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Abstract. We investigated the predictability of mean reverting port-
folios and the VAR(1) model in several aspects. First, we checked the
dependency of the accuracy of VAR(1) model on different data types
including the original data itself, the return of prices, the natural loga-
rithm of stock and on the log return. Then we compared the accuracy
of predictions of mean reverting portfolios coming from VAR(1) with dif-
ferent generative models such as VAR(1) and LSTM for both online and
offline data. It was eventually shown that the LSTM predicts much better
than the VAR(1) model. The conclusion is that the VAR(1) assumption
works well in selecting the mean reverting portfolio, however, LSTM is a
better choice for prediction. With the combined model a strategy with
positive trading mean profit was successfully developed. We found that
online LSTM outperforms all VAR(1) predictions and results in a positive
expected profit when used in a simple trading algorithm.

1 Introduction

The usefulness of mean reverting portfolios was discussed several times before
[2], [1], [3], [4]. Maximizing the predictability helps to create simple, effective
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and robust trading strategies. Our previous work based on calibrating the
VAR(1) generative model produced acceptable results on the S&P500 stock
prices [10]. In the first part of this work we investigate how accurate the
VAR(1) model is on different data models. Data models could mean the repre-
sentation of the data, ie. the raw stock data itself or its transformation. Using a
well performed data model we generate sparse portfolios with high predictabil-
ity by searching the maximal generalized eigenvalue of the regression matrix.
The second part of this work focuses to the prediction of the already created
portfolio. The first strategy is to utilize the calibrated regression matrix of the
VAR(1) model, the second is to train an LSTM neural network on the portfolio
and use it for prediction [13], [11]. Both methods were tested for online and
offline data. Prediction on online data means we use only the available real
time data for future values while offline means we incorporate the previously
predicted values to regress the next portfolio value. The latter makes it possi-
ble to predict accurately for a longer term. The structure of the paper is the
following:

� In section 2, we briefly discuss the concept of VAR(1) model and mean
reversion. Then we make a comparison of the accuracy of the VAR(1)
model on the different data models.

� In section 3, we discuss the concept of LSTM neural network and how
useful it is on mean reverting time series.

� In section 4, we discuss the details of the concept of online and offline
prediction.

� In section 5, we compare the performance of the different techniques.

� In section 6, we make conclusions and recommendations.

2 VAR(1) model on derived time series

This section briefly explains the mean reverting processes and the modeling of
the stock data with VAR(1). We call a stochastic process mean reverting when
the value of the process oscillates around its average value. When the price is
below its long-term mean it will likely increase rather than decrease and vice
versa. This supports building a simple trading strategy and to estimate the
trading range for the portfolio.
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2.1 Ornstein-Uhlenbeck process

Mean reverting processes are formalized by the so-called Ornstein-Uhlenbeck
process [8]. Let’s denote the price of our portfolio by pt at time t, and by sit the
price of the ith stock at time t. Our mean reverting portfolio pt is composed by
the linear combination of sit’s. The stochastic differential equation that drives
the Ornstein-Uhlenbeck process is

dpt = λ (µ− pt)dt+ σdWt (1)

where Wt is a Wiener process, σ is a parameter proportional to the standard
deviation of the Wiener process, λ is the speed of mean reversion and µ is
the long-term mean of the process reverting to. The deterministic part of the
stochastic differential equation (SDE) represents the property and that the
magnitude of attraction to the long-term mean is proportional to the distance
from the mean. The solution of stochastic differential equation is:

p (t) = p (0) e−λt + µ
(
1− e−λt

)
+

∫ t
0

σe−λ(t−s)dW (s) (2)

The expected value of equation (2) is

E [p (t)] = p (0) e−λt + µ
(
1− e−λt

)
(3)

and the variance is

V [p (t)] = σ2
∫ t
0

e−2λ(t−s)ds = σ2
1− e−2λt

2λ
. (4)

Consequently in very long-term, the expectation converges to

limt→∞E [p (t)] = µ, (5)

while the variance is

limt→∞V [p (t)] =
σ2

2λ
, (6)

Note the variance is inversely proportional to the speed of mean reversion.

