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1. Introduction and scope of the theses 
 

Computational finance is a branch of applied computer science that deals with 

problems of practical interest in finance. It is a relatively new discipline whose 

birth can be traced back to the work of Harry Markowitz in the 1950s and since 

then has provided many problems of deep algorithmic interest. Presently, it 

encompasses various new numerical methods in the fields of optimization, 

statistics, and stochastic processes developed for different financial applications. 

Markowitz conceived of the portfolio selection problem as an exercise in 

mean-variance optimization. His key finding was that diversification, as a means of 

reducing the variance and therefore increasing the predictability of an investment 

portfolio is of critical importance, even at the cost of reducing expected return [32]. 

For his groundbreaking work, Markowitz received the Nobel Prize in 1990. There 

are many other problems in finance which have been raised since the 1950’s such 

as algorithmic trading, the validation of efficient markets hypothesis, option 

pricing, financial time series analysis and prediction.  

The area of algorithmic trading, the use of electronic platforms for entering 

trading orders with an algorithm deciding on aspects of the order such as timing, 

price or quantity, has attracted a lot of attention over the last decade. In particular, 

high frequency trading has gained a lot of ground in international markets, in 

which computers make algorithmic decisions on high frequency, often sub-second, 

tick-by-tick data, before human traders are capable of processing the information 

they observe. It is estimated that as of 2009, high frequency trading algorithms are 

responsible for over 70% of all equity trading volume in the US [22], so the area 

has also attracted a lot of academic attention in recent years. At the same time, 

parallel computational techniques on hardware, such as GPGPU and FPGA have 

also evolved, so traditional methods which could historically only been used in low 

or medium frequency trading can now be applied in real-time settings. On the other 

hand, many of the problems which arise during the development of optimal trading 

algorithms are of high complexity which makes the application of fast 

approximation methods necessary for practical use in high frequency trading. 

Another developing area of computational finance is the increased use of 

Monte Carlo techniques for simulation of market processes under certain stochastic 

model assumptions. This requires the use of an increasing amount of computational 

resources and gives rise to problems of optimal usage of the resources via 

scheduling. Again, many of the combinatorial problems of optimal scheduling have 

been proven to be of exponential or NP hard complexity which have made the use 

of polynomial approximation techniques necessary. 

 

As demonstrated above, many of the fundamental problems which have arisen 

in the field have been shown to be of exponential complexity or NP hard. As a 
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result, the fundamental objective of computational finance is to find numerical 

algorithms yielding approximate solutions within practically viable timeframes to 

these problems.  

 

The present dissertation has the same aim for two specific problems: 

 

1) the problem of finding sparse portfolios, based on historical data, 

which maximize predictability (or mean reversion); and 

2) the problem of finding optimal schedules for a set of identical 

computational resources for jobs (Monte Carlo simulations)  with 

prescribed sizes, weights and deadlines which minimize total weighted 

tardiness. 

 

Even though these two problems are seemingly rooted in different areas they 

are brought together in the area of computational finance (portfolio optimization 

and optimal resource scheduling), and the theme of finding fast, heuristic 

approximate solutions to NP hard problems with applications in finance, is 

common. As a result, the theses provide novel and important contributions to the 

field of computational finance which have very practical applications, as will be 

demonstrated. 

1.1 Technological motivations and existing results 

 

In this section, an outline of the motivations and practical applications of the 

selected problems is given, as well as a brief presentation of the existing research 

results. 

1.1.1 Sparse, mean reverting portfolio selection 

 

Ever since the seminal paper of Markowitz [32], selecting portfolios which are 

optimal in terms of risk-adjusted returns has been an active area of research both 

by academics and financial practitioners. At the same time, mean reversion, as a 

classic indicator of predictability, has also received a lot of attention over the last 

few decades. It has been shown that equity excess returns over long horizons are 

mean-reverting and therefore contain an element of predictability [21,31,36].  

