood estimation of the recursion matrix and I developed a novel recursive method 
for estimating the covariance matrix. Having estimated the parameters of the VAR(1) model, I 
mapped the prediction maximization problem to a generalized eigenvalue problem with cardinality 
constraint which has been shown to be NP hard [67]. Therefore, I applied simulated annealing [48] 
to the problem, in order to find a polynomial time approximation and I compared this to a number of 
benchmark methods. These include exhaustive search [1], greedy search [26] and a novel heuristic 
which I developed based on truncation. Having found the portfolio, I developed a novel method to 
find its long-term mean using pattern matching. Finally, the economic viability of the method was 
verified by running numerical simulations based on a novel convergence trading strategy which I 
developed based on a decision theoretic formulation. 

For solving the problem of finding optimal schedules on identical machines which minimize 
the total weighted tardiness of jobs, I used a binary scheduling matrix model to represent the 
schedules [3]. Furthermore, I studied a number of existing heuristic methods (EDD, WSPT, LWPF, 
LBS) which I subsequently used as benchmarks for evaluating the performance of my novel 
approach. I used matrix algebraic transformations to convert the problem to quadratic form and built 
the constraints into the objective function, using heuristic constants. This allowed me to use 
Lyapunov convergence via the Hopfield neural network [42] to find polynomial time approximate 
solutions to this NP hard problem. I further improved upon this method by introducing random 
perturbation to the intelligently selected initial point [4]. 

 

All model and method implementations were performed in the MATLAB computational 
environment, where numerical simulations were run on both synthetic and real, historical data for 
both problems at hand. The results presented in the dissertation are based on the numerical 
simulations performed in this way for both problems. 
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Problem 
investigated 

Sparse, mean reverting portfolio 
selection 

Task scheduling on identical 
machines 

Models used VAR(1) model 

Ornstein-Uhlenbeck model 

 

Binary scheduling matrix 

 

Methods 
applied 

• Maximum likelihood estimation 

• Moore-Penrose pseudoinverse 

• Novel recursive covariance 
matrix estimation  

• Benchmark methods 
(Exhaustive search, greedy 
search, novel truncation 
method) 

• Simulated annealing 

• Novel long-term mean 
estimation based on pattern 
matching 

• Novel convergence trading 
based on decision theoretic 
formulation 

• Heuristic optimization 
(EDD, WSPT, LWPF, 
LBS) benchmark methods 

• Combinatorial optimization 
of quadratic forms 

• Lyapunov convergence 

• Hopfield neural network 

• Random perturbations 

 

Sections in 
Dissertation 

• Chapter 2 (pp.21-49) • Chapter 3 (pp. 50-72) 

Validation Numerical simulations on synthetic and real historical data in 
MATLAB 

Table 2. Models, methods and validation used to derive the results of this dissertation. 
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1.3. Structure of the dissertation 
In chapter 2, I define and study the problem of finding sparse portfolios which maximize 

mean reversion. After formally defining this NP hard problem I present existing heuristics and also 
present a number of heuristics which I have developed, including truncation, exhaustive and 
simulated annealing methods. I then go on to explain classical ways of fitting the model and make a 
number of new contributions to this area. Finally, I present the results of these new methods on both 
synthetically generated data and real historical financial time series. 

In chapter 3, I define and study the problem of finding schedules for tasks on identical 
machines which minimize the total weighted tardiness. After formally defining this NP hard 
problem, I present existing heuristics and also a number of new heuristics which I have developed, 
including the Hopfield Neural Network (HNN) approach, the Smart Hopfield Neural Network 
(SHNN) approach and the Perturbed Smart Hopfield Neural Network (PSHNN) approach. 

In chapter 4, I summarize the main results of the dissertation, draw some general 
conclusions regarding the methodology used, and present directions for future research. 

Finally, in the appendix I formally define my notation and abbreviations as well as 
presenting a list of my own publications and a full bibliography for this work. 
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CHAPTER 2  

2.OPTIMAL SPARSE, MEAN REVERTING PORTFOLIO 
SELECTION 

In this chapter, I present discussion of the problem of finding sparse portfolios which 
maximize mean reversion. This is a very recently posed problem in [26] which differs greatly from 
the classical mean-variance approach to portfolio selection [62]. The intuition is that by selecting 
predictable portfolios, one can develop profitable, so called “convergence trading” strategies which 
can outperform the classical buy and hold strategy associated with minimizing risk for a given level 
of portfolio return. By introducing the sparseness constraint, we ensure that simple, easily 
interpretable portfolios are selected and that transaction costs are kept small. 

2.1. Introduction 
Ever since publication of the seminal paper of Markowitz [62], the selection of portfolios which 

are optimal in terms of risk-adjusted returns has been an active area of research both by academics 
and financial practitioners. A key finding of Markowitz is that diversification, as a means of 
reducing the variance and therefore increasing the predictability of an investment portfolio, is of 
paramount importance even at the cost of reducing expected return. The resulting, so-called “mean-
variance” approach to portfolio selection involves tracing out a surface of efficient portfolios which 
can be found via quadratic programming and has been applied successfully by practitioners ([49] 
[35]). Recent improvements to the model have considered including more complex measures of risk 
[32], transaction costs ([10],[85]) and sparsity constraints ([82], [12]) to this basic model. These 
additional constraints have made the portfolio selection problem significantly more complex, 
justifying the use of various heuristic methods, such as genetic algorithms ([57],[15]), neural 
networks [36] and even simulated annealing ([23],[13]). A comprehensive study of the 
metaheuristics in portfolio selection can be found in [28].  

At the same time, mean reversion, as a classic indicator of predictability, has also received a 
great deal of attention over the last few decades. It has been shown that equity excess returns over 
long horizons are mean-reverting and therefore contain an element of predictability ([73], [33],[61]).  

While there exist simple and reliable methods to identify mean reversion in univariate time 
series, selecting portfolios from multivariate data which exhibit this property is a much more 
difficult problem. This can be approached by the Box-Tiao procedure [21] to extract cointegrated 
vectors by solving a generalized eigenvalue problem. 
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In his recently published article, d'Aspremont posed the problem of finding sparse portfolios 
which maximize mean reversion [26]. The impetus is that by finding mean reverting portfolios, one 
can develop conversion trading strategies to produce profits, as opposed to the buy and hold strategy 
associated with portfolios which maximize excess returns or minimize risk. Sparseness, he argues, is 
desirable for reducing transaction costs associated with convergence trading as well as for increasing 
the interpretability of the resulting portfolio. He developed a new approach to solve the problem by 
using semidefinite relaxation and compared the efficiency of this solution to the simple greedy 
algorithm in a number of markets. 

My contribution to this topic is manyfold. First, I developed a new method for estimating 
parameters of the VAR(1) process, which also provides a model fit measure. Furthermore, I 
introduce a novel method for estimating the long-term mean of an Ornstein-Uhlenbeck process 
based on pattern matching. I also develop a number of simple heuristic methods and a new method 
for portfolio selection, adapting the simulated annealing method and finally develop a simple 
convergence trading algorithm through which I show the practical viability of my methods. Fig. 1 
illustrates the end-to-end framework I have developed for finding heuristic solutions to this NP hard 
problem. 

 

 

Fig. 1: Overall framework for identifying and trading sparse mean reverting portfolios 

2.2. Modeling mean reverting portfolios 
The problem I examine is the selection of sparse, mean reverting portfolios which follow the so-

called Ornstein-Uhlenbeck process [70]. Let ,i ts  denote the price of asset i at time instant t, where 

1,...,i n= and 1,...,t m=  are positive integers. I form portfolios, of value tp of these assets with 
coefficients ix , and assume they follow an Ornstein-Uhlenbeck process given by: 

 

 ( ) ,t t tdp p dt dWλ μ σ= − +  (1) 

 

where tW  is a Wiener process and 0λ >  (mean reversion coefficient), μ  (long-term mean), and 

0σ > (portfolio volatility) are constants.  
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Considering the continuous version of this process and using the Ito-Doeblin formula [44] to 
solve it, I get: 

 

 

 ( ) ( ) ( ) ( )
0

( ) 0 1
t

t st tp t p e e e dW sλλ λμ σ − −− −= + − + ∫  (2) 

 

which implies that 

 ( ) ( )[ ( )] 0 1t tE p t p e eλ λμ− −= + −  (3) 

 

and asymptotically 

 

 
2

lim ( ) ,
2t

p t N σμ
λ→∞

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∼  (4) 

For trading,λ  is a key parameter [26], as it determines how fast the process returns to the mean, 

as well as inversely indicating the level of uncertainty around the mean (via the standard deviation 
of the asymptotic Gaussian distribution). Hence, the larger theλ , the more suitable the mean 

reverting portfolio for convergence trading, as it quickly returns to the mean and contains a 
minimum amount of uncertainty around the mean. Therefore, I will be concerned with finding 
sparse portfolios which are optimal in the sense that they maximizeλ .  

2.3. Mean reverting portfolio as a generalized eigenvalue 
problem 
 

In this section, I view asset prices as a first order, vector autoregressive VAR(1) process. This is 
a very commonly used statistical model in financial time series analysis which generalizes the 
univariate autoregressive (AR) models by allowing for more than one evolving variable. VAR 
modeling is preferred in most related works ([17],[25],[26],[27]), as it does not require too many 
assumptions about the forces controlling the evolution of variables as do structural models with 
simultaneous equations. The model can be applied in most econometric settings where it is 
reasonable to hypothesize that variables may affect each other intertemporally [81]. 

Let ,i ts  denote the price of asset i at time instant t, where 1,...,i n= and 1,...,t m=  are positive 

integers, and assume that 1, ,( ,..., )T
t t n ts s=s  is subject to a first order vector autoregressive process, 

VAR(1), defined as follows: 
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 1 ,t t t−= +s As W  (5) 

 
where A is an n n×  matrix and (0, )t N IσW ∼ are i.i.d. noise terms for some 0σ > . 

One can introduce a portfolio vector 1( ,..., )T
nx x=x , where component ix denotes the 

amount of asset i held. In practice, assets are traded in discrete units, so { }0,1,2,...ix ∈ but for the 

purposes of this analysis I allow ix  to be any real number, including negative ones, which denote 

the ability to short sell assets. Multiplying both sides by vector x (in the inner product sense), I 
obtain 

 

 1
T T T

t t t−= +x s x s A x W  (6) 

 

Following the treatment in [26] and [21], I define the predictability of the portfolio as 

 

 
( )

1 1 1var( ) ( )( ) :
var( )

T T T T
t t t

T T T
t t t

E
E

ν − − −= =
x As x As s A xx

x s x s s x
, (7) 

provided that ( ) 0E =ts , so the asset prices are normalized for each time step. The intuition behind 
this portfolio predictability is that the greater this ratio, the more 1−ts  dominates the noise, and 
therefore the more predictable ts becomes. Therefore, following the construction in [26], I will use 

this measure as a proxy for the portfolio’s mean reversion parameter λ  in (1). The intuition behind 

this substitution is that the predictability measure is equivalent to the mean reversion parameter in 
the stationary case. Maximizing this expression will yield the following optimization problem for 
finding the best portfolio vector optx : 

 arg max ( ) arg max
T T

Tν= =opt
x x

x AGA xx x
x Gx

 (8) 

 
where G is the stationary covariance matrix of process ts . Based on (8), I observe that the problem 

is equivalent to finding the eigenvector corresponding to the maximum eigenvalue in the following 
generalized eigenvalue problem: 

 T α=AGA x Gx  (9) 

 

α can be obtained by solving the following equation: 

 

 det( ) 0T α− =AGA G  (10) 
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2.4. Optimal sparse portfolio selection 
In this section, I will define the problem of optimal portfolio selection under cardinality 

constraint. This corresponds to the second box in Fig. 1 and is at the very heart of the methodology. 
In the next section, I will review the parameter estimation techniques, represented by the first box, 
which will serve as input for the methods explained in this section. 