2.2 Asset dynamics and portfolio selection

2.2.1 Modeling asset dynamics with VAR(1)

In [2], [3] the concept of predictability was introduced in the following way:

ν =
σ2t−1
σ2t

(7)
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where σ2t is the variance of the time series. If the denominator is larger in (7),
St will be pure noise as t goes to infinity therefore the time series is completely
unpredictable, however while the nominator is larger as t going forward St will
be perfectly predictable. Let the dynamics of the assets be modeled as discrete
vector autoregressive process with parameter 1. Generally, VAR(p) means
that the regression uses the last p values in the time series. As mentioned
before si,t denotes the price of the stock i at time t where i = 1, . . . , n, where
n is the size of the set of stocks. The most general model used in article 8 is
the non-stationary VAR(1) model that contains a time independent constant
scalar shift term to describe drift or ie. to ensure positivity of the elements for
all t:

st+1 = c+Ast +Wt, (8)

where A is an n by n real matrix constant at some certain time period, c
is a time independent real scalar constant, Wt represents the noise or error
term of the model with zero mean value, some constant variance and uncor-
related across time. This can be rewritten in a concise VAR(1) notation by
incorporating shift into the matrix of auto regression:

s′t+1 = A
′s′t +W

′
t (9)

extending the notations
s′1t+1

...
s′nt+1
1

 =


a1,1 · · · a1,n c1

...
. . .

...
an,1 · · · an,n cn
0 · · · 0 1



s′1t
...
s′nt
1

+


W1
t

...
Wn
t

0

 (10)

where A′ refers to a (n + 1) × (n + 1) matrix in which the last column is
filled with the constant shift c, the last row has zeros except the element of
(n+ 1)st which should be strictly 1, x′t a vector with n + 1 elements strictly
1 at the (n+ 1)st element and W′

t still provides the noise as in the previous
case except no noise for the (n+ 1)st element [7]. Henceforth, we ignore the
prime sign in this article. The auto regression matrix in equation (8) can be
approximated using least squares regression by

Â =
(
sTt−1st−1

)−1
sTt−1st (11)

Using this model a portfolio can be created with a linear combinations of the
assets. To make this, let P be a real valued vector. This vector represents the
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weights that relate to stocks. The time evolution of the value of our portfolio
can be written as

Pst = PAst−1 + PWt (12)

After using the definition of predictability (7) for the VAR (1) model we get:

v (P) =
var

(
PTAst−1

)
var (PTst−1)

=
E
(
PTAst−1s

T
t−1A

TP
)

E
(
PTst−1s

T
t−1P

) (13)

As only st is stochastic, A and P can be factored out from the expectation
calculation. So eventually we have the covariance matrix of the time series,
which we denote by G. Maximizing predictability is eventually a generalized
eigenvalue problem:

Popt = argmax (v (P)) = argmax

(
PTAGATP

PTGP

)
, (14)

The argument of the argmax operator is the so called Rayleigh quotient,
where the above becomes the following:

AGATP = λ (15)

Current scenario is to keep the number of constituents low, which is an addi-
tional constraint to the optimization. On the other hand, to hold the transac-
tion cost as low as possible and also to keep the portfolio complexity low, only
a low number of stocks will need to be enabled. The optimization problem
now is the trade-off between the maximization of mean reversion speed and
the minimization of the cardinality of stocks. Mathematically the equation
(14) has an additional constraint

Popt = argmax (v (P)) = argmax

(
PTAGATP

PTGP

)
,

subject to Card (P) ≤ k
(16)

The above optimization was performed in two steps. First a suboptimal so-
lution is found by a greedy algorithm. In the next step Simulated Annealing
(SA) was applied, as in [12], [5] and [4]. The starting point of the SA was the
solution of the first step. To model the dynamics of the stock prices VAR(1)
model with or without constant shift being used. However the calibrated re-
gression matrix not applied for predict individual stock prices only to find it’s
maximal generalized eigenvalue, it is worth to investigate how accurate the
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Without constant shift With constant shift

Normal data 0.0047619 0.08424908
Normal return 0.07875458 0.10769231

Log Data 0.0021978 0.23736264
Log return 0.19157509 0.29340659

Table 1: Relative frequency of the highest accuracy

regression model for different data types. Here, we will now discuss whether
it is useful to apply the calibration on derived data such as the return, the
natural logarithm or the logarithmic return of stock prices. The tests were
performed on S&P500 data with many configurations. A point in this config-
uration space includes the width of the calibration window and the starting
point. The particular time window range varied between 50 days to 400 days,
the end points moved between 2016 − 01 − 01 and 2021 − 01 − 01. The cali-
bration performed with and without the time independent shift for every data
model. To be able to compare the accuracy, every regressed data other than
normal data (i.e. normal return, log and log return) were transformed back to
normal. Then we calculated the mean squared error and recorded which data
model has the lowest error for a certain configuration. The results in relative
frequency are summarized in Table 1. In this table we can see that higher
accuracy is reachable when we incorporate the constant shift into the VAR(1)
model. That also applies to a large extent of the cases the log or log return
data model are the most accurate. In the future we use the log model to test
and compare the effectiveness of different trading algorithms.