While there exist simple and reliable methods to identify mean reversion in 

univariate time series, selecting portfolios from multivariate data which exhibit this 

property is a much more difficult problem. This can be approached by the Box-

Tiao procedure [15] to extract cointegrated vectors by solving a generalized 

eigenvalue problem. 
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In his recently published article, d'Aspremont in [18] posed the problem of 

finding mean-reverting portfolios which are sparse.  The practical application of 

this is the possibility to develop profitable convergence trading strategies based on 

buying the portfolio when it is below the long-term mean and selling when the 

portfolio has appreciated over this level. Sparseness of the portfolio is desirable for 

reducing transaction costs associated with convergence trading as well as for 

increasing the interpretability of the resulting portfolio. He developed a new 

approach to solve the problem by using semidefinite relaxation and compared the 

efficiency of this solution to the simple greedy algorithm in a number of markets. 

d’Aspremont makes the assumption that the underlying processes follow a first 

order vector autoregressive VAR(1) process and uses historical data to estimate the 

model parameters. There is vast literature on the topic of parameter estimation of 

VAR(1) processes, recent research has focused on sparse and regularized 

covariance estimation [10,17,38].  

 

In the first thesis group, I investigated new, dense estimation methods for 

determining the covariance matrix of an observed VAR(1) process. I also 

examine methods to determine the parameters of mean-reverting processes 

based on the Ornstein-Uhlenbeck process. Finally, I investigate new heuristic 

methods for determining the optimal, most predictable portfolio under 

cardinality constraints. 

1.1.2 Optimal scheduling on identical machines 

Scheduling theory has a special application in running large scale Monte 

Carlo simulations in financial services firms for evaluating risks and pricing. As a 

result, finding optimal schedules in real time which minimize the completion time 

of jobs subject to capacity constraints is an especially important task. More 

specifically, in the area of computational finance, the problems of portfolio 

selection, pricing and hedging of complex financial instruments requires an 

enormous amount of computational resources whose optimal usage is of utmost 

importance to investment banks. The prices and risk sensitivity measures of 

complex portfolios need to be reevaluated daily, for which an overnight batch of 

calculations is scheduled and performed for millions of financial transactions, 

utilizing thousands of computing nodes. Each job has a well-defined priority and 

required completion time for availability of the resulting figures to the trading 

desk, risk managers and regulators. The jobs can generally be stopped and resumed 

at a later point on a different machine which is referred to as preemption in 

scheduling theory. For simplicity of modeling the problem, machines are generally 

assumed to be identical and there is a known, constant number of machines 

available. Tardiness of an individual job under a given schedule is defined as the 

amount of time by which the job finishes after its prescribed deadline, and is 

considered to be zero if the job finishes on or before the deadline. 
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The problem of finding optimal schedules for jobs running on identical 

machines has been extensively studied over the last three decades. In his paper, 

Sahni [40] presents an O(n log mn) algorithm to construct a feasible schedule, one 

that meets all due times, if one exists, for n jobs and m machines. The basic idea of 

the algorithm is to schedule jobs with earliest due dates first, but fill up machines 

with smaller jobs if possible. Note that this method allows the development of an 

algorithm to compute the minimal amount of unit capacity for which a feasible 

schedule exists.  This result has been extended to machines with identical 

functionality but different processing speed, termed uniform machines, and jobs 

with both starting times and deadlines; Martel [33] constructs a polynomial time 

feasible schedule for this problem, if one exists. However, the scheduling task 

becomes more difficult when a feasible schedule does not exist and the goal is to 

minimize some measure of delinquency, often termed tardiness.  

In case of minimizing the maximum tardiness across all jobs, Lawler [27] 

shows that the problem is solvable in polynomial time, even with some precedence 

constraints. Martel [33] also used his construction to create a polynomial time 

algorithm to find the schedule which minimizes maximum lateness.  However, if 

the measure concerns the total tardiness instead of the maximal one, then even the 

single machine, total tardiness problem (without weights) was proven to be NP-

hard by Du and Leung [19]. A pseudopolynomial algorithm has been developed by 

Lawler [26] for this problem, using dynamic programming, but this is for the 1-

machine problem and does not have good practical runtime characteristics. 