In the previous section, I outlined the process of selecting a portfolio which maximizes 
predictability by solving a generalized eigenvalue problem. However, I did this without considering 
the sparseness constraint. Adding this to (8), I can formulate the constrained optimization problem 
as follows: 

 
, ( )

arg max
n

T T

T
card L∈ ≤

=opt
x R x

x AGA xx
x Gx

 (11) 

where card denotes the number of non-zero components, and L is a given positive integer1 L n≤ ≤ . 

The cardinality constraint poses a serious computational challenge, as the number of 
subspaces in which optimality must be checked grows exponentially. In fact, Natarjan shows that 
this problem is equivalent to the subset selection problem, which is proven to be NP-hard [67]. 
However, as a benchmark metric, I can compute the theoretically optimal solution which, depending 
on the level of sparsity and the total number of assets, could be computationally feasible [1]. I also 
describe three polynomial time, heuristic algorithms for an approximate solution of this problem. 

2.4.1.  Exhaustive search method 

The brute force approach of constructing all 
!

!( )!
n

L n L
⎛ ⎞
⎜ ⎟−⎝ ⎠

 L-dimensional submatrices of G 

and TAGA and then solving all the corresponding eigenvalue problems to find the theoretical 

optimum is, in general, computationally infeasible. However, for relatively small values of n and L, 
or as an off-line computed benchmark, this method can provide a very useful basis of comparison. 
Indeed, for the practical applications considered by d’Aspremont [26] (selecting sparse portfolios of 
n=8 U.S. swap rates and n=14 FX rates), this method is fully applicable and could be used to 
examine the level of sub-optimality of other proposed methods. Numerical results have shown that 
this method can only be applied with reasonable running time up to n=22 (see Fig. 12) which is far 
smaller than the portfolio size in most practical applications. 

2.4.2. Greedy method 

 A reasonably fast heuristic algorithm is the so-called greedy method, first presented by 
d’Aspremont [26]. Let kI be the set of indices belonging to the k non-zero components of x. One can 
then develop the following recursion for constructing kI  with respect to k. 
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When 1k = , I set 
[ ]

( )
1

1,
arg max

T

jj

j n jj

i
∈

=
AGA

G
. Suppose now that I have a reasonable approximate 

solution with support set kI   given by ( )
: 0

arg max
n

CIk

T T

Tk
R x⎧ ⎫∈ =⎨ ⎬

⎩ ⎭

=
x

x AGA xx
x Gx

, where C
kI  is the complement 

of the set kI . This can be solved as a generalized eigenvalue problem of size k. I seek to add one 
variable with index 1ki +  to the set kI  to produce the largest increase in predictability by scanning 

each of the remaining indices in C
kI . The index 1ki +  is then given by  

 
{ }

{ }1
: 0

arg max max ,   where  
nC Jik

T T
C

k i kTR xi I
i J I i+

∈ =∈
= =

x

x AGA x
x Gx

\  (12) 

 

which amounts to solving (n − k) generalized eigenvalue problems of size k + 1. I then define 
{ }1 1k k kI I i+ += ∪ , and repeat the procedure until k = n. Naturally, the optimal solutions of the 

problem might not have increasing support sets 1k kI I +⊂ , hence the solutions generated by this 

recursive algorithm are potentially far from optimal. However, the cost of this method is relatively 
low: with each iteration costing ( )( )2O k n k− , the complexity of computing solutions for all target 

cardinalities k is ( )4O n . This recursive procedure can also be repeated forward and backward to 

improve the quality of the solution. 

2.4.3. Truncation method 

As opposed to the previous methods, a simple and very fast heuristic which I have 
developed is the following. First, compute optx , the unconstrained, n-dimensional solution of the 

optimization problem in (8) by solving the generalized eigenvalue problem in (9). Next, consider the 
L largest values of optx and construct LxL dimensional submatrices 'G  and ( ) 'TAGA  

corresponding to these dimensions. Solving the generalized eigenvalue problem in this reduced 
space and padding the resulting 'optx  with 0’s will yield a feasible solution trunc

optx to the original 

constrained optimization problem. The big advantage of this method is that with just two maximum 
eigenvector computations, I can determine an estimate for the optimal solution. The intuition behind 
this heuristic is that the most significant dimensions in the solution of the unconstrained 
optimization problem could provide, in most cases, a reasonable guess for the dimensions of the 
constrained problem. This is clearly not the case in general, but nonetheless, the truncation method 
has proven to be a very quick and useful benchmark for evaluating other methods. 
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2.4.4. Simulated annealing with random projections for  constraint satisfaction over a 
discretized grid 

In this section, I combine traditional simulated annealing methods ([48],[78]) with the 
sparseness constraint by applying random projection on each iteration. As a result, I am able to find 
a flexible and fast heuristic algorithm which implicitly satisfies the cardinality constraint. The 
method also has the advantage of guaranteeing to outperform the result of any other known heuristic 
by adding the other solution as a starting point and building in a “memory feature”. Furthermore, the 
method can be stopped at any point and will be able to give the best solution found in the limited 
time window. 

Another approach to solving (9) is to restrict the portfolio vector x to contain only integer 
values. Indeed, when it comes to trading methods utilizing the optimal portfolio vector, only an 
integer number of assets can be purchased in most markets, so this restriction more closely 
resembles the truth. If the per unit price of the asset is relatively large, this can give rise to a material 
difference to considering all real-valued portfolio vectors. As such, the equation in (11) becomes a 
combinatorial optimization problem over an n-dimensional discrete grid where the subspace of 
allowable solutions is limited to dimensionality L. The main difficulty in combinatorial optimization 
problems is that simpler algorithms such as greedy methods and local search methods tend to 
become trapped in local minima. A large number and variety of stochastic optimization methods 
have been developed to address this problem, one of which is simulated annealing as proposed by 
Kirkpatrick et al. [48] 

At each step of the algorithm, I consider a neighboring state w' of the current state nw  and 
decide between moving the system to state to w', or staying in nw . Metropolis et al [64] suggested 

the use of the Boltzmann-Gibbs distribution as the probability function to make this decision as 
follows: 

 

 ( ) ( ') ( )1   

1                  if    E( ) ( ')
'

if E( ) ( ') 
n

n
E En

T
n

E
P

e E
−+ −

>⎧⎪= = ⎨
⎪ ≤⎩

w w

w w
w w

w w
 (13) 

where E(.) is the function to be minimized and T is the temperature of the system. If T is fixed and 
the neighbor function which generates the random neighboring state at each step is non-periodic and 
ergodic (any state is reachable from any other state by some sequence of moves), then this system 
corresponds to a regular time-homogenous finite Markov chain. For the Metropolis transition 
probability function, the stationary probability distribution of finding the system at a given state w is 
given by the Boltzmann distribution: 
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( )

B

E
TKeπ
−

=
w

w  (14) 

where BK  is the Boltzmann constant, equal to 231.38 10−⋅  J/K. The stationary distribution given by 

(14) indicates that the maximum of function ( )E w will be reached with maximum probability [78]. 

Furthermore, when the temperature parameter T is decreased during the procedure (also known as 
cooling), convergence in distribution to the uniform measure over globally optimal solutions has 
been proven by Geman and Geman [37], provided that the cooling schedule is slow enough to be at 
least inversely proportional to the logarithm of time. In practice, the time performance of inverse 
logarithmic cooling is often untenable, so faster heuristic algorithms have been developed as a 
result, such as exponential, geometric and adaptive cooling and applied successfully to a wide range 
of combinatorial optimization problems ([24],[43],[45],[46]).  

In this application, based on the formulation in (8), the energy function to be minimized is 
defined as 

 ( )
T T

TE = −
w AGA ww

w Gw
 (15) 

 

The high-level pseudocode of the general simulated annealing algorithm used is as follows: 

 

s ← Greedy_sol; e ← E(s)                        // Start from Greedy 
sbest ← s; ebest ← e                            // Initial "best" solution 
k ← 0                                           // Energy evaluation count 
reject ← 0       // consecutive rejections 
while ~stop(reject,k,e,ebest)                   // While stop condition is  
        // not met 
  snew ← neighbor(s)                            // Pick some neighbour 
  enew ← E(snew)                                // Compute its energy. 
  if P(e, enew, temp(k/kmax)) > random() then   // Should I move to it? 
    s ← snew; e ← enew;                         // Yes, change state. 
    reject ← 0       // Reset reject counter 
  else reject ← reject + 1     // Increment reject 
counter 
  if enew > ebest then                          // Is this a new best? 
    sbest ← snew; ebest ← enew                  // Save to 'best found'. 
  k ← k + 1                                     // One more evaluation 
done 
return sbest                                    // Return the best found. 

Algorithm 1. High-level pseudocode for the simulated annealing methodology used. 

 

A very important feature of the simulated annealing method is that the cardinality 
constraint can be easily built into the search, by mapping the unconstrained w vector into a 
randomly selected L dimensional subspace on each step. The idea is that on each step, I randomly 
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select k of the n indices ( ) { }1,..., ; 1,...,k ji i i n∈ and I set the corresponding elements of w to be 0: 

: 0, 1,...,
ji j k= =w .  

As such, for implementing the neighbor function, I need a two-step approach to first 
randomly decide the up to L new non-zero values, and then to randomly decide the up to L new 
dimensions, given the starting values and dimensions. 

For the selection of non-zero values, two different approaches would be to either generate 
them completely anew, without regard to the starting point, or to perturb the starting non-zero values 
by uniformly generated random values between 0 and a constant k1. A similar choice can be made 
about the non-zero dimensions as well; they can either be generated completely randomly, 
independent of the starting point, or I can select 2k L≤  random new dimensions to change within 

the dimensions of my starting point. Having implemented various combinations of these choices and 
comparing the speed of convergence and quality of solution produced on generated data, the 
following implementation proved to be the best from the point of view of performance (see Fig. 11)  

 

function neighbor (s0, T)     // s0 is starting point,  
for i←1 upto L       // Generate L random 

 deltas[i]=rand(0,max(1,floor(100*T))    // perturbations to values 
         
P ← random permutation of nonzero indices in s0 
Q ← random permutation of zero indices in s0 
n ← rand(0,floor(L*T, (n-L)*T))    // # dimensions to change 
for i←1 upto n 
   swap P[i] and Q[i] 
snew=vector(P,s0[P]+deltas)     // insert perturbed values 
        // into perturbed P dims 
return snew 

Algorithm 2. Pseudocode for neighbor selection in simulated annealing 

 

The intuition behind this algorithm is that at higher temperatures more dimensions are 
allowed to change and by larger amounts, but as the system is cooled, only smaller changes to s0 are 
allowed. 

2.5. Estimation of VAR (1) model parameters 
As explained in the preceding sections, in the knowledge of the parameters G and A, I can 

apply various heuristics to approximate the L-dimensional optimal sparse mean-reverting portfolio. 
However, these matrices must be estimated from historical observations of the random process ts . 

This problem corresponds to the first box in Fig. 1. 



Norbert Fogarasi, Ph.D. dissertation 

30 

While there is a vast amount of literature on the topic of parameter estimation of VAR(1) 
processes, recent research has focused on sparse and regularized covariance estimation ([17], [25], 
[75]). However, my novel approach will be to find an unconstrained estimate for G which best 
describes the observed historical data and to deal with dimensionality reduction with the more 
sophisticated apparatus outlined above. Another important objective that I pose for the parameter 
fitting is to provide a measure of model fit of the real time series to VAR (1) model, which I can use 
in the portfolio selection and trading parts of my overall algorithm. 

2.5.1. Estimation of matrix A 

Recall from my earlier discussion that I assume ts  follows a stationary, first order 

autoregressive process as in equation (5). I first observe that if the number of assets n is great than or 
equal to the length of the observed time series, then A can be estimated by simply solving the linear 
system of equations: 

 1
ˆ .t t− =As s  (16) 

This gives a perfect VAR(1) fit for the time series in cases where there is a large portfolio of 
potential assets (e.g. considering all 500 stocks which make up the S&P 500 index), from which a 
sparse mean-reverting subportfolio is to be chosen. 