An example of regression with constant shift is in Figure 1. Here all the four
prediction of data model (ie. the original data, simple return(diff), natural log-
arithm of the original and the log return) and values of the asset (Adobe) are
represented. Here the regressed values can vary to a large extent compared to
the real stock values. As mentioned previously the aim is not to predict indi-
vidual stock prices but create a portfolio which has the highest predictability.

3 Predicting mean-reverting portfolio with LSTM

3.1 LSTM introduction

Long Short Term Memory networks (LSTM) are recurrent neural networks
(RNN), designed to learn long-term dependencies by [6]. As an RNN, LSTMs
have a repeating modules and each module has the similar structure with four,
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Figure 1: Result of prediction for every data model with constant shift on an
example stock (Adobe).

interacting layers. The most important constituent for long-term learning is
the state of the module or cell, which is represented by the top horizontal
line. It interacts with other layers in the cell via pointwise multiplication ans
addition and provides input for the next cell. The way how an LSTM cell
constructed by gates makes it possible to remove or add information to the
cell state. Since the sigmoid function outputs numbers between zero and
one, it can provide weights to each components. A cell in an LSTM network
contains three of these sigmoid gates. The first gate is the forget gate which
is to decide what information have to be thrown away from the cell state. It
takes the ht−1 hidden state from previous cell and xt input, and the output
multiplicated with the cell state Ct−1.
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Figure 2: Schematic diagram of LSTM network. Source: [9]

oforget = σ(Wf[ht−1, xt] + bf) (17)

where σ is the sigmoid function, Wf and bf represents the network in forget
gate. The following gate, the input gate is for to decide what information
should be updated in the cell state which is consist of two layers with two
different activation function.

finput = σ(Wi[ht−1, xt] + bi) (18)

where Wi and bi represent the neural network of the layer. The output of the
input gate is multiplicated with the output of the tanh layer that creates a
vector which will be used to update cell state values, Ct by pointwise adding
the multiplicated result to the old cell state vector Ct−1.

fC = tanh(WC[ht−1, xt] + bC) (19)

The final gate, the output gate decides what should hidden state values
should be transferred to the next cell. The output will be the combination of
the previous hidden state values, inputs of the actual cell and the updated cell
state values.

Ct = oforget ∗ Ct−1 + finput ∗ fC (20)
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First the third sigmoid layer decides what parts of the cell state will be treated
as output.

ooutput = σ(Wo[ht−1, xt] + bo) (21)

The cell state Ct runs through the tanh layer, this makes the state values
between -1 and 1, and multiply it by the output of the sigmoid gate ooutput.

ht = ooutput tanh(Ct) (22)

.
The state variables ht and Ct serve as input for the next module.

3.2 Predicting

The VAR(1) model was applied to fit an analytical model to the data model
and from that a well predictable portfolio was created. The regression matrix
can be used to predict the future values of the portfolio. However, the pre-
diction is not based on the portfolio itself but on the constituents. Hence, the
errors accumulated during the calibration against each stock make the pre-
dicted time series very noisy and inaccurate. It is much more reasonable to
use the historical values of the portfolio itself to regress future prices. We con-
structed and trained LSTM recurrent neural network to predict future prices
of our portfolio. We trained the network on the same time range as used for
VAR(1) calibration. So we created the portfolio with the regression matrix
and used as an input for the training. The number of LSTM layers is 4, batch
size is 1, epochs is 100. We used 3 consecutive data to predict. In Figure 3 an
example of the testing can be seen.

4 Online vs Offline prediction

The common property of the two methods, which are VAR(1) and LSTM is
that they are only able regress one time step ahead. The online prediction is
fully based on real data. As both VAR(1) and simple LSTM predict only t
time step ahead, to regress a time interval we should use previously predicted
data, as well.

Online prediction: Using only real data for prediction the next value can
only be estimated when all real data are available.