Once the NP-hardness of the TWT problem was established, most of the 

research work on the problem concerned the development of fast, heuristic 

algorithms. Dogramaci and Surkis [20] propose a simple heuristic for the total 

(non-weighted) tardiness problem without preemption. Rachamadugu and Morton 

[37] then studied the identical machine, total weighted tardiness problem without 

preemption. They proposed a myopic heuristic and compared this to earliest due 

date (EDD), weighted shortest processing time (WSPT) and Montagne’s rule on 

small problem sizes (2 or 5 jobs in total). Azizoglu and Kirca [12] worked on an 

algorithm to find optimal schedule for the unweighted total tardiness problem 

without preemption, but their branch and bound exponential algorithm is too slow, 

in practice, for problems with more than 15 jobs. Armentano and Yamashita [11] 

examined the non-weighted problem without preemption, and starting from the 

KPM heuristic of Koulamas [25] improved upon it, using tabu search. Guinet [23] 

applies simulated annealing to solve the problem with uniform and identical 

machines and a lower bound is presented in order to evaluate the performance of 

the proposed method. More recently, Sen et al. [41] surveyed the existing heuristic 

algorithms for the single-machine total tardiness and total weighted tardiness 

problems while Biskup et al. [14] did this for the identical machines total tardiness 
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problem and also proposed a new heuristic. Akyol and Bayhan [10] provide an 

excellent recent review of artificial neural network based approaches to scheduling 

problems and proposes a coupled gradient network to solve the weighted earliness 

plus tardiness problem on multiple machines. The feasibility of the method is 

illustrated on a single 8-job scheduling problem. 

I designed a novel heuristic for the TWT problem, based on the Hopfield 

Neural Network approach which is shown to perform better than existing simple 

heuristics and has desirable scaling characteristics. Maheswaran et al. [28] applied 

a similar approach to the single machine TWT problem and his results were 

encouraging for a specific 10-job problem. 

In the second thesis group, I investigate novel, polynomial time heuristics 

for the solution of the NP hard TWT problem. I further investigate 

opportunities to improve upon the solution by the use of random 

perturbations. Finally, I test the newly developed methods on a large number 

of randomly generated problems as well as on real scheduling data set 

obtained from Morgan Stanley, one of the largest financial institutions in the 

world. 
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2. Models and methods used in the research 
 

In order to achieve the results presented in the dissertation, a number of 

models and computational methods have been used and developed. These are 

outlined in this chapter. 

 

For solving the problem of sparse, optimally mean reverting portfolios, I 

follow the construction outlined in [18]. D’Aspremont made a number of 

assumptions in the construction: he assumed the underlying processes follow a 

VAR(1) model and that the resulting mean reverting portfolios can be described by 

the Ornstein-Uhlenbeck equation. For the estimation of model parameters, I used 

the Moore-Penrose pseudoinverse to solve the equation arising during the 

maximum likelihood estimation of the recursion matrix and I developed a novel 

recursive method for estimating the covariance matrix. Having estimated the 

parameters of the VAR(1) model, I mapped the prediction maximization problem 

to a generalized eigenvalue problem with cardinality constraint which has been 

shown to be NP hard [34]. Therefore, I applied simulated annealing to the problem, 

in order to find a polynomial time approximation and I compared this to a number 

of benchmark methods. These include exhaustive search, greedy search and a 

novel heuristic which I developed based on truncation. Having found the portfolio, 

I developed a novel method to find its long-term mean using pattern matching. 

Finally, the economic viability of the method was verified by running numerical 

simulations based on a novel convergence trading strategy which I developed 

based on a decision theoretic formulation. 