In most practical applications, however, the length of the available historical time series is 
greater than the number of assets considered, so A is estimated using, for example, least squares 
estimation techniques, as in  

 2
1

2

ˆ : min
T

t t
t

−
=

−∑A
A s As  (17) 

where 2⋅ denotes the Euclidian norm. 

Equating to zero the partial derivatives of the above expression with respect to each element 
of the matrix A, I obtain the following system of equations: 

 

 , 1, 1, , 1,
1 2 2

ˆ , 1,..., .
n T T

i k t k t j t i t j
k t t

s s s s i j n− − −
= = =

= ∀ =∑ ∑ ∑A  (18) 

Solving for Â and switching back to vector notation for s, I obtain 

 

 1 1 1
2

ˆ ( ) ( ),
T

T T
t t t t

t

+
− − −

=

= ∑A s s s s  (19) 

where 1 1( )T
t t

+
− −s s denotes the Moore-Penrose pseudoinverse of matrix 1 1( )T

t t− −s s . Note that the 

Moore-Penrose pseudoinverse is preferred to regular matrix inversion, in order to avoid problems 
which may arise due to the potential singularity of  1 1

T
t t− −s s .  
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2.5.2. Estimation of the covariance matrix of W 

Assuming that the noise terms in equation (1) are i.i.d. with (0, )t N IσW ∼  for some 

0σ > , I obtain the following estimate for σ  using Â  from (19): 

 

 
( )

2

1
2

1 ˆˆ .
1

T

t t
tn T

σ −
=

= −
− ∑ s As  (20) 

 
In the case that the terms of tW  are correlated, I can estimate the covariance matrix K of the 

noise as follows: 

 

 
( ) 1 1

2

1 ˆ ˆˆ ( ) ( ).
1

T
T

t t t t
tT − −
=

= − −
− ∑K s As s As  (21) 

 

This noise covariance estimate will be used below in the estimation of the covariance matrix. 

2.5.3. Estimation of covariance matrix G 

There are two independent approaches to estimating the covariance of a VAR(1) process 
based on a sample time series.  On the one hand, the sample covariance and various maximum 
likelihood-based regularizations thereof can provide a simple estimate and have been studied 
extensively for the more general case of multivariate Gaussian distributions ([17],[25],[27],[75]). In 
this treatment, I take the approach of using the sample covariance matrix directly without any 
regularization or finding structure via maximum likelihood, as sparsifying and structure finding will 
be left for the more sophisticated apparatus of the sparse portfolio selection, explained in Section 2. 
As such, I will define 1Ĝ as the sample covariance defined as 

 

 ( ) ( )1
1

1ˆ : ,
1

T
T

t t
tT =

= − −
− ∑G s s s s  (22) 

where s  is the sample mean vector of the assets defined as 

 
1

1: .
T

t
tT =

= ∑s s  (23) 

 

On the other hand, starting from the description of the VAR(1) process in (5) and assuming 
the more general case that the terms of tW  are correlated with covariance matrix K, I must have 

 1 ,T
t t−= +G AG A K  (24) 

which implies that in the stationary case 
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 .T= +G AGA K  (25) 

Having estimated A and K, as in the previous sections, this is a Lyapunov equation with 
unknown G and can be solved analytically to obtain an independent covariance estimate 2Ĝ . One 

potential issue with this approach is that 2Ĝ  is not necessarily positive definite and, as such, it may 

not be a permissible covariance estimate. This situation arises due to the fact that matrix A has been 
estimated using least squares best fit, without restricting it to be positive-definite and all of its 
eigenvalues to have modulus smaller than 1. Therefore, the stability theorem guaranteeing the 
positive definiteness of G cannot be used. In order to overcome this issue, in case the solution of the 
Lyapunov equation is non-positive-definite, the following iterative numerical method can be used to 
obtain a permissible covariance estimate 2Ĝ : 

 ( 1) ( ) ( ( ) ( ) ),Tk k k kδ+ = − − −G G G AG A K  (26) 

where δ  is a constant between 0 and 1 and ( )kG is the covariance matrix estimate on iteration k. 

Provided that the starting point for the numerical method, G(0), is positive definite (eg. the sample 
covariance matrix) and since the estimate of K is positive definite, by construction, this iterative 
method will produce an estimate which will be positive definite. It can also be seen that with 
appropriate choice of δ and stopping condition, this numerical estimate will converge to the solution 

of the Lyapunov equation in (25), in case that is positive definite. 

In latter sections some numerical results are presented which show that for generated 
VAR(1) data, these two covariance estimates are equivalent, provided that appropriately sized 
sample data is available for the given level of noise. However, for historical financial data, the two 
estimates can vary significantly. A large difference between the two estimates indicates a poor fit of 
the data to the VAR(1) model, hence I can define the following measure of model fit: 

 1 2
ˆ ˆ: ,β = −G G  (27) 

where M denotes the largest singular value of matrix M. 

 

2.6. Trading as a problem of decision theory 
Having identified the portfolio with maximal mean reversion that satisfies the cardinality 

constraint, the task now is to develop a profitable convergence trading strategy. The immediate 
decision that we face is whether the current value of the portfolio is below the mean and is therefore 
likely to rise so buying is advisable, above the mean and therefore likely to fall so selling is 
advisable, or close to the mean in an already stationary state, in which case no action will likely 
result in a profit. In order to formulate this as a problem of decision theory, I first need to estimate 
the mean value of the portfolio. In our overall framework, depicted in Fig. 1, this corresponds to the 
third box entitled “Portfolio parameter identification” and is a critically important step on the way to 
developing a profitable trading strategy. Note that once the mean is identified, we can move on to 
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the fourth box in Fig. 1 and identify a trading strategy based on buying sparse mean reverting 
portfolios below the estimated mean and selling above the estimated mean. A simple, binary model 
of trading in which we restrict ourselves to holding only 1 portfolio at a time can be perceived as a 
walk in a binary state-space, depicted in Fig. 2. 

 

 

Fig. 2: Trading as a walk in a binary state-space 

 

 

In practice, there are much more complex models of trading, but it proves to be very 
interesting to study this approach and the results allow some more general conclusions to be drawn. 
I present three different methods of identifying μ  from the observations of the optimal portfolio’s 

time series, { }, 1,...,t t m=p . 

2.6.1. Sample Mean estimator 

The simplest estimate of the mean of the process based on the time series observation of the 
historical values of the portfolio is the one given by the sample mean, defined as follows: 

 1
1

1ˆ :
m

t
tm

μ
=

= ∑p  (28) 

This estimate is akin to a measure used by technical traders and gives a poor estimate of the 
mean-reverting process, in case it is in its transient state, trending towards the mean. However, it has 
served as a very useful benchmark and performs surprisingly well in terms of trading results, as we 
will see later. 

2.6.2. Mean Estimation via least squares linear regression 

Following the treatment of Smith [83], I can perform a linear regression on pairwise 
consecutive samples of p as follows: 

 1t ta b ε+ = + +p p  (29) 
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for 1,..., 1t m= − . 

Then, an estimate of μ can be obtained from the coefficients of the regression as follows: 

 2ˆ :
1

b
a

μ =
−

 (30) 

Note that there is an instability in this estimate for a=1 in which case ˆ ln 0aλ = − = and 

hence the process is deemed not to be mean reverting based on the observed sample. 

 

2.6.3. Mean Estimation via pattern matching 

In the description of this novel mean estimation technique, I start from the definition of the 
discrete Orstein-Uhlenbeck process in equation (1) and consider its continuous solution given in 
equation (2). Disregarding the noise to consider only the expected value of the process, I can rewrite 
equation (3) as follows: 

 

 ( )( ) (0) tt e λμ μ μ μ −= + −  (31) 

 

where ( ) ( )t E p tμ = ⎡ ⎤⎣ ⎦  is a continuous process of the expected value of the portfolio at time step t 

with ( ) ( )0 0pμ = . Intuitively, this describes the value of the portfolio, without noise, in the 

knowledge of the long term mean and the initial portfolio value. 

In Fig. 3, I show some typical tendencies of ( )tμ for various relative values of (0)μ  and μ . 

The idea behind pattern matching is to observe historical time series values of 
( )( 1), ( 2),..., (0)t p t p t p= − −p and use maximum likelihood estimation techniques to determine 

which of the patterns ( )tμ  matches best. 
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Fig. 3: Some sample patterns of ( )tμ  

I first observe that ( )( 1), ( 2),..., (0)t p t p t p= − −p  is subject to a multivariate Gaussian 

distribution, the density function of which is given by 

 

 
( ) ( )

( ) ( )1
21( )

2 det

T
t t t t

t t
D e

π

−− − −
=

1p μ U p μ
p

U
 (32) 

where ( ) ( )( ) ( ) ( )
2

2: 1
2

i j i
ij E p t i p t j e eλ λσ

λ
− += − − = −U  is the time-correlation matrix of tp and 

( ) ( )( )1 ,..., 0t tμ μ= −μ . The idea is now to consider class Φ  of all t-length vectors, tμ which 

consist of sequences satisfying (31). The maximum likelihood “pattern matching” estimate can now 
be formulated as follows: 

 
( ) ( )

( ) ( )1
21ˆ arg max .

2 det

T
t t t t

t
t

e
π

−− − −

∈Φ
=

1p μ U p μ

t
μ

μ
U

 (33) 

This is equivalent to 

 { }1 1ˆ arg min 2 .
t

T T
t t t t

− −

∈Φ
= −t

μ
μ μ U μ μ U p  (34) 

Using the definitions of ijU and tμ to expand (34) then taking the derivative of this quadratic 

expression with respect to μ , equating to zero and solving, I obtain the following closed-form 

estimate for the long term mean:  
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Having observed the historical portfolio values in tp and ( ) 00μ = p , I can substitute 

ˆTσ = x Kx and λ computed via linear regression [83] into this equation to obtain an estimate for the 

long term mean. 

2.6.4. A simple convergence trading strategy 

The main task after identifying the mean reverting portfolio and obtaining an estimate for its 
long-term mean μ , is to verify whether ( )tμ μ<  or ( )tμ μ≥  based on observing the 

samples{ }( ) ( ), 1,...,Tp t t t T= =x s . This verification can be perceived as a decision theoretic 

problem, since direct observations of ( )tμ are not available. 

If process ( )p t is in stationary state then the samples { }( ), 1,...,p t t T=  are generated by a Gaussian 

distribution 
2

,
2

N σμ
λ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. As a result, for a given rate of acceptable error ε , we can select an α for 

which 
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2
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/
2

1 1
2 / 2

u

e du
μμ α

σ λ

μ α

ε
πσ λ

−+ −

−

= −∫  (36) 

 . 

As such, having observed the sample [ ]( ) ,p t μ α μ α∈ − + , it can be said that we accept the 

stationary hypothesis which holds with probability 1 .ε−  Thus the trading strategy can then be 

summarized as follows: 

• If the observed sample ( )p t μ α< − then we accept the hypothesis that ( )tμ μ<  The error 

probability of this hypothesis is 
2

2
( )

/
2

1 / 2
2 / 2

u

e du
μμ α

σ λ ε
πσ λ

−−
−

−∞

=∫ . In this case, we buy the 

portfolio in case we have cash at hand and we hold the portfolio if we already have one. 

• If the observed sample ( )p t μ α> + then we accept the hypothesis that ( )tμ μ>  The error 

probability of this hypothesis is 
2

2
( )

/
2

1 / 2
2 / 2

u

e du
μ

σ λ

μ α

ε
πσ λ

−∞ −

+

=∫ . In this case, if we have a 

portfolio, we sell it, otherwise we perform no action. 
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• If the observed sample [ ]( ) ,p t μ α μ α∈ − + then we accept the hypothesis that ( )tμ μ=  The 

error probability of this hypothesis is 
2

2
( )

/
2

11
2 / 2

u

e du
μμ α

σ λ

μ α

ε
πσ λ

−+ −

−

− =∫ . Then sell if a portfolio 

is held, or perform no action if only cash is held.  