Offline prediction: Using both real and predicted data, longer terms can
be predicted by utilizing the previously estimated data as input for the regres-
sion.
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Figure 3: Predicting optimized portfolio. Green curve is the calibration range,
blue VAR(1) prediction, red curve real value, yellow is the LSTM prediction.

4.1 Trading strategies

We can build trading strategies by combining the online and offline predictions
with the regression methods. The definition of the trading range is essential. It
can happen retrospectively or prospectively. As we incorporate the LSTM or
VAR(1) regression values into the simple mean-reverting trading strategy the
information they carry modifies the logic. As the selling or buying events are
triggered by the value of the portfolio, the final decision is affected by the value
of the prediction. As if the trader has cash in hand and the purchase event
is triggered the real buying will be performed if the next estimated value is
higher than the current. Otherwise at least one step will be waited out. Similar
logic occurs when there is a portfolio in hand, see Figure 4.

Online strategies: The online strategy uses only the online prediction.
Therefore the trading range can be estimated using the historical data.

Offline strategies: The offline trading strategy involves long-term price
prediction regressing still only one time step ahead and incorporating predicted
data for farther estimation. The method simply involves more predicted data
successively as regression goes further ahead. This provides another method to
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Figure 4: Schematic diagram of the general trading workflow.

estimate the trading range, which is utilized in this strategy both for VAR(1)
and LSTM.

5 Performance test

The performance tests were carried out for all the 4 trading configurations,
ie. combining online and offline prediction with VAR(1) and LSTM methods.
The initial invested amount was $10000. Each configuration was run with
5 different sparsities: (3, 5, 8, 11, 14). The data was S&P500 daily close stock
prices between 01/01/2016 and 12/31/2020. For a sparsity the trading was
repeated 30 times with different calibration window lengths and positions.

The length of trading time was constrained to 100 days. This was necessary
to be able to compare each trading cases, as we have limited length of data
and the possible trading length could vary from few weeks to few years. In case
when portfolio was at hand at the end of trading range because price did not
hit sell threshold, the return was calculated by the actual value of portfolio
subtracted the price at buying. During the test we see that at most 2 buy-sell
events were performed. When 0 events was performed it was mostly due the
trading range was not estimated precisely and the buy threshold was not hit.
At this point we did not incorporate the trading fees as our work focused on
the comparison of trading strategies detailed above.

In Table 2 we can see the mean gain and the standard deviation of returns
for the used strategies.

On figures (5), (6) the distribution of the profits for the used strategies are
visualized. We tested the strategies against different trading starting points
and calibration window length (50, 100, 150, 200). We applied a floor and ceil-
ing functions for below −$100 and above $100 respectively only to make the
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3 5 8 11 13
Offline VAR -3.31/39.52 2.38/20.04 0.30/25.42 1.03/18.53 -0.72/19.49
Offline LSTM -2.88/30.52 1.08/23.18 -1.37/15.96 1.91/22.62 -0.69/19.38
Online VAR 4.73/28.15 7.86/40.79 3.97/27.32 4.97/31.06 5.88/35.79
Online LSTM 10.51/27.19 8.21/23.16 10.45/20.24 7.41/23.81 9.37/20.09

Table 2: The mean and standard deviation in terms of [$] of trade performance
for trade methods and sparsity

useful part of distribution more detailed, this did not affected the calculation
of the mean and standard deviation in Table 2.

It is clear from the table and from the figures that the most effective strategy
is the online LSTM. It was able to consistently produce positive profits. Note
that the offline data plots on Figures 5 and 6 very high peaks can be seen at
0 profit. These are due to inaccurate estimation of the trading range and no
action was performed.

6 Conclusion and future works

We have presented how accurately we predict the S&P500 stocks with VAR(q)
using different data models. We conclude that it is worth calibrating with
log or log return data model. In the second part we have explained how
the prediction of the sparse mean reverting portfolio, which was created by
VAR(1), can be improved. The tests were performed on online and offline
prediction. We modified the simple mean reverting trading logic by adding the
predicted values to the trading decision process. We found that online LSTM
outperforms all VAR(1) predictions and results in a positive expected profit
when that is used in a simple trading algorithm in case of online prediction.
One of the crucial things to increase profit is to estimate the trading range very
precisely. One possible way is to create a Seq2seq LSTM neural network, that
is able to predict more than one time step ahead. This can be the direction of
future research.
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Figure 5: Profit histogram of LSTM prediction on online and offline data.
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Figure 6: Profit histogram of VAR prediction on online and offline data.
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