 

For solving the problem of finding optimal schedules on identical machines 

which minimize the total weighted tardiness of jobs, I used a binary scheduling 

matrix model to represent the schedules. Furthermore, I studied a number of 

existing heuristic methods (EDD, WSPT, LWPF, LBS) which I subsequently used 

as benchmarks for evaluating the performance of my novel approach. I used matrix 

algebraic transformations to convert the problem to quadratic form and built the 

constraints into the objective function, using heuristic constants. This allowed me 

to use Lyapunov convergence via the Hopfield neural network to find polynomial 

time approximate solutions to this NP hard problem. I further improved upon this 

method by introducing random perturbation to the intelligently selected initial 

point. 

 

All model and method implementations were performed in the MATLAB 

computational environment, where numerical simulations were run on both 
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synthetic and real, historical data for both problems at hand. The results presented 

in the dissertation are based on the numerical simulations performed in this way for 

both problems. 

 

 

Models used VAR(1) model 

Ornstein-Uhlenbeck model 

 

Binary scheduling matrix 

 

Methods 

applied 

Maximum likelihood estimation 

Moore-Penrose pseudoinverse 

Novel recursive covariance matrix 

estimation  

Benchmark methods (Exhaustive 

search, greedy search, novel 

truncation method) 

Simulated annealing 

Novel long-term mean estimation 

based on pattern matching 

Novel convergence trading based 

on decision theoretic formulation 

Heuristic optimization 

(EDD, WSPT, LWPF, 

LBS) benchmark 

methods 

Combinatorial 

optimization of quadratic 

forms 

Lyapunov convergence 

Hopfield neural network 

Random perturbations 

 

Validation  

Numerical simulations on synthetic and real historical data in 

MATLAB 

 

Results Thesis group 1 Thesis group 2 

 

Figure 1. Models, methods and validation used to derive the results of this 

dissertation. 

3. New scientific results 

I. Thesis group: I developed a new method for estimating parameters of the 

VAR(1) process which also provides a goodness of fit measure. Furthermore, I 

introduce a novel method for estimating the long-term mean of an Ornstein-

Uhlenbeck process based on pattern matching. I also develop a new method for 

portfolio selection, adapting the simulated annealing method and finally 

develop a simple convergence trading algorithm through which I show the 

practical viability of my methods. 
 

(Publications connected to this thesis group: 1, 2, 5, 6) 
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Following the construction of d’Aspremont [18], I view the asset prices as a 

stationary, first order, vector autoregressive VAR(1) process. Let 
,i ts  denote the 

price of asset i at time instant t, where 1,...,i n and t are positive integers and 

assume that 
1, ,( ,..., )T

t t n ts ss  is subject to a first order vector autoregressive 

process, VAR(1), defined as follows: 

 

 1 ,t t t s As W  (1) 

 

where A is an nxn matrix and (0, )t N IW are i.i.d. noise terms for some 0  . 

Let G denote the stationary covariance matrix of process ts .  I assume that 

historical time series of ts can be observed and the task is to estimate matrices A 

and G.  

I first observe that if the number of assets n is greater than or equal to m, 

the length of the observed time series, then A can be estimated by simply solving 

exactly the linear system of equations: 

 

 
1

ˆ .t t As s  (2) 

 

Note that if n m , this system is underdetermined, so there are infinitely 

many solutions. In this case, I considered the subsystem consisting of the first m 

assets to obtain a unique solution. This gives a perfect VAR(1) fit for the time 

series for cases where I have a large portfolio of potential assets in relation to the 

amount of data observed (e.g. considering daily close prices over a 1-month period 

of all 500 stocks which make up the S&P 500 index), from which a sparse mean-

reverting portfolio is to be chosen. 

In most of the applications, however, the length of the available historical time 

series is greater than the number of assets considered, so (2) is overdetermined, and 

A is estimated using, for example, least squares estimation techniques, as in  

 

 
2

1

2

ˆ arg min
m

t t

t





 
A

A s As  (3) 

where  denotes the Euclidian norm. 

