
91CIT. Journal of Computing and Information Technology, Vol. 25, No. 2, June 2017, 91–102
doi: 10.20532/cit.2017.1003419

Gábor Lencse and Dániel Bakai
Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary

Design, Implementation and
Performance Estimation of mtd64-ng,
a New Tiny DNS64 Proxy

In the current phase of the IPv6 transition, it is a
typical situation that IPv6-only clients should be en-
abled to communicate with IPv4-only servers. The
DNS64+NAT64 tool suite is an excellent solution to
this problem. Although several free software DNS64
implementations exist, we point out that there is room
for further high performance and computation effi-
cient multithreaded DNS64 implementations. MTD64
was designed to be able to utilize several CPU cores.
Whereas MTD64 outperformed BIND more than five
times, two critical issues (memory leaking and po-
tential vulnerability to DoS attacks) were identified.
Therefore MTD64 was redesigned under a new name:
mtd64-ng (not capitalized). This paper is about the
design, implementation and initial performance es-
timation of mtd64-ng. The usage of object oriented
decomposition and the RAII (Resource Acquisition
Is Initialization) idiom ensures that raw, sensitive re-
sources (e.g. memory, sockets) are always released
and it greatly simplifies exception handling. Using
the new features of the C++11 standard enabled us to
write more efficient and better readable code. The per-
formance of mtd64-ng is compared to that of BIND
and MTD64 and it is found that mtd64-ng outperforms
even its predecessor, MTD64.

ACM CCS (2012) Classification: Software and its en-
gineering → Software creation and management →
Designing software → Software design engineering
Networks → Network services → Naming and ad-
dressing
Networks → Network performance evaluation →
Network performance analysis

Keywords: DNS64, Internet, IPv6 deployment, IPv6
transition solutions, performance analysis

1. Introduction

In the current phase of the IPv6 transition, it is
a typical situation that IPv6-only clients, the
number of which is increasing due to the deple-
tion of the public IPv4 address pool, should be
enabled to communicate with IPv4-only serv-
ers, which are in majority on the Internet today.
The DNS64+NAT64 tool suite [1] is an excel-
lent solution to this problem. There are several
free software [2] (also called open source [3])
DNS64 [4] implementations and four of them
were compared in [5]. It was found that two of
them (TOTD and Unbound) are single threaded
and the other two (BIND and PowerDNS) are
multithreaded. Even though the single threaded
ones may not benefit from the current trend of
multi-core CPU design, and the performances
of the tested implementations were compared
up to four CPU cores, the single threaded Un-
bound showed the best performance among
them in terms of served ''AAAA'' record re-
quests per second. (As for the conditions of
the measurements, worse case tests were per-
formed: the requests were all different to elim-
inate the effect of caching and none of the re-
quested domain names had ''AAAA'' records,
thus the DNS64 implementations had to syn-
thesize IPv4 embedded IPv6 addresses [6] us-
ing the ''A'' records. These conditions comply
with the relevant Internet Draft [7]).
Therefore, we believe that there is room for
high performance and computation efficient
multithreaded DNS64 implementations.

92 93G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

MTD64 was designed to be able to utilize sev-
eral CPU cores [8]. Whereas the experience
was successful, as MTD64 outperformed BIND
more than five times [9], two critical issues
were identified:

 ● Memory leaking was experienced during
the performance measurements.

 ● The design decision of starting a separate
thread for each request made MTD64 po-
tentially vulnerable of DoS attacks.

Hence, we decided to fundamentally redesign
MTD64 under a new name: mtd64-ng (not cap-
italized). This paper is about the design, imple-
mentation and initial performance estimation of
mtd64-ng.
The remainder of this paper is organized as
follows. In Section 2, our design decisions are
disclosed. In Section 3, the implementation
questions are discussed. In Section 4, the test-
ing method, the test environment and perfor-
mance measurement results are presented and
discussed. In Section 5, our plans for future re-
search and development are disclosed. Section
6 concludes our work.
This topic was identified as being of impor-
tance to the development of DNS64 server im-
plementations.

2. Design Decisions

2.1. Design Principles

The design principles of MTD64 [8] were ba-
sically kept, but we reinterpreted or further de-
veloped them as shown in Table 1.