 

As such, I can now extend Fig. 2 to present a complete flowchart for the proposed simple 
trading strategy in Fig. 4. 

 

 

Fig. 4: Flowchart for simple convergence trading of mean reverting portfolios 

 

2.6.5. Some financial and practical considerations of trading 

Having worked out the mathematical and algorithmic foundations for mean reverting 
trading, in this section some of the financial considerations are examined which arise during trading. 
One important question is whether to spend all the available cash at the time we identify a mean-
reverting portfolio which is below its long-term mean level or to use some cash management 
strategy to only spend part of the current holdings. Indeed, we have two parameters, β  and λ  

which we can use to help establish the level of confidence in the profitability of the portfolio. For 
simplicity, in the presented results I have used the approach of spending all of the available cash 
each time I identify an appropriate portfolio.  

Furthermore, the simple convergence trading strategy I described in the previous section 
allows holding only one portfolio at a time. I could enhance this to have the ability to hold a number 
of portfolios at once, continually estimating the remaining profitability of each and comparing this 
to the best available portfolio in the market at each time step. 

Finally, in the numerical results, I have assumed that we have the ability to buy and sell 
assets without any transaction costs and we also have the ability to short sell. In order to make the 
results more realistic, I could introduce a bid-ask spread or a more sophisticated order book model to 
estimate the true profitability of these methods in the presence of market friction.  

In terms of the applicability of the methodology in real life, two different approaches may be 
taken. Firstly, by applying methods which can be implemented in real-time with sub-second 
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response time, the convergence trading methodology can be implemented in a high frequency 
trading setting. With the arrival of each new tick in the market, the VAR(1) model parameters can be 
re-estimated and the optimal portfolio selection algorithm can be run. Depending on the positioning 
of the price of the portfolio with respect to its long term mean, the portfolio may be purchased. In 
case we already hold a portfolio, its long term mean should be recalculated and the appropriate 
action should be taken based on this. Given the necessary computation times, this can only be 
realistically done in real-time with the truncation or greedy methods. Alternatively, in a low 
frequency trading environment, where new information from the market is only observed on a daily 
or hourly basis, more complex methods such as simulated annealing, has enough time to run and 
suggest the optimal portfolio to be purchased. As shown, this method consistently outperforms the 
simpler portfolio selection methods and therefore should result in portfolios with higher mean 
reversion.  

2.7. Performance analysis of sparse portfolio optimization 
In this section, I will review some results of the numerical tests which were produced for 

validating the methods outlined earlier. I first tested the model parameter estimation methods on 
generated data to show their viability and observe their limitations. I then compared the 
effectiveness of the greedy search to the theoretically optimal exhaustive method on generated time 
series. 

2.7.1. Performance of VAR(1) model parameter estimation 

In order to compare the portfolio selection methods outlined in section 2, I generated 
synthetic VAR(1) data as follows. I first generated an n n×  random matrix A ensuring that all its 
eigenvalues were smaller than 1. I then generated random i.i.d. noise (0, )t N IσW ∼  for an arbitrary 
selection of σ . Finally, I used equation (5) to generate the random sequence ts  ensuring that all its 

values were positive Then, for increasing sizes of t, I ran a number of independent tests and looked 
at the average error in norm. Fig. 5 shows that the estimate gets progressively better with the size of 
the available time series and that it is remarkably resilient to increasing values of σ . 
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Fig. 5: ˆ −A A vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent time series for each t and 

plotting the average norm of error 

In a similar fashion, I compared the covariance estimate 1Ĝ as defined in (22) to 2Ĝ , the 

solution of the Lyapunov equation, substituting Â  and σ̂  as estimated from the data into equation 

(25). I then considered the proximity of these two estimates on increasing sample sizes and 
increasing values of σ , taking the average of a number of independent tests. Fig. 6 shows the 

results. 
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Fig. 6: 1 2
ˆ ˆ−G G vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent time series for each t 

and plotting the average norm of error 
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It can be seen that there is good agreement between the two estimates of covariance even for 
relatively small amounts of data (100-300 data points) which gets increasingly better with the 
growth of the sample size. Note also that there is significant difference between the different 
amounts of noise on the process, smaller noise implies a better agreement between the two 
covariance indicators. In order to gain a better understanding of the convergence of the two 

covariance estimators, we examined the relative difference 
1 2

1

ˆ ˆ

ˆ
−G G

G
 for varying levels of σ . The 

results, shown on Fig. 7, show good convergence of the two norms for all values of σ .  
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Fig. 7: 
1 2

1

ˆ ˆ

ˆ
−G G

G
 vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent time series for each t 

and plotting the relative difference of covariance estimators 

In the next numerical test, I used fixed sized sliding windows of various sizes over the 
generated VAR(1) sequence and I compared the sample covariance in the current time window with 
the current value of the recursive relation in (24). Fig. 8 shows the values of the two estimates for 
varying levels of σ . I can see that both measures converge to the same level, but the covariance 

estimate obtained from (24) is more resistant to noise in the sample data. Note that all results were 
generated with a fixed 0.1δ = , which guaranteed convergence and was used consistently throughout 

my numerical results. These results could be further optimized via empirical analysis of the accuracy 
and convergence of the numerical estimator with respect to this δ parameter which is left as an area 

of future research.  
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Fig. 8: Sample covariance and recursive covariance estimates over sliding windows of size 50 over 
5000 samples for σ =0.1, 0.3, 0.5, 1 (note the differences in scaling of the plots) 

 

2.7.2. Performance of Ornstein-Uhlenbeck model parameter estimation 

In order to test the relative accuracy of the three different estimates of μ  presented in 

Chapter 4, I used simulated Ornstein-Uhlenbeck processes. Note that for simulation purposes, as 
shown in [38] instead of equation (1), it is more appropriate to use the discrete version of the 
differential equation, given by 

 ( ) ( ) ( ) ( )21
1 1 ( )

2

t
t t

e
p t e p t e dW t

λ
λ λ μ σ

λ

− Δ
− Δ − Δ

−
= − + − +  (37) 

As seen in Fig. 9, for a reasonably sized λ and sufficiently large sample, the linear 

regression method produces a smaller Mean Squared Error (MSE) than the other two estimates.  
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Fig. 9:  MSE of each μ estimate as a function of σ . Fixing 1λ = , 0 0μ =  and sample size of 100, 

I generated noisy sequences as per (37) with 0,1, 2,...,50μ = and 0.01,0.02,..., 2.00σ = . 

On the other hand, Fig. 10 shows that the linear regression method is unstable for smaller 
sample size (in these experiments, I used 20) and for small values of λ . Note also that as I increase 
λ , the pattern matching estimate produces increasing MSE with the limit of producing identical 

MSE to the sample mean method. 
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Fig. 10:  MSE of each μ estimate as a function of σ . λ =0.5, 1, 2, 5, 0 0μ =  and sample size of 20. 
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2.7.3. Performance of portfolio selection and trading on generated data 

In order to compare the portfolio selection methods outlined in section 2.4, I generated 
synthetic VAR(1) data as follows. I first generated an n n×  random matrix A, ensuring that all of its 
eigenvalues were smaller than 1. I then generated random i.i.d. noise (0, )t N IσW ∼  for an arbitrary 
selection of σ . Finally, I used equation (5) to generate the random sequence ts  ensuring that all of 

its values were positive. I then used the methods of section 3 to compute the estimates Â , K̂ and 
Ĝ , and computed optimal sparse portfolios, maximizing the mean-reversion coefficientλ .  

I will now provide some technical details for the implementation of the simulated annealing 
algorithm. As explained in section 2.4.4, optimality in distribution of the solution of simulated 
annealing can be proven, as long as the cooling schedule is slow enough to be at least inversely 
proportional to the logarithm of time [37]. However, for concrete applications this schedule is 
“utterly impractical […] and amounts to a random search in state space.” [69] As such, I 
implemented the exponential cooling schedule of the form 

 

 0( ) tT t T α=  (38) 

 

In my implementation, I used T0=0, α =0.8 and a maximum of 3,000 repeats at each 

temperature level, but moving to the next temperature when 100 successful moves have been made. 
This technique is used to ensure there are a sufficient number of trials at each temperature level, but 
also enables the algorithm to proceed if there is reasonable progress.  

The same principles must guide my selection of stopping conditions. Since my specific 
application contains no a priori target or lower limit for the minimization problem, I set a stopping 
temperature Tstop=10-8. However, if the algorithm finds no improvement over 10,000 consecutive 
trials, I also stop the algorithm. Another optimization heuristic I found successful for difficult 
surfaces is to revert to the best solution thus far after 500 unsuccessful attempts.  

As shown, it is practical to select a competitive starting point for the algorithm because, by 
my construction, the final solution is guaranteed to be at least as good as the starting point. Given 
the linear scalability of eigenvectors, I can give any scalar multiple of the solution of the greedy 
algorithm as the starting point for the algorithm. Given that it only operates over discrete whole 
values, it has been found advisable to give a large scalar multiple of the normalized greedy solution 
as a starting point – for the purposes of my numerical runs, I used 100 times the normalized greedy 
solution. 

Having run 3,000 independent simulations for selecting sparse portfolios of five assets out 
of a universe of ten, I found that the greedy method generates the theoretically best result produced 
by an exhaustive search in 70% of the cases. Of the remaining 30% where an improvement over the 
greedy method is possible, simulated annealing managed to find an improvement in slightly over 
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one-third of the cases, namely in 11% of all simulations. The impact of the improvement produced 
by the simulated annealing method can be significant, as illustrated in Fig. 11 by one specific 
generated example where simulated annealing substantially outperforms the greedy method. I also 
note that the truncation method performs poorly in this analysis, providing mean reversion 
coefficients lower than other methods in over 99% of the generated cases. 
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Fig. 11: Comparison of portfolio selection methods of various cardinalities on n=10-dimensional 
generated VAR(1) data. 

 

In the following simulation, I increased the asset population to 20 and restricted cardinality 
of the optimal portfolio to ten. Intuitively, this causes the greedy method to go astray more 
frequently and thus would provide more room for improvement. The simulations indeed confirm this 
intuition, as in a simulation of 1,000 independent cases, the greedy method was only able to find the 
theoretical optimum in only 1% of cases, with simulated annealing outperforming the greedy 
method in 25% of all cases. This indicates that for larger problem sizes, simulated annealing 
becomes more attractive compared to other simple heuristic methods. This finding is also confirmed 
when analyzing the runtimes of the different algorithms. As expected, truncation and greedy 
methods are clearly the fastest of the four examined methods. The speed of simulated annealing 
depends largely on the settings of the parameters, but it is generally slower than even an exhaustive 
search for smaller values of n. However, over n=21, simulated annealing is faster than exhaustive 
search. At the other end of the spectrum, the greedy and truncation methods, although clearly less 
optimal than exhaustive and simulated annealing, are very fast and therefore can be used for real-
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time algorithmic trading applications for most reasonably-sized problems. For a total asset size of 
100, to compute all sparse portfolios of cardinalities one to 100 took only two seconds with the 
truncation method and only 31 seconds with the greedy algorithm on a Pentium 4, 3.80 GHz 
machine. Simulated annealing can be used for lower frequency (daily or infrequent intraday trading) 
for most problem sizes. The optimal exhaustive method is only practical for daily or intraday trading 
if the total number of assets does not exceed 25. Fig. 12 shows more details of the runtimes of the 
different algorithms. 
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Fig. 12: CPU runtime (in seconds) versus total number of assets n, to compute a full set of sparse 
portfolios, with cardinality ranging from 1 to n, using the different algorithms. 