Equating to zero the partial derivatives of the above expression with 

respect to each element of the matrix A, I obtain the following system of equations: 

 



9 NORBERT FOGARASI – PHD BOOKLET 

 

 
, , 1 , 1 , , 1

1 2 2

ˆ , 1,..., .
n m m

i k k t j t i t j t

k t t

s s s s i j n  

  

    A  (4) 

 

Solving for Â and switching back to vector notation for s, I obtain 

 

 
1 1 1

2 2

ˆ ,
m m

T T

t t t t

t t



  

 

 
  

 
 A s s s s  (5) 

 

where 


M denotes the Moore-Penrose pseudoinverse of matrix M.  Note that the 

Moore-Penrose pseudoinverse is preferred to regular matrix inversion, in order to 

avoid problems with the singularity of  
1 1

T

t t s s .  

Assuming that the noise terms in equation (1) are i.i.d. with 

(0, )t N IW  for some 0  , I obtain the following estimate for   using Â  

from (5): 

 

 
 

2

1

2

1 ˆˆ .
1

m

t t

tn m
 



 

 s As  (6) 

 

In the more general case that the terms of tW  are correlated, I can 

estimate the covariance matrix K, of the noise as follows: 

 

 1 1

2

1 ˆ ˆˆ ( ) ( ) .
1

m
T

t t t t

tm
 



  

K s As s As  (7) 

 

This noise covariance estimate is used below in the estimation of the covariance 

matrix. 

I.1.  I have developed a new numerical method for estimating the covariance 

of historical time series, assuming a VAR(1) model, which yields fast and 

reliable estimation as well as a goodness of fit measure. 

This method is based on the following formula: 

 

( 1) ( ) ( ( ) ( ) ),Tk k k k    G G G AG A K  (8) 

where  is a constant between 0 and 1, ( )kG is the covariance matrix estimate on 

iteration k. Provided that the starting point for the numerical method, G(0), is 

positive definite (e.g. the sample covariance matrix) and since the estimate of K is 
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positive definite, by construction, this iterative method produces an estimate which 

is positive definite. It provides a smoother convergence to the true covariance than 

the sample covariance estimate, as can be seen in the below figure which was 

produced using synthetic data. 
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Figure 2: Sample covariance and recursive covariance estimates over sliding 

windows of size 50 over 5000 samples for  =0.1, 0.3, 0.5, 1 (note the differences 

in scaling of the plots) 

 

This method also provides a goodness of model fit measure when the 

above recursive estimate is compared to the sample covariance. This can be used 

during convergence trading to set the level of confidence in having obtained a truly 

mean-reverting portfolio. 

 

 

My next result concerns the estimation of the parameters of the Ornstein-

Uhlenbeck equation, given by 

 

   ,t t tdp p dt dW      (9) 

 



11 NORBERT FOGARASI – PHD BOOKLET 

 

 

 

 

where tW is a Wiener process and 0   (mean reversion coefficient),   (long-

term mean), and 0  (portfolio volatility) are constants.  

I.2.  I have introduced a novel method for mean estimation of Ornstein-

Uhlenbeck processes based on pattern matching. In this way, the most 

likely mean is selected by maximizing the underlying Gaussian densities  

of the OU processes. The new estimation is given by the following 

expression  

 

 

        

    

1

,
1 1

3
1

,
1 1

0 2 2 1

ˆ : ,

2 1

t t
i j i j i

ji j
i j

t t
i j i j

i j
i j

e e e e

e e e

   

  





    

 

   

 

    
 



  





U p

U

 (10) 

where         
2

2: 1
2

i j i

ij E p t i p t j e e
 



 
    U  is the time-correlation 

matrix of tp . 

 

By this method a more stable than linear regression and more accurate 

than sample mean can be obtained as shown in the following figures. 
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Figure 3:  MSE of each  estimate as a function of  .  =0.5, 1, 2, 5 , 0 0   

and sample size of 20. 

The main task after identifying the mean reverting portfolio and obtaining 

an estimate for its long-term mean  , is to verify whether ( )t   or ( )t   

based on observing the samples ( ) ( ), 1,...,Tp t t t T x s . This verification can be 

perceived as a decision theoretic problem, since direct observations of ( )t are not 

available. 