The usage of object oriented decomposition and
the RAII (Resource Acquisition Is Initializa-
tion) idiom ensures that raw, sensitive resources
(e.g. memory, sockets) are always released and
it greatly simplifies exception handling. Using
the new features of the C++11 standard enabled
us to write more efficient and better readable
code. Move semantics help to avoid unneces-
sary copies, lambda expressions and initializer
lists help achieving better code readability. The
built-in thread, mutex, condition_variable and
atomic classes and templates provide a stan-
dardized and cross-platform interface for multi-
threaded programming.
GPL was not a choice but a must, because we
decided to reuse certain source code fragments
of MTD64.

2.2. High Level Design Decisions

Except for the two critical issues (memory leak-
ing and potential vulnerability to DoS attacks)
we were satisfied with the original design of
MTD64 and kept the majority of the design
decisions. Now we mention them only shortly,
for the details please refer to subsection III.B
of [8].

2.2.1 Decisions that Were Kept

Similarly to MTD64 (and TOTD), mtd64-ng
acts as a forwarder. The capability of the recur-
sion may be added later if necessary.
In the same way, we omitted caching. We con-
sider caching useful and plan to add it in the
next version, but now we focused on the essen-
tial functionalities of a DNS64 server.

We note that FakeDNS is still very experimen-
tal and may be a subject of significant changes.
In this paper, we focus on the design of ver-
sion 1.0.0 of mtd64-ng, which has not included
FakeDNS yet.

2.3. Important Design Details

We kept four out of five design decisions dis-
closed in section III.C of [8], that is:
1. Multiple authoritative DNS servers may

be set and two selections modes are sup-
ported: random and round robin. (Ran-
dom chooses a different authoritative DNS
server from the list for every single request,
whereas round robin chooses the next one
from the list if the current one does not re-
ply on time.)

2. Larger than 512 byte UDP message size
may be enabled by a configuration option.

3. IPv6 transport protocol is used between
the clients and mtd64-ng, and IPv4 is used
between mtd64-ng and the authoritative
DNS server.

4. The optional parallel request for ''A'' and
''AAAA'' resource records (mentioned in
subsection 5.1.8 of [4]) is not supported.

Whereas MTD64 assembles its answer by
moving as large as possible chunks of the re-
ply message from the authoritative DNS server,
mtd64-ng type casts the memory area of the
reply from the authoritative DNS server to the
appropriate class and assembles its own reply
using the appropriate fields in the natural object
oriented way. (Please refer to subsection 3.1.2
for more details.)

3. Implementation

3.1. Classes

Mtd64-ng is a genuine object oriented program,
its architecture contains several classes. Now,
we describe them. For the readers not familiar
with the DNS message format, we recommend
the parallel reading of Subsection II.A of [8]
containing all the necessary information about
the structure and field names of the DNS mes-
sages.

The configuration file format and the config-
uration keywords were also kept, some slight
changes were made (one new parameter was
added and another setting was made more logi-
cal, see the details in subsection 3.3).
The logging by syslog was also kept and clar-
ified.

2.2.2 Decisions that Were Changed

Though our performance measurements
showed that our previous decision to start a new
thread for each requests did not result in serious
performance penalty [9], now we have chosen
a different solution to avoid the potential vul-
nerability to DoS attacks. Instead, we used a
thread pool, the size of which is a configuration
parameter. In this way, the threads are reused,
which may be beneficial concerning the perfor-
mance, too.
MTD64 was written mostly in C for perfor-
mance considerations. C++ was used for thread
handling plus a single class was used for storing
and retrieving configuration parameters. Now
C++ was chosen mainly to achieve better code
quality and to make the implementation exten-
sible in several ways, but we contend that our
new code written in C++11 is also very fast.
Finally, MTD64 is not a decent server program
because when it is started it does not daemo-
nize, but runs in the foreground. This weakness
was also corrected in mtd64-ng.

2.2.3 FakeDNS

The most current version (1.1.0) of the mt-
d64-ng source code on GitHub [10] contains the
experimental FakeDNS program. Its purpose is
to replace the authoritative DNS server during
the benchmarking of DNS64 implementations.
Its operation, in a nutshell, is the following:
it does not use a zone file but it calculates the
IPv4 address from the information contained in
the first label of the domain names. This oper-
ation is made possible by the method used for
generating different domain names systemati-
cally [11]. FakeDNS reuses some of the code
base of mtd64-ng. The easy implementation
of FakeDNS is a justification of the object ori-
ented design and implementation of mtd64-ng.