 

In order to prove the economical viability of the methodology, I implemented the simple 
convergence trading strategy, as outlined in section 4.3. I generated n=10-dimensional VAR(1) 
sequences of length 270, of which the first 20 time steps were used to estimate parameters of the 
model and find the optimal portfolio of size L=5 using the different methods. The following 250 
(approximate number of trading days in a year) were used to trade the portfolio, using the simple 
linear regression estimate of μ . Running each of the algorithms on 2,000 different time series, I 

found that all methods generated a profit in over 97% of the cases. The size of the profit, starting 
from $100, using the risky strategy of betting all of the cash on each opportunity, increased 
monotonically in most simulations, reaching as high as 400% in some cases. The biggest loss across 
the 2,000 runs was 37% of the initial wealth, showing the robustness of the method on generated 
data. Fig. 13 shows a typical pattern of successful convergence trading on mean-reverting portfolios 
selected from generated VAR(1) data.  
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Fig. 13: Typical example of convergence trading over 250 time steps on a sparse mean-reverting 
portfolio. Weighted mix of L=5 assets were selected from n=10-dimensional generated VAR(1)  

process by simulated annealing during the first 20 time steps. A profit of $1,440 was achieved with 
an initial cash of $100 after 85 transactions. 

I observe that the more frequent the movement around the estimated long-term mean, the 
more trading opportunities arise, hence the larger the profitability of the methodology. Fig. 14 shows 
the histogram of trading gains achieved by the simulated annealing method.  
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Fig. 14: Histogram of profits achieved over 2,000 different generated VAR(1) series by simulated 
annealing.  
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All four methods produced average profits in the same order of magnitude, with the 
distribution of trading gains very similar. This is despite the fact that the exhaustive method 
produced mean reversion coefficients on average 15 times those produced by the truncation method, 
and three times those produced by the greedy method and simulated annealing. This implies that the 
profits reached by this simple convergence trading strategy are not directly proportional to the 
lambda produced by the portfolio selection method. In order to maximize trading gains, other factors 
(such as the model fit, the amount of diversion from the long-term mean, etc) would need to be 
taken into account. This topic is the subject of further research. 

2.7.4. Performance of portfolio selection and trading on historical data 

In accordance with the related literature ([5],[26],[73]), I consider daily close prices of the 
500 stocks which make up the S&P 500 index from July 2009 to July 2010. I use the methods of 
section 2.5 to estimate the model parameters on a sliding window of eight observations and select 
sparse, mean reverting portfolios using the algorithms of section 2.4. Using the simple convergence 
trading methodology in section 2.6.4 for portfolios of sparseness L=3 and 4, the methods produced 
annual returns in the range of 23-34% (note that the return on the SP500 index was 11.6% for this 
reference period). Simulated annealing performed similarly to the greedy method for most 
cardinalities, but produced better mean reversion coefficients and better profit return for the case 
L=4 (see Fig. 15). 

 

Fig. 15: Comparison of minimum, maximum, average and final return on S&P500 historical data of 
the greedy and simulated annealing methods for sparse mean-reverting portfolios of size L=3 and 

L=4 

Next, I studied US swap rate data for maturities 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y, and 30Y 
from 1995 to 2010. Similar to the S&P 500 analysis, I used sliding time windows of eight 
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observations to estimate model parameters, and applied the simple convergence trading 
methodology on heuristically selected mean reverting portfolios. Due to a poorer model fit, I 
observed more moderate returns of 15-45% over the 15 years for portfolio cardinalities of L=4-6. 
The methods generated best results for cardinalities L=4 and 5 (see Fig. 16) 

 

Fig. 16: Comparison of minimum, maximum, average and final return on historical US swap data of 
the truncation method for sparse mean-reverting portfolios of cardinality L=1-8 

2.8. Conclusions and directions for future research 
I have examined the problem of selecting optimal sparse mean-reverting portfolios based on 

observed and generated time series. After reviewing the novel parameter estimation techniques 
suggested in earlier publications, I have adapted simulated annealing to the problem of optimal 
portfolio selection. I have shown that the exhaustive method can be a viable practical alternative for 
problems with an asset universe size up to 25, and examined the relative performance of simulated 
annealing versus the greedy method whilst considering the theoretically best solution.  I concluded 
that even for small problem sizes (ten assets and portfolios restricted to cardinality of five), 
simulated annealing can outperform the greedy method in 10% of the cases, very significantly in 
some cases. This ratio improved to 25% with the doubling of the problem size and cardinality 
restriction suggesting that simulated annealing becomes more appealing for larger problem sizes, 
whilst having the asymptotic runtime of simpler heuristics. Furthermore, the viability of the entire 
framework has been demonstrated by introducing a simple convergence trading strategy which 
proved to be very profitable on generated VAR(1) sequences and also viable on real historical time 
series of S&P 500 and US swap rate data. However, the fact that all four methods produced very 
similar profit profiles implies that the relationship between the mean reversion coefficient produced 
by the selected sparse portfolio and the profits achieved by trading is nontrivial. Our conclusion is 
that more factors (such as distance from the mean, model fit, etc.) needs to be taken into account in 
the selection of the objective function. However, the method can be directly applied to these more 
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complex objective functions, making the suggested numerical approach viable. Finally, more 
sophisticated trading methods, involving multiple portfolios and better cash management, could be 
developed to further enhance trading performance, and they could be analyzed with the introduction 
of transaction costs, short-selling costs or an order book. 
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CHAPTER 3 

3.TASK SCHEDULING ON IDENTICAL MACHINES 

3.1. Introduction 
Scheduling algorithms were first developed in the fifties, considering applications in naval 

logistics. During the sixties, a significant amount of work was done on dynamic programming and 
integer programming formulations of scheduling problems [72]. During the seventies, computer 
scientists discovered scheduling as a tool for improving the performance of various computer 
systems [22] and started focusing on the computational complexity hierarchy of various algorithms. 
In the eighties, several research directions were pursued with increasing attention on stochastic 
scheduling algorithms [72]. In recent years, with the advent of grid and subsequently cloud 
computing, there is renewed interest in the field for many applications in computational biology, 
chemistry and finance [3]. 

Scheduling theory has a very important application in running large scale Monte Carlo 
simulations in financial services firms for evaluating risks and pricing. As a result, finding optimal 
schedules in real time which minimize the completion time of jobs subject to capacity constraints is 
an especially important task. More specifically, in the area of computational finance, the problems of 
portfolio selection, pricing and hedging of complex financial instruments requires an enormous 
amount of computational resources whose optimal usage is of utmost importance to financial 
services companies. The prices and risk sensitivity measures of complex portfolios need to be 
reevaluated daily, for which an overnight batch of calculations is scheduled and performed for 
millions of financial transactions, utilizing thousands of computing nodes. Each job has a well-
defined priority and required completion time for availability of the resulting figures to the trading 
desk, risk managers and regulators. The jobs can generally be stopped and resumed at a later point 
on a different machine which is referred to as preemption in scheduling theory. For simplicity of 
modeling the problem, machines are generally assumed to be identical and there is a known, 
constant number of machines available. Tardiness of an individual job under a given schedule is 
defined as the amount of time by which the job finishes after its prescribed deadline, and is 
considered to be zero if the job finishes on or before the deadline. 

This formalism actually quite closely resembles many practical applications in the financial 
sector. At many financial institutions, including Morgan Stanley, complex financial derivative 
transactions can only be evaluated using Monte Carlo pricing techniques. These calculations are 
performed on large-scale grid computing infrastructures where the nodes can be considered identical 
and jobs have well defined due dates and priorities. When evaluating the risk profile of large 
portfolios of such derivatives, computations are scheduled overnight on large “compute farms”. 



Polynomial time heuristic optimization methods applied to problems in computational finance 

51 

Even a 5-10% improvement in computation time via scheduling can result in figures being more 
readily available for traders, risk managers and regulators and can save millions of dollars in 
hardware resources. Therefore, this is an extensively studied problem with significant practical 
applications. As such, the problem of finding optimal schedules for jobs running on identical 
machines has been extensively studied over the last three decades. In his paper, Sahni presents an 
O(n log mn) algorithm to construct a feasible schedule, one that meets all due times, if one exists, 
for n jobs and m machines [77]. The basic idea of the algorithm is to schedule jobs with earliest due 
dates first, but fill up machines with smaller jobs if possible. Note that this method allows the 
development of an algorithm to compute the minimal amount of unit capacity (the capacity available 
at each time unit, assuming constant capacity throughout) for which a feasible schedule exists.  This 
result has been extended to machines with identical functionality but different processing speed, 
termed uniform machines, and jobs with both starting times and deadlines; Martel constructs a 
polynomial time feasible schedule for this problem, if one exists [63]. However, the scheduling task 
becomes more difficult when a feasible schedule does not exist and the goal is to minimize some 
measure of delinquency, often termed tardiness.  

In case of minimizing the maximum tardiness across all jobs, Lawler shows that the problem 
is solvable in polynomial time, even with some precedence constraints [53]. Martel also used his 
construction to create a polynomial time algorithm to find the schedule which minimizes maximum 
lateness[63].  However, if the measure concerns the total tardiness instead of the maximal one, then 
even the single machine, total tardiness problem (without weights) was proven to be NP-hard by Du 
and Leung [30]. A pseudopolynomial algorithm has been developed by Lawler for this problem, 
using dynamic programming, but this is for the 1-machine problem and does not have good practical 
runtime characteristics [52]. 

Once the NP-hardness of the TWT problem was established, most of the research work on the 
problem concerned the development of fast, heuristic algorithms. Dogramaci and Surkis propose a 
simple heuristic for the total (non-weighted) tardiness problem without preemption [31]. 
Rachamadugu and Morton then studied the identical machine, total weighted tardiness problem 
without preemption [74]. They proposed a myopic heuristic and compared this to earliest due date 
(EDD), weighted shortest processing time (WSPT) and Montagne’s rule on small problem sizes 
(two or five jobs in total). Azizoglu and Kirca worked on an algorithm to find optimal schedule for 
the unweighted total tardiness problem without preemption, but their branch and bound exponential 
algorithm is too slow, in practice, for problems with more than 15 jobs [16]. Armentano and 
Yamashita examined the non-weighted problem without preemption [14], and starting from the 
KPM heuristic of Koulamas [50] improved upon it, using tabu search. Guinet applies simulated 
annealing to solve the problem with uniform and identical machines and a lower bound is presented 
in order to evaluate the performance of the proposed method [40]. More recently, Sen et al. surveyed 
the existing heuristic algorithms for the single-machine total tardiness and total weighted tardiness 
problems [79] while Biskup et al. [19] did this for the identical machines total tardiness problem and 
also proposed a new heuristic. Akyol and Bayhan [11] provide an excellent recent review of 
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artificial neural network based approaches to scheduling problems and proposes a coupled gradient 
network to solve the weighted earliness plus tardiness problem on multiple machines. The feasibility 
of the method is illustrated on a single 8-job scheduling problem. Maheswaran et al. developed a 
Hopfield Neural Network approach to the single machine TWT problem and showed that the results 
were encouraging for a specific 10-job problem [58]. 

During my research, I designed a novel polynomial time heuristic for the identical machine 
TWT problem, based on the Hopfield neural network approach which is shown to perform better 
than existing simple heuristics and has desirable scaling characteristics. First, I mapped the problem 
to a Quadratic Unconstrained Binary Optimization (QUBO) problem. Then, I reformulated this to be 
directly solvable by a Hopfield neural network and developed effective methods to iteratively set the 
heuristic parameters. Finally, I mapped the results back to admissible schedules and evaluated the 
performance against other benchmarks. 

I have further improved this approach by intelligent selection of the starting point and 
considering perturbations to this starting point. I have tested the newly developed methods on a large 
number of randomly generated problems as well as on a real scheduling data set obtained from 
Morgan Stanley, one of the largest financial institutions in the world. 

 

 

Fig. 17: Summary flow diagram of the heuristic approach to solving the total weighted tardiness 
scheduling problem. 
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3.2. Problem Formulation 
In this section, I give a formal presentation for the problem of optimally scheduling jobs on finite 
number of identical processors under constraints on the completion times.  The basic formalism is 
the following: 

• Given N  jobs with sizes { }1 2 3, , , N
Nx x xx= … ∈x ` . The processing of the jobs can be 

stopped and resumed arbitrary at any time, so the processing time units of each job need not 
be contiguous. In the literature this condition is known as preemption and also assumes a 
task started on one machine can continue on another [22]. 