If process ( )p t is in stationary state then the samples  ( ), 1,...,p t t T  are 

generated by a Gaussian distribution 
2

,
2

N





 
 
 
 

. As a result, for a given rate of 

acceptable error  , I can select an  for which 



13 NORBERT FOGARASI – PHD BOOKLET 

 

 

2

2

( )

/

2

1
1 .

2 / 2

u

e du

 

 

 


 






   (11) 

I.3.  I have developed a simple trading strategy based on the decision theoretic 

formulation of trading. This results in a convergence trading algorithm 

which can be used to compare the profits generated by various portfolio 

selection algorithms. 

 

The repeating steps of the algorithm in each time interval are summarized in the 

following figure: 

 

 

Figure 4: Flowchart for simple convergence trading of mean reverting portfolios 

I.4.  I adopted the simulated annealing optimization method to the problem of 

maximizing mean reversion under cardinality constraints. I developed 

convergence rules and neighborhood functions which perform well on a 

range of randomly generated examples. This method consistently 

outperformed the greedy heuristic in 20% of the randomly generated 

cases within acceptable runtimes. 

 

In some synthetic cases, simulated annealing outperforms the greedy method, 

in terms of producing consistently higher mean reversion coefficients for 

various levels of cardinality constraints. An example of this is shown in the 

following figure. 
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Figure 5: Comparison of portfolio selection methods of various cardinality on 

n=10-dimensional generated VAR(1) data. 

As a proof of concept, I have made a complete end-to-end implementation 

of the parameter estimation techniques, the improved portfolio selection algorithm 

utilizing simulated annealing and the decision theoretic trading strategy. I have 

found that on real historical data, pipelining these novel methods produce 

meaningful excess returns. 
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II. Thesis group: I have shown how the TWT problem can be converted to 

quadratic form and describe a specific quadratic objective function which 

allows the use of the Hopfield neural network to solve the TWT problem. I show 

how this method outperforms simpler heuristics on a large number of randomly 

generated problems and I further improve this method by introducing 

intelligent starting points for the iterative process and then random 

perturbations to it. I show the practical applicability of these methods to a 

specific overnight scheduling problem arising at Morgan Stanley, one of the 

largest financial institutions in the world. 

 

(Publications connected to this thesis group: 3, 4) 

 

I worked on the total weighted tardiness (TWT) problem in the following 

formalism. Given N  jobs with sizes  1 2 3, , , N

Nx x xx  x , the processing of 

the jobs can be stopped and resumed arbitrary at any time, so the processing time 

units of each job need not be contiguous. In the literature this condition is known 

as preemption and also assumes a task started on one machine can continue on 

another [16]. For each job a cutoff time is prescribed by 

 31 2, , , , N

NK K K K K . This constraint defines the time within which the 

job is to be completed. The constant number of processors, the capacity of the 

system is denoted by V.  Also given is a vector 

 2 31 ,  0, 1,., , , ., .,N

iN w iw w w w N   w denoting the relative priority (or 

weight) of each job, which can be used in the definition of the objective function. 

A schedule is represented by a binary matrix  0,1
N L

C where 
, 1i jC   if job i  is 

being processed at time slot j , and L  denotes the length of the schedule. An 

example is given in (12), where the parameters are the following: 2V  , 3N  , 

 2,3,1x ,  3,3,3K . 

 

1 0 1

1 1 1

0 1 0

 
 

  
 
 

C  (12) 
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In order to evaluate the effectiveness of a given schedule C, tardiness of a job is 

defined as follows: 

  0,maxi i iT F K  , (13) 

where iF  is the actual finish time of job i  under schedule C: 

 ,arg max 1i i j
j

F C   (The position of the last 1 in the ith row in scheduling 

matrix C .) 

The problem which needs to be solved can now be stated formally as follows: 

 
1

: arg min
N

opt i i

i

wT


 
C

C  (14) 

Under the following constraints: 

 The length of jobs in the scheduling matrix equals the pre-defined 

amounts 

 ,

1

, 1,...,
L

i j i

j

C i Nx


    (15) 

 The number of scheduled jobs at a given time instant does not exceed the 

capacity of the system: 

 .