Table 1. Design principles of MTD64 and mtd64-ng.

MTD64 mtd64-ng

be simple and therefore short (in source code) kept

be fast (written in C, at most some parts in C++) be fast and therefore written in C++11

be extensible (well structured and well documented) improved: achieve better code quality by object oriented
decomposition

be convenient and flexible in configuration kept, only slight changes in configuration

be free software under GPL or BSD license kept, and the previous GPL license was also kept

be free of memory leaking (achieved by the RAII idiom)

92 93G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

MTD64 was designed to be able to utilize sev-
eral CPU cores [8]. Whereas the experience
was successful, as MTD64 outperformed BIND
more than five times [9], two critical issues
were identified:

 ● Memory leaking was experienced during
the performance measurements.

 ● The design decision of starting a separate
thread for each request made MTD64 po-
tentially vulnerable of DoS attacks.

Hence, we decided to fundamentally redesign
MTD64 under a new name: mtd64-ng (not cap-
italized). This paper is about the design, imple-
mentation and initial performance estimation of
mtd64-ng.
The remainder of this paper is organized as
follows. In Section 2, our design decisions are
disclosed. In Section 3, the implementation
questions are discussed. In Section 4, the test-
ing method, the test environment and perfor-
mance measurement results are presented and
discussed. In Section 5, our plans for future re-
search and development are disclosed. Section
6 concludes our work.
This topic was identified as being of impor-
tance to the development of DNS64 server im-
plementations.

2. Design Decisions

2.1. Design Principles

The design principles of MTD64 [8] were ba-
sically kept, but we reinterpreted or further de-
veloped them as shown in Table 1.

The usage of object oriented decomposition and
the RAII (Resource Acquisition Is Initializa-
tion) idiom ensures that raw, sensitive resources
(e.g. memory, sockets) are always released and
it greatly simplifies exception handling. Using
the new features of the C++11 standard enabled
us to write more efficient and better readable
code. Move semantics help to avoid unneces-
sary copies, lambda expressions and initializer
lists help achieving better code readability. The
built-in thread, mutex, condition_variable and
atomic classes and templates provide a stan-
dardized and cross-platform interface for multi-
threaded programming.
GPL was not a choice but a must, because we
decided to reuse certain source code fragments
of MTD64.

2.2. High Level Design Decisions

Except for the two critical issues (memory leak-
ing and potential vulnerability to DoS attacks)
we were satisfied with the original design of
MTD64 and kept the majority of the design
decisions. Now we mention them only shortly,
for the details please refer to subsection III.B
of [8].

2.2.1 Decisions that Were Kept

Similarly to MTD64 (and TOTD), mtd64-ng
acts as a forwarder. The capability of the recur-
sion may be added later if necessary.
In the same way, we omitted caching. We con-
sider caching useful and plan to add it in the
next version, but now we focused on the essen-
tial functionalities of a DNS64 server.

We note that FakeDNS is still very experimen-
tal and may be a subject of significant changes.
In this paper, we focus on the design of ver-
sion 1.0.0 of mtd64-ng, which has not included
FakeDNS yet.

2.3. Important Design Details

We kept four out of five design decisions dis-
closed in section III.C of [8], that is:
1. Multiple authoritative DNS servers may

be set and two selections modes are sup-
ported: random and round robin. (Ran-
dom chooses a different authoritative DNS
server from the list for every single request,
whereas round robin chooses the next one
from the list if the current one does not re-
ply on time.)

2. Larger than 512 byte UDP message size
may be enabled by a configuration option.

3. IPv6 transport protocol is used between
the clients and mtd64-ng, and IPv4 is used
between mtd64-ng and the authoritative
DNS server.

4. The optional parallel request for ''A'' and
''AAAA'' resource records (mentioned in
subsection 5.1.8 of [4]) is not supported.

Whereas MTD64 assembles its answer by
moving as large as possible chunks of the re-
ply message from the authoritative DNS server,
mtd64-ng type casts the memory area of the
reply from the authoritative DNS server to the
appropriate class and assembles its own reply
using the appropriate fields in the natural object
oriented way. (Please refer to subsection 3.1.2
for more details.)