• For each job a cutoff time is prescribed by { }31 2, , , , N
NK K K K…= ∈K ` . This constraint 

defines the time within which the job is to be completed. 

• The constant number of processors, the capacity of the system is denoted by V ∈`  

• We are also given a vector { }2 31 ,  0, 1,., , , ., .,N
iN w iw w w w N… ≥ ∀= =∈w \ denoting the 

relative priority (or weight) of each job, which we could use in the definition of the 
objective function. 

A schedule is represented by a binary matrix { }0,1 N L×∈C where , 1i jC =  if job i  is being 

processed at time slot j , and L  denotes the length of the schedule. An example is given in (39) 

where the parameters are the following: 2V = , 3N = , { }2,3,1=x , { }3,3,3=K . 

 
1 0 1
1 1 1
0 1 0

⎛ ⎞
⎜ ⎟=⎜ ⎟
⎜ ⎟
⎝ ⎠

C  (39) 

The first row in (39) denotes the fact that under this schedule C, the first job is processed in time 
steps one and three (note that preemption is used as the processing of this job is not continuous) and 
therefore the prescribed size two of this job completes within the prescribed cutoff time of time step 
3. Similarly, the three units of the second job complete within the cutoff time of three and the third 
job is completed ahead of the cutoff time on time step two. Summing the columns of matrix C, we 
see that the maximal capacity of V=2 is fully utilized on each time step. 

In order to evaluate the effectiveness of a given schedule C, I define tardiness of a job as follows: 

 ( )0,maxi i iT F K= − , (40) 

where iF  is the actual finish time of job i  under schedule C: { },arg max 1i i j
j

F C= =  (The position 

of the last 1 in the ith row in scheduling matrix C .) 

The problem which I want to solve can now be stated formally as follows: 
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1

: arg min
N

opt i i
i

wT
=

= ∑
C

C  (41) 

Under the following constraints: 

• The length of jobs in the scheduling matrix equals the pre-defined amounts 

 ,
1

, 1,...,
L

i j i
j

C i Nx
=

= ∀ =∑  (42) 

• The scheduled jobs at a given time instant does not exceed the capacity of the system: 

 .
1

, 1,...,i

N

i
jC V j L

=

≤ ∀ =∑  (43) 

I revisit the previous example with a minor change: 2V = , 3N = , { }2,3,2=x  { }3,3,3=K  and a 

weight vector { }3,2,1=w . It can be observed that there is no solution, in which all jobs are 

completed before their cutoff times. A minimal weighted tardiness solution is the following: 

 
1 0 1 0
1 1 1 0
0 1 0 1

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

C  (44) 

 

3.3. Existing Heuristic Methods 
Given the NP-hardness of the scheduling task as shown by Du and Leung [30], and therefore 

the amount of time it would take to find the exact, optimal solution, in most real-world settings the 
pragmatic approach of finding a fast, sub-optimal, but good solution is followed. As outlined in the 
introduction, this has been a very active field of research, and most studies use the Earliest Due Date 
(EDD) and Weighted Shortest Process Time (WSPT) heuristics as benchmarks for evaluating the 
proposed algorithms. In addition to these, I also outline the recently developed Load Balancing 
Scheduling (LBS) heuristic and a newly proposed Largest Weighted Process First (LWPF) heuristic. 
Furthermore, I also outline a random processing method which is used as a low benchmark for the 
testing results. 

3.3.1.  Earliest Due Date (EDD) Heuristic 

The EDD heuristic orders the sequence of jobs to be executed from the job with the earliest 
due date to the job with the latest due date. Using the notation of chapter 2, I relabel the job indices 
so that the following inequality holds 

 1 2 ... NK K K≤ ≤ ≤  (45)   

Once this ordering is determined, the jobs are allocated to the machines in this order, always 
utilizing the maximal capacity. Once a job finishes and capacity is freed up, the next job using the 
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above ordering is scheduled on the freed up machine. It has been shown in Pinedo 2008 that EDD 
finds the optimal schedule when one wants to minimize the maximum tardiness on a single machine. 
However, note that when the objective function includes the relative priorities of jobs, EDD is at a 
severe disadvantage, as it does not include consideration of the weights. 

3.3.2.  Weighted Shortest Processing Time (WSPT) Heuristic 

The WSPT method is analogous to the EDD method in that it orders the jobs according to 
well-defined criteria and then schedules the jobs according to this ordering, utilizing the maximal 
capacity available. Once a job finishes and capacity is freed up, the next job using the ordering is 
scheduled. Using the notation of section 3.2, the jobs are ordered such that the below holds: 

 1 2

1 2

... N

N

xx x
w w w

≤ ≤ ≤  (46) 

3.3.3. Largest Weighted Process First (LWPF) Heuristic 

This heuristic is analogous to the EDD and the WSPT heuristics with the jobs ordered 
according to the following inequality: 

 1 2 ... Nw w w≤ ≤ ≤  (47) 

This is a simple heuristic which allows us get a sense of the importance of considering the 
weights versus the cutoff times. I have not seen this simple heuristic mentioned anywhere in the 
literature, but it turns out to have quite good empirical characteristics which is one of the manz 
contributions of this paper. 

3.3.4. Load Balancing Scheduling (LBS) Algorithm 

Laszlo et al [51] suggest a novel deterministic, polynomial time algorithm for scheduling 
jobs with cutoff times, in the context of load balancing for wireless sensor networks. The basic idea 
of the algorithm is to start scheduling the jobs backwards from the maximal cutoff time, in order of 
decreasing cutoff times, always ensuring full capacity is utilized. I note that whilst the algorithm has 
proven to be extremely successful for load balancing, it does not take into account the weights of the 
jobs and therefore will suffer from the same shortcomings as EDD. 

3.3.5. Random Method 

In this method, the jobs are ordered randomly and are scheduled in such a way as to always 
fully utilize the maximal available capacity. This unsophisticated heuristic is useful as a low 
benchmark by repeating it a number of times and ensuring that other heuristics with more 
information outperform it. 
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3.4. Quadratic Programming and Hopfield Neural Network 
Based Approach for Scheduling 

Since the number of binary matrices is exponential with the number of nodes multiplied by 
the length of the schedule, exhaustive search with complexity ( )·2N LO

 
is generally computationally 

infeasible to solve the optimization problem at hand. Thus, the goal is to develop a polynomial time 
approximate solution by mapping the problem to an analogous quadratic optimization problem, 
similar to the approach of Levendovszky et al. [54] and Treplan et al. [84]. The following figure 
shows the overall flow diagram of my approach 

 

 

Fig. 18: Overall flow diagram of my novel HNN approach to solving scheduling problems 

 

I first review the methods available for optimizing equations in quadratic form. Let us 
assume that matrix W  is a symmetric matrix of type n n×  and vector b  is of length n . I seek the 
optimal n  dimensional vector y  which minimizes the following quadratic function [68]: 

 ( ) 1 ,
2

T Tf = − +y Wy b yy  (48) 

subject to one or more constraints of the form of 

 
≤
=

Ay v
By u

 (49) 

If the problem at hand contains only linear constraints then it can be solved as presented by 
Murty [65] in the linear case and as presented by Levendovszky et al [54] in the discrete binary case. 
In the non-linear constraints case, if the matrix W  is positive definite, then the function ( )f y  is 

convex and the problem can be solved with the ellipsoid method presented by Zhi-quan [86]. When 
W  is indefinite the problem is NP-hard [76]. 

A frequently used powerful heuristic algorithm to solve quadratic optimization problems is 
the Hopfield Neural Network (HNN). This neural network is described by the following state 
transition rule: 

 
1

ˆ( 1) sgn ( ) ,ˆ , mod
N

i ij j i N
j

k y k b i kW
=

⎛ ⎞
+ = − =⎜ ⎟

⎝ ⎠
∑y  (50) 

where 
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( )
m ( )
�

diag

diag
1 .
2

= −

= − −

= −

d W

W W d

b b d

 (51) 

Note that modNi k=  implies asynchronous, sequential updates to the elements of the y 

vector. There exist techniques for synchronous updating, but these require hardware-level 
implementation and have different convergence properties. For the purposes of this dissertation, we 
will focus on the asynchronous, CPU-based implementation and leave investigation of the other 
methods as an area for future research. 

Using the Lyapunov method, Hopfield proved that HNN converges to its fix point, as a 
consequence HNN minimizes a quadratic Lyapunov function [42]: 

 
1 1 1

1 1ˆˆ ˆ ˆ( ) : .
2 2

N N N
T T

ij i j i i
i j i

W y y y b
= = =

= − + = − +∑∑ ∑y y Wy b yL  (52) 

Thus, HNN is able to solve combinatorial optimization problems in polynomial time under special 
conditions as it has been demonstrated by Mandziuk [59] and Mandziuk and Macukow [60]. 

These methods motivate us to map the existing optimization problem into quadratic form. First the 
binary scheduling matrix C  is mapped into a binary column vector y  as follows: 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

L

L

N N N L

C C C
C C C

C C C

⎛ ⎞
⎜ ⎟
⎜ ⎟= →⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

C

"
"

# # % #
"

 (53) 

 ( )2,11,1 1,2 ,,, 121 ,, , , , , , , , , .
T

L NL N LC C C C C C C=y " " "  (54) 

The original objective function (41) is extended as follows: 

 { }
1

,0,arg mamin max x 1i j i
j

N

i
i

w C K
=

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑  (55) 

This objective is equivalent to: 

 
1

,
1

min
i

LN

i i j
j Ki

w C
= +=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑∑  (56) 

The minimization problem is thus equivalent to: 

 2
,

1 1

: arg min
i

N

opt i i

L

j
ji K

wC
== +

= ∑ ∑
C

C  (57) 

Therefore, my task was to find matrix AW  and vector Ab  to satisfy the below: 

 2

1
,

1

1
2

i

N
T T

A A

L

j K
i i j

i

wC
= +=

− + =∑ ∑y b yWy  (58) 
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Using the definition of y from (54) then expanding and rearranging the right side of (58) into vector 
and matrix format, I found the below solution: 

 1,A JL×=b 0  (59) 

 
1

22A

J

⎛ ⎞
⎜ ⎟= − ⎜ ⎟
⎜ ⎟
⎝ ⎠

D 0 0
W 0 D 0

0 0 D

"
"
"

 (60) 

where  

 
*

j j j j

j j j j

K K K L K L L
j

L K K j L K L Kw
× × − ×

− × − × −

⎛ ⎞
⎜ ⎟= ∈
⎜ ⎟
⎝ ⎠

0 0
D

0 I
\  (61) 

Having transformed the objective function to a quadratic form, I now turn my attention to doing the 
same with the two constraints outlined in (42) and (43). In this way, the constraints become part of 
the objective function with appropriate heuristic coefficients. 