1

, 1,...,i

N

i

jC V j L


    (16) 

II.1.  I have proven that the TWT problem can be converted to a quadratic 

optimization problem, including the constraints with heuristic coefficients. 

 

I have converted the full optimization problem into quadratic form,  

  
1

,
2

T Tf   y Wy b yy  (17) 
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with 

 
A

N NL

C

L

B      WW WW  (18) 

and 

 1,A

N

C

L

B      bb bb  (19) 

where the A subscript corresponds to the objective function, the B and C subscripts 

correspond to the two constraints and , ,    are heuristic coefficients. 

The minimization problem is equivalent to: 

 2

,

1 1

: arg min
i

N

opt i i

L

j

ji K

wC
 

  
C

C  (20) 

The mapping is determined by solving the following equation: 

 2

1

,

1

1

2
i

N
T T

A A

L

j K

i i j

i

wC
 

   y b yWy  (21) 

The solution is the following: 

 1,A JLb 0  (22) 

 

 

1

22 ,A

J

 
 

   
 
 

D 0 0

W 0 D 0

0 0 D

 (23) 

where  

 
*

.
j j j j

j j j j

K K K L K
L L

j

L K K j L K L Kw

  


    

 
  
 
 

0 0
D

0 I
 (24) 
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The first constraint can be expressed as  

 
2

,

112
,

1 N

B B

i

L
T T

i j i

j

C x
 

 
  


   
  

y b yWy  (25) 

where the solution is given by 

  
1 1 11 22

L L LB Jx x x
  

b  (26) 

 

 

 2 .

L L

L L

B

L L







 
 
  
 
 
 

1 0 0

0 1 0
W

0 0 1

 (27) 

 

The second constraint can be mapped as 

 
1

,

2

1

1

2
,

N
T T

j

j

M

C

i

iC C V
 

 
  


   
  

y b yWy  (28) 

 

whose solution is 

 

  1 1 1 1 1 1, , , , , , ,C M L M M L M M L M         b 0 V 0 V 0V  (29) 

 

 

 2C

 
 
  
 
 
 

D D D

D D D
W

D D D

, (30) 

where  

 
M M M L M

L M M L M L M

  

    

 
  
 

I 0

0
D

0
. (31)  
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II.2.  I have applied the HNN method for optimization and found an 

approximate solution to the TWT scheduling problem in polynomial time. 

I have demonstrated that the HNN solution outperforms simpler 

heuristics such as EDD, WSPT, LBS, random and LWPF on a large set of 

randomly generated TWT problems. 

A frequently used powerful heuristic algorithm to solve quadratic optimization 

problems is the Hopfield Neural Network (HNN). This neural network is described 

by the following state transition rule: 

 
1

ˆ( 1) sgn ( ) ,ˆ , mod
N

i ij j i N

j

k y k b i kW


 
    

 
y  (32) 

where 

 

 

 

diag

diag

1
.

2

 

  

 

d W

W W d

b b d

 (33) 

    Using the Lyapunov method, Hopfield [24] proved that HNN converges to its 

fix point, as a consequence HNN minimizes a quadratic Lyapunov function: 

 
1 1 1

1 1ˆˆ ˆ ˆ( ) : .
2 2

N N N
T T

ij i j i i

i j i

W y y y b
  

      y y Wy b y  (34) 

Thus, HNN is able to solve combinatorial optimization problems in polynomial 

time under special conditions as it has been demonstrated in [29] and [30]. 

I have done a full implementation of this in the MATLAB simulation 

environment and I have tested the effectiveness of this method against the 

benchmark methods found in the literature (EDD, SWPT, LBS, LWPF) over a 

large set of randomly generated problems of varying sizes.  The results are 

depicted in the following figure: 
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Figure 6: Average TWT produced by each heuristic over randomly generated 

problems depicted as a function of the number of jobs in the problem. 

II.3.  I have further improved the HNN performance for the TWT problem by 

intelligent selections of the starting point (SHNN) and considering 

perturbations to these starting points (PSHNN). 