The constraints in (42) can be rewritten as follows: 

 , ,
1 1

2

1
: min

L L

i j i i j

N

i
j ji

i C x C x
= ==

⎛ ⎞⎛ ⎞
→ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∀ = −∑ ∑∑  (62) 

This will lead to the following equation: 

 ,
1 1

2
1
2

L
T T

jB i
j

N

B i
i

C x
= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝

+ = −
⎠

− ∑∑y b yWy  (63) 

The solution of equation (63) is: 

 ( )1 1 11 22
L L LB Jx x x

× × ×
=b "  (64) 

 

 2

L L

L L
B

L L

×

×

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 0 0
0 1 0

W

0 0 1

"
"

# # % #
"

 (65) 

Another constraint ensures that the scheduling does not overload the processing unit, described in 
(43). The required transformation is as follows: 

 ,
1 1

2

.
1

: min
N N

i j

L

i j
i i j

j C V C V
= ==

⎛ ⎞⎛ ⎞
⎜ ⎟⎜∀ = ⎟⎜ ⎟

⎠
−

⎝ ⎠⎝
→∑ ∑∑  (66) 

Please note the technicality that this constraint may not be relevant for the last few columns where 
only the remaining jobs have to be scheduled and schedule matrices not exhausting the full capacity 
should not be penalized. The total length of scheduling can be written as follows: 
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( )

1

max maxmax , ,

i

i i

N

i

i i

V
x

L x K

L

L

=

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎢ ⎥

∑

�

�
 (67) 

The number of columns where capacity V  needs to be fully utilized is the following: 

 ( )1,mamax x 1ii
M x L= − +  (68) 

Taking into consideration (68) the mapping of (66) can be described with the following equation: 

 
1

,
1

2
1
2

NM

C C
i

T T
i j

j
C V

==

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝

− + −
⎠

= ∑∑y b yWy  (69) 

The solution of this equation is the following: 

 [ ]1 1 1 1 1 1, , , , , , ,C M L M M L M M L M× − × × − × × − ×= …b 0 V 0 V 0V  (70) 

 

 2C

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎝ ⎠

D D D
D D D

W

D D D

"
"

# # % #
"

, (71) 

where  

 M M M L M

L M M L M L M

× × −

− × − × −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

I 0
0

D
0

. (72) 

I can combine these mappings into the form of equation (48) as follows: 

 A
N NL

C
L

Bα β γ ×= + + ∈WW WW \  (73) 

and 

 1
B

N
A C

Lα β γ ×= + + ∈b bb b \  (74) 

Note that, the objectives can be controlled with heuristic coefficients α, β, γ in order to strike 
a good tradeoff between the weights of different requirements. Having this quadratic form at hand, I 
can apply the HNN to provide an approximate solution to the optimization problem in polynomial 
time. 

 

3.5. Improvements to HNN and other heuristics 
In this section, three algorithms are proposed in order to improve upon the existing methods. 

Unfortunately, traditional algorithms which provide fast convergence often fail to reach the global 
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optimum. As such, the development of these novel heuristics is motivated by the desire to avoid 
getting stuck in local minima and still reach good quality solutions in real time by exploiting the fast 
convergence of the HNN. The proposed methods are based on the careful choice of the initial state 
or random perturbation of the initial state. 

3.5.1. Smart Hopfield Neural Network (SHNN) 

The SHNN approach uses the result of the LFPW heuristic as input for the HNN recursion. 
The block diagram of the method is provided in Fig. 19. In this way the HNN recursion is not being 
repeated several times with different starting points, therefore the method can be executed faster 
than the original HNN method; however repetitions due to the tuning of the heuristic parameters are 
still required. 

 

Fig. 19: Block diagram of the SHNN method 

The intuition behind this method is that since the value of the Lyapunov function 
monotonically decreases during the HNN recursion, a better starting point may converge faster and, 
depending on the shape of the Lyapunov surface to be minimized, could converge to a better quality 
minimum than a random starting point. 

3.5.2. Perturbed Smart Hopfield Neural Network (PSHNN) 

The SHNN method is faster than the original HNN solution, as it only considers a single 
starting point. However, as demonstrated by numerical simulations, it can get stuck in local minima. 
This can be addressed by considering random perturbations to the “smartly” selected initial starting 
point. The result of the LFPW method is perturbed randomly, in order to generate a set of initial 
points for the HNN recursion. The block diagram of this method is shown in Fig. 20. 

 

 

Fig. 20: Block diagram of the PSHNN method 

 

Fig. 21 provides a visual explanation as to why perturbing the initial point may have a beneficial 
effect when the HNN iteration gets stuck in a local minimum. 
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Fig. 21: Illustration of the advantage of multiple perturbed starting points in finding the global 
minimum 

The algorithm which generates the set of inputs is described by Algorithm 3, where the 
function ( )random Θ  produces a uniformly distributed random integer value in range Θ  and the 
function ( )correct ,C X  is an error correction function, given by Algorithm 4.  

 

The degree of perturbation is an input parameter which in the implementation is proportional 
to the number of the columns of scheduling matrix. The final result is the best solution provided by 
the HNN recursions from the set of input points generated by the algorithm. 

 

perturb( ,  , ,LWPF N DC x ) - (Initial C, Number of outputs, Degree of perturbation, Job sizes) 

;RESC = ∅  

FOR 1i N= →  

 LWPF=C C   

 FOR 1j D= →  

  { } [ ]( ) [ ]( ) [ ]( ){ } { } { }2 11 2, , ,2 ,1, , random 1.. ,  random 1.. ,  random 1.. , ,k l k l k l k lk k l J J L ∧← ←C C C C  

 END FOR 

 ( )correct ,=C C x  

 { },RES RESC C= C  

END FOR 

RETURN RESC  

Algorithm 3. Aglorithm for randomly perturbing scheduling matrices 
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3.5.3. Perturbed Largest Weighted Process First (PLWPF) 

Analogously to the relationship between the SHNN and PSHNN methods, the PLWPF is the 
perturbed version of the LWPF method. The block diagram is shown in Fig. 22. 

 

 

Fig. 22: Block diagram of the PLWPF method 

 

The random perturbation is performed using Algorithm 3, and among the perturbed C matrices, the 
one which produces the lowest value for the objective function is chosen as the final result of the 
PLWPF method.  

3.6. Numerical Results 
In this section, the performance of the novel heuristic approaches is investigated and is 

compared to the performance of already known heuristics.  

3.6.1. Simulation method 

Each method outlined above has been tested by extensive simulations on a large and diverse 
set of input parameters with the aim to characterize the algorithms empirically on scheduling 
problems of different sizes. The algorithms were implemented in MATLAB and tests were run in 
this simulation environment with randomly generated parameters such as size of jobs, cut-off times, 
and weights. The size of each job and its cut-off time and corresponding weight are generated as 
follows: 

 [ ]( )1random 1, ,i c=x  (75) 

 [ ]( )1 1random ,1.5· ,i i c c= +K x  (76) 

 [ ]( )2random 1, ,i c=w  (77) 

where ( )random Θ  produces a uniformly distributed random integer value in range Θ . 

In the simulations the constant 1c  was set to 10 and 2c  was set to 5. The number of processors (V) 

was determined as follows: 

 0.25· .V J=  (78) 

The problem is expected to be solved without tardiness when the capacity is such that V=J. 
Therefore (78) ensures that there is a high likelihood of tardiness associated with the generated 
problem. For each problem size (dimension of job vector), 100 different problems were generated 
randomly, using (75)-(78) and the results of the methods were compared in each case. 
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The result of LWPF was used as the initial state for SHNN. Also, this result was perturbed 
randomly and these perturbations were used as starting points for PSHNN. The best perturbed result 
is the result of PLWPF.  

The HNN and PSHNN methods were repeated 1000 times for each problem with different 
random or perturbed starting points and the best solution was used. In addition, the heuristic 
parameters ,α β  and γ  were adjusted between the simulations in order to provide a good balance 

between optimizing the objective function, but also meeting the required constraints to produce a 
valid scheduling matrix. To adjust the heuristic parameters I used Algorithm 4. 

 

REQUIRE , , ,V ex K  

0.1, 5, 5α β γ← ← ←  

0i ←  

REPEAT 

 1i i← +  

 ( )HNN , , , , ,i V α β γ←C x K  

 0.01α α← +  

UNTIL error ( )i e≤C  

FOR 1k i= →  

 ( )correctk k←C C  

 ( )calculateTWTk k←T C  

END FOR 

RETURN ( )min T  

Algorithm 4. Algorithm for adjusting the heuristic parameters 

 

In order to achieve valid solutions in all cases by HNN, I introduced an error correction 
function (see Algorithm 5) in order to cut and replace the unnecessary 1-s in the scheduling matrix. 
In the simulations, parameter e was set to 5. All of the results presented in the following sections 
therefore concern valid schedules meeting the required constraints. 
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Correct( , , , ,Vx w K C ) 

FOR 1k L= →  

 WHILE ,
1

N

i k
i

V
=

>∑C  

  Remove 1 from row j, where j is the row in column k with minimal weight that has , 1j kC =  

 END WHILE 

END FOR 

FOR 1k N= →  

 WHILE ,
1

L

k i k
i=

>∑C x  

  Remove 1 from row k from the column l, where l is the righternmost column in row k such 
that , 1k lC =  

 END WHILE 

 WHILE ,
1

L

k i k
i=

<∑C x  

Add 1 to row k in column l, where l is the lefternmost column where 1 can be added without 
violating the capacity constraint V 

 END WHILE 

END FOR 

RETURN C  

Algorithm 5. Correction algorithm for the scheduling matrix produced by the HNN 

3.6.2. Comparison of HNN performance versus other known heuristics 

The first simulation compares the average total weighted tardiness provided by the 
algorithms for different problem sizes. Fig. 23 demonstrates that the best solution achieved by the 
HNN produces better average TWT for all problem sizes than any of the other heuristics.  The 
performances of the EDD, LBS and random methods are, on average, worse than the WSPT and 
LWPF heuristics and the HNN for all problem sizes. This shows that consideration of the weights in 
the optimization problem is critical to reach near-optimal TWT schedules. It is also clearly visible 
that HNN consistently and significantly outperforms all other methods for all problem sizes. Note 
also that the simple LWPF heuristic, proposed by us, outperforms the WSPT heuristic widely used 
as a benchmark in the literature. 
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Fig. 23: Average TWT produced by each heuristic over randomly generated problems 
depicted as a function of the number of jobs in the problem. 

In order to gain a better understanding of HNN’s relative outperformance of other heuristics, 
I also computed the relative difference in TWT produced by HNN versus each of the other 
heuristics. The results are depicted in Fig. 24. 
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Fig. 24: Relative average TWT gain produced by HNN versus the other heuristics over 
randomly generated problems as a function of the number of jobs in the problem. 

Fig. 25 depicts the ratio of average TWT produced by the HNN method versus the other 
heuristics. I conclude that, on average, the best solution of the HNN heavily outperforms the 
traditional solutions: the total weighted tardiness of the best HNN solution is 30%-65% of the EDD, 
25%-85% of the LWPF, and 40%-90% of the WSPT. However, as the problem size increases, the 
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WSPT and LWPF heuristics produce solutions which are closer to the HNN which is consistent with 
what we saw on Fig.23 also.  
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Fig. 25: Ratio of average TWT produced by HNN versus EDD, WSPT and LWPF as a 
funciton of the problem size 

In order to verify that the HNN consistently outperforms the other heuristics on a wide 
spectrum of problems, not just on a few selected problems for each given problem size, I ran a more 
detailed experiment. In this case, I investigated 500 randomly generated problems for each problem 
size and computed the percentage of times HNN produced a better solution than LWPF. Table 3 
shows the result which quite convincingly proves the general applicability of HNN to different 
problem types. Across the spectrum of problem domain, the ratio is higher than 98.5 % for all 
investigated job sizes.  

Job 
size 5 10 15 20 30 40 50 75 100 

 99,9% 100% 100% 99,5% 99,2% 99,6% 99,3% 98,6% 98,8% 

Table 3. Percentage of problems in which HNN provides an improved solution over the next best 
heuristic, LWPF 

3.6.3. Analysis of the performance of the improved HNN methods 

The first simulation compares the average total weighted tardiness provided by the 
algorithms for different problem sizes. For each problem size, 100 different problems were 
generated randomly, using (75)-(78) and the results of the methods were compared to the 
theoretically best schedule, obtained by exhaustive search in Fig. 26 up to a problem size of 35 jobs. 
Simulations then were extended to problem sizes of up to 100 jobs and the difference of the 
resulting average TWT of each heuristic method to the result of the PSHNN method is depicted in 
Fig. 27. It can be observed that the best solution achieved by the PSHNN method has better average 



Polynomial time heuristic optimization methods applied to problems in computational finance 

67 

TWT for all problem sizes than any of the other heuristics. Previously, I showed that the 
performance of the LWPF method is, on average, worse than the HNN method for all problem sizes 
[3]. However, I see that random perturbation does improve LWPF, as the solution achieved by 
PLWPF method is better than the solution of the original LWPF method for all problem sizes. The 
SHNN solution can be evaluated faster than HNN; however, its average TWT is only slightly better 
than the HNN method in case of small number of jobs and is significantly worse for larger problem 
sizes. Therefore, SHNN as a method in itself is not that impressive; however, as a stepping stone 
towards the PSHNN method its role proved to be very important. 

 
Fig. 26: The difference between the average TWT produced by each heuristic and the theoretical 

best schedule obtained by exhaustive search, over 100 randomly generated problems for each 
problem size. 

 

 
Fig. 27: The difference between the average TWT produced by each heuristic and the average TWT 

produced by the best method, PSHNN over 100 randomly generated problems for each problem 
size. 
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I conclude that, on average, the best solution of the PSHNN outperforms the traditional 
solutions: the total weighted tardiness of the best PSHNN solution is 93%-97% of the HNN, 68%-
96% of the LWPF; the TWT of the best PLWPF solution is 47%-95% of the original LWPF; the 
TWT of the SHNN solution is 77%-110% of the PLWPF. As the problem size increases, the 
PLWPF heuristic produce solutions which are closer to the PSHNN. The ratio between the HNN and 
PSHNN is relatively stable independently of the problem size. 

In order to verify that the PSHNN consistently outperforms the other heuristics on a wide 
spectrum of problems, not just on a few selected problems for each given problem size, I ran a more 
detailed numerical experiment. In this case, I investigated 500 randomly generated problems for 
each problem size and computed the percentage of times the PSHNN produced a better solution than 
HNN, the next best method. Table 4 shows the result which quite convincingly proves the general 
applicability of the PSHNN to different problem types. Across the spectrum of problem domain, the 
ratio is higher than 99.2% for all investigated job sizes. 

 
Job 
size 5 10 15 20 30 40 50 75 100 

 100% 100% 99,9% 99,8% 99,8% 99,9% 99,7% 99,7% 99,5% 

Table 4. Percentage of problems in which PSHNN provides an improved solution over the next best 
heuristic, HNN. 

3.6.4. Parallel implementation of the algorithms 

In this section, for further speed-up a possible implementation of the HNN on GPGPU, 
specifically on Fermi architecture [47] is presented. Table 5 contains the theoretical order of 
convergence of the algorithms as a function of the length of the input parameters.  

 

Algorithm Theoretical order of convergence 

LWPF ( )L N⋅O  

HNN ( )2 2L N⋅O   (Hopfield 1982, Haykin  2008)  

Table 5. Theoretical runtime of the algorithms 

 

Although the number of repetitive iterations does not affect the theoretical order of 
convergence, the actual runtime of the algorithms may increase significantly. In order to reduce 
overall runtimes, each HNN run within the PSHNN method could be parallelized, resulting in 
multiple HNN runs from perturbed starting points taking the same time as a single HNN run. 
Furthermore, Liang [56] introduced a highly parallelized implementation of the HNN, which allows 
for significant speedup of each HNN run. More formally, the total runtime T of the algorithm is 
given by: 
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 ( )init heurT R R t=  (79) 

Where initR denotes the number of repeats of the algorithms from different initial starting 
points, heurR denotes the number of repeats of the algorithm with different heuristic parameter (alpha, 

beta, gamma) settings and t denotes the runtime of a single non-parallelized HNN run. For example, 
assuming a 200×200 sized W weight matrix corresponding to 30 jobs to be scheduled, with initR = 
500, heurR =100, the estimated time of execution on a 3GHz CPU processor is 50 seconds running 

optimized MATLAB code. 

 

Since each iteration is independent of other iterations, it can be executed independently and in 
parallel. Using an existing parallel HNN implementation, the parallelism on nVidia Fermi 
architecture is extended as follows [34]: 

• The W matrix is sparse (5-10 % of values are nonzero, and there are patterns amongst the 
nonzero values), therefore in case of large W matrix one HNN iteration can be executed by 
a stream multiprocessor (SM) using its local (shared) memory. 

• The independent HNN iterations can be executed on separate SM-s. 

As such, the execution time of the PSHNN algorithm can be significantly decreased on Fermi 
multicore architecture, thus I can achieve a better solution than the other heuristics within the same 
execution time. The idea of the parallelization is illustrated in Fig. 28 and the execution times are 
shown in Fig. 29. 

 

 

 

 

 

 

 

 

Fig. 28: Illustration of how each run of the perturbed starting point may be parallelized in a GPGPU 
infrastructure. 
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Fig. 29: Runtimes of the different algorithms, as a function of job size. 

3.6.5. Practical case study on large problem size 

A common task arising in computational finance is the scheduling of a set of valuation and 
risk sensitivity calculations which need to be run overnight based on the close-of-market market 
observables. Complex derivative transactions cannot, in general, be priced analytically and require 
Monte Carlo simulations for their valuation. In the specific example studied here, I consider the risk 
calculations associated with nearly 100 different portfolios, yielding altogether 556 jobs of an 
average size of  792 seconds to be scheduled. Each job has associated with it a cutoff time, by which 
time risk calculations need to finish in order for the results to be incorporated in the nightly 
firmwide Value at Risk (VaR) calculation and in order to have the sensitivity figures available for 
the trading desk at market open. Furthermore, each job has a priority associated with it which is 
assigned based on the relative amount of risk carried in that portfolio. I obtained specific runtime, 
deadline and priority data for an actual overnigh scheduling problem for traded portfolios at Morgan 
Stanley, one of the largest financial institutions in the world. 

 

Having run each of the algorithms on this set of real data, Table 6 summarizes the results. 
As seen, PSHNN outperforms the next best method, PLWPF by 4.7% in terms of TWT, HNN by 
7%, LWPF by 10% and EDD by a striking 48%. Another way to interpret the results is that PSHNN 
essentially completes all jobs with top priorities (8, 9, 10) on time, whilst PLWPF has a total 
tardiness of around 53 minutes (four average sized jobs) on these top priority jobs although it 
completes the less important jobs more quickly. 
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Total Weighted Tardiness 

Weights 3 4 5 6 7 8 9 10 SUM 
Increment 

to PSHNN 

PSHNN 4,401 11,116 4,020 1,620 1,092 8 0 0 22,257 0 % 

PLWPF 3,513 9,624 5,130 1,788 490 312 2,304 190 23,351 5 % 

HNN 4,404 11,040 4,735 1,824 1,092 456 468 0 24,019 7 % 

LWPF 4,404 11,140 5,470 2,472 1,183 40 0 0 24,709 10 % 

EDD 4,401 9,940 1,770 636 1,134 464 22,752 1,430 42,527 48 % 

 

Total Tardiness (Minutes) 

Priority 3 4 5 6 7 8 9 10 SUM 

PSHNN 244.5 463.2 134.0 45.0 26.0 0.2 0.0 0.0 912.8 

PLWPF 195.2 401.0 171.0 49.7 11.7 6.5 42.7 3.2 880.8 

HNN 244.7 460.0 157.8 50.7 26.0 9.5 8.7 0.0 957.3 

LWPF 244.7 464.2 182.3 68.7 28.2 0.8 0.0 0.0 988.8 

EDD 244.5 414.2 59.0 17.7 27.0 9.7 421.3 23.8 1,217.2 

 

Table 6. Table of total (weighted) tardiness for jobs of each weight, provided by the different 
methods for the Morgan Stanley scheduling problem 
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3.7. Conclusions and Directions of Future Research 
In this chapter, I studied the NP-hard problem of scheduling jobs with given relative 

priorities and deadlines on identical machines, minimizing the TWT measure. I first showed that the 
problem can be converted to quadratic form and then the HNN approach is a heuristic which 
consistently outperforms other benchmark heuristics such as the EDD and WSPT methods. 
Furthermore, I improved on this method by demonstrating that random perturbations to the 
intelligently selected starting point significantly improves the quality of the solution of the HNN 
approach. Finally, I studied the implementation details of the random perturbations and the HNN 
method to show that the methods remain applicable in real-time settings for scheduling large number 
of problems, PSHNN yielding a 5% improvement over the next best method, PLWPF and 7% 
improvement over regular HNN. 

As for directions for further research, more formal methods for the selection of alpha, beta 
and gamma parameters could be investigated in order to further improve performance and bounds on 
the performance of these methods could be established, in relation to the theoretical optimum. 
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CHAPTER 4 

4.SUMMARY OF RESULTS AND THESES 

In this dissertation I have examined two important areas of computational finance: optimal 
portfolio selection and optimal resource scheduling. Each of these problems is of crucial importance 
in present day financial computing research and applications. Fast heuristics in optimal portfolio 
selection have the potential to apply these methods in real-time high-frequency algorithmic trading 
while optimal scheduling has the potential to speed up financial computations to save significant 
costs and improve transparency by having the results available sooner to be reported to financial 
regulators. I have selected an NP hard open problem within each area and explored polynomial time 
heuristic methods to provide fast solutions which outperform other benchmark methods. In each 
case, I have managed to come up with novel approaches which 

 

• produce results which are superior to other heuristics found in the literature 
• have low computational complexity, can be evaluated in polynomial order of time 
• have practical runtime characteristics which make them applicable in real world settings 

 

Furthermore, I managed to make a number of other contributions to the solution of each 
problem. In the case of the sparse, mean reverting portfolio selection I have made significant 
improvements to the parameter estimation of the VAR(1) and Ornstein-Uhlenbeck processes. In the 
TWT scheduling problem I have proven that it can be converted to a quadratic optimization problem 
via a nontrivial matrix algebraic mapping. I have also improved upon the standard HNN method by 
introducing random perturbations to an intelligently selected initial point (PSHNN method). 

The achievements of numerical tests on real-world problems are presented in the following table: 
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Field Real world 
problem 

Average. 
performance of 

traditional 
approaches 

Average 
performance 

of the 
proposed 

new method 

Impact on 
computational 

finance 
(improvement 
in percentage)

Portfolio 
optimization  

Convergence 
trading on 

US S&P 500 
stock data 

11.6% 

(S&P 500 index 
return) 

34% 22.4% 

Schedule 
optimization  

Morgan 
Stanley 

overnight 
scheduling 

problem 

24709 

(LWPF 
performance) 

22257 
(PSHNN 

performance) 

10% 

Table 7.  Summary achievements of numerical tests of my research work on real-world problems 

 

Considering the above results, I have achieved the aims of the dissertation. 

 

The overall practical impact of my work is that these problems with high complexity can now be 
solved approximately, in the fraction of the time required to compute the exact solution. As such, a 
financial services company employing these methods can provide faster and more reliable services 
to its clients. The algorithms presented for solving the scheduling problem can also be adopted in 
settings broader than computational finance, they are equally applicable to problems in 
computational biology, chemistry or other grid computing settings. Furthermore, some portfolio 
selection and trading algorithms which could only be used off-line in a low-frequency trading setting 
can now be used in a high-frequency, real-time environment, producing faster return on capital and 
therefore lowering the overall funding cost of trading. Finally, the computational improvements 
achieved by better scheduling do not only reduce the costs to the institutions, but also make the 
results of the calculations available sooner to the regulators, thereby increasing the transparency of 
the financial markets and serve the society as a whole. 
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4.1. Unified approach to complex financial modeling problems 
In the course of developing these heuristic methods, I have applied a consistent approach 

and high level methodology which is illustrated in the below figure. This approach can be applied 
more broadly to challenging problems in computational finance and beyond. The basic idea is that 
after defining and formalizing the problem, we need to establish the theoretical complexity of the 
task. If it is found that the problem is non-polynomial then at first, basic heuristics must be 
established which yield approximate solutions to the problem. Following this, more complex and 
more accurate heuristics must be developed which gradually take more and more of the constraints 
into account and thus yield more and more accurate approximations. These must then be tested on a 
large number of generated and real-world problems in order to prove the viability and scalability of 
the approaches. These can be compared to simpler heuristics or if the problem size allows, even to 
the solution of exhaustive search which provides the theoretically best solution. 
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Fig. 30: Flowchart showing step-by-step unified approach to finding fast heuristic approximate 
solutions to complex problems in computational finance and beyond 
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