 

A block diagram depicting the Perturbed smart Hopfield neural network 

(PSHNN) method is shown below: 

 

 
 

Figure 7: Block diagram of the PSHNN method. 

 

I have found that the PSHNN method consistently outperforms the other 

methods over a large number of randomly generated TWT problems, as shown 

in the following figure. 
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Figure 8: The difference between the average TWT produced by each heuristic 

and the average TWT produced by the best method, PSHNN over 100 randomly 

generated problems for each problem size. 

 

 

       As proof of concept, I applied these methods to a specific, real world, large 

scale scheduling problem involving over 500 jobs for computing risk sensitivities 

of interest rate derivative portfolios overnight at Morgan Stanley, one of the largest 

financial institutions in the world. The below table summarizes the results: PSHNN 

outperforms the next best method, PLWPF by 5%. 

 

Weight 3 4 5 6 7 8 9 10 SUM 

Increment 

to PSHNN 

PSHNN 4401 11116 4020 1620 1092 8 0 0     22 257     0% 

PLWPF 3513 9624 5130 1788 490 312 2304 190     23 351     5% 

HNN 4404 11040 4735 1824 1092 456 468 0     24 019     7% 

LWPF 4404 11140 5470 2472 1183 40 0 0     24 709     10% 

EDD 4401 9940 1770 636 1134 464 22752 1430     42 527     48% 

 

Figure 9: Table of total weighted tardiness for jobs of each weight, provided by 

the different methods for the scheduling problem arising at Morgan Stanley. 
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4. Conclusions and applications of the results 
 

In this dissertation I have examined two important areas of computational 

finance: optimal portfolio selection and optimal resource scheduling. I have 

selected an NP hard open problem within each area and explored polynomial time 

heuristic methods to provide fast solutions which outperform other benchmark 

methods. In each case, I have managed to come up with novel approaches which 

 produce results which are superior to other heuristics found in the 

literature, 

 have low computational complexity, can be evaluated in polynomial 

order of time 

 have practical runtime characteristics which make them applicable in 

real world settings 

 

Furthermore, I managed to make a number of other contributions to the 

solution of each problem. In the case of the sparse, mean reverting portfolio 

selection I have made significant improvements to the parameter estimation of the 

VAR(1) and Ornstein-Uhlenbeck processes. In the TWT scheduling problem I 

have proven that it can be converted to a quadratic optimization problem via a 

nontrivial matrix algebraic mapping. I have also improved upon the standard HNN 

method by introducing random perturbations to an intelligently selected initial 

point (PSHNN method). 

 

Considering the above results, I have achieved the aims of the dissertation. 

 

Finally, in each case I have implemented a proof of concept and have run 

extensive simulations on both synthetic and real world data. The results on real 

world data are convincing in each case, having demonstrated trading gains of 34% 

on historical S&P 500 US stock data using convergence trading of mean reverting 

portfolios and a 10% TWT improvement over the next best heuristic found in the 

literature, in the case of a real world large scheduling problem arising at Morgan 

Stanley. 
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5. Summary 
 

The dissertation has provided new contributions to computational finance by 

introducing novel algorithms for a class of combinatorial optimization problems 

including sparse portfolio optimization (maximizing predictability subject to 

cardinality constraints) and schedule optimization (minimizing total weighted 

tardiness subject to capacity constraints). 

The achievements of numerical tests on real-world problems are presented in 

the next table: 

 

Field Real world 

problem 

Average. 

performance of 

traditional 

approaches 

Average 

performance 

of the 

proposed new 

method 

Impact on 

computational 

finance 

(improvement 

in percentage) 

Portfolio 

optimization  

Convergence 

trading on 

US S&P 500 

stock data 

11.6% 

(S&P 500 index 

return) 

34% 22.4% 

Schedule 

optimization  

Morgan 

Stanley 

overnight 

scheduling 

problem 

24709 

(LWPF 

performance) 

22257 

(PSHNN 

performance) 

10% 
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