3. Implementation

3.1. Classes

Mtd64-ng is a genuine object oriented program,
its architecture contains several classes. Now,
we describe them. For the readers not familiar
with the DNS message format, we recommend
the parallel reading of Subsection II.A of [8]
containing all the necessary information about
the structure and field names of the DNS mes-
sages.

The configuration file format and the config-
uration keywords were also kept, some slight
changes were made (one new parameter was
added and another setting was made more logi-
cal, see the details in subsection 3.3).
The logging by syslog was also kept and clar-
ified.

2.2.2 Decisions that Were Changed

Though our performance measurements
showed that our previous decision to start a new
thread for each requests did not result in serious
performance penalty [9], now we have chosen
a different solution to avoid the potential vul-
nerability to DoS attacks. Instead, we used a
thread pool, the size of which is a configuration
parameter. In this way, the threads are reused,
which may be beneficial concerning the perfor-
mance, too.
MTD64 was written mostly in C for perfor-
mance considerations. C++ was used for thread
handling plus a single class was used for storing
and retrieving configuration parameters. Now
C++ was chosen mainly to achieve better code
quality and to make the implementation exten-
sible in several ways, but we contend that our
new code written in C++11 is also very fast.
Finally, MTD64 is not a decent server program
because when it is started it does not daemo-
nize, but runs in the foreground. This weakness
was also corrected in mtd64-ng.

2.2.3 FakeDNS

The most current version (1.1.0) of the mt-
d64-ng source code on GitHub [10] contains the
experimental FakeDNS program. Its purpose is
to replace the authoritative DNS server during
the benchmarking of DNS64 implementations.
Its operation, in a nutshell, is the following:
it does not use a zone file but it calculates the
IPv4 address from the information contained in
the first label of the domain names. This oper-
ation is made possible by the method used for
generating different domain names systemati-
cally [11]. FakeDNS reuses some of the code
base of mtd64-ng. The easy implementation
of FakeDNS is a justification of the object ori-
ented design and implementation of mtd64-ng.

Table 1. Design principles of MTD64 and mtd64-ng.

MTD64 mtd64-ng

be simple and therefore short (in source code) kept

be fast (written in C, at most some parts in C++) be fast and therefore written in C++11

be extensible (well structured and well documented) improved: achieve better code quality by object oriented
decomposition

be convenient and flexible in configuration kept, only slight changes in configuration

be free software under GPL or BSD license kept, and the previous GPL license was also kept

be free of memory leaking (achieved by the RAII idiom)

94 95G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

3.1.1 ThreadPool, WorkerThread

ThreadPool is a generic thread pool class writ-
ten in C++11 using the built-in thread classes.
Its constructor starts the given number of
worker threads (using the WorkerThread func-
tors to provide the main loop for the threads).
An std::deque queues the tasks and an std::con-
dition_variable is used to signal available tasks
to sleeping worker threads.
Tasks are moved into the queue using an std::-
function template. This makes it possible to add
functions, functors and lambda expressions to
the queue.

3.1.2 DNSHeader, DNSLabel, DNSQName,
DNSQuestion, DNSResource,
DNSPacket

These classes represent different parts of the
DNS packet. DNSHeader represents the header
of a DNS packet. It is not constructed, but casted
on the raw data stream, making it more effi-
cient. Polymorphic setter and getter functions
perform the necessary bit masking and network
byte order vs. host byte order conversions.
DNSQName (DNS Query Name) aggregates
DNSLabels. DNSQuestions and DNSRe-
sources contain a DNSQName (besides other
standard fields).
DNSPacket aggregates one DNSHeader, plus
a given number of DNSQuestions and DNS-
Resources. Setter and getter functions perform
all the necessary conversions, including resiz-
ing the packet (and moving all the Questions,
Resources and Labels) when the rdata field of
a DNSQName or DNSResource is changed,
which is an essential operation in synthesiz-
ing an IPv4 embedded IPv6 address (''AAAA''
record) from IPv4 address (''A'' record).

3.1.3 DNSSource, DNSClient

The DNSSource interface provides an interface
to prepare and send DNS query packets to an
authoritative DNS server and to receive an-
swers. Implementing classes can use their own
strategies to do that (forwarding or recursing,
caching or not).
The DNSClient implements the DNSSource in-
terface and acts as a non-caching forwarder to

resolve DNS queries. This design makes it easy
to implement recursion or caching later on.

3.1.4 Query

The Query class implements a DNS query. It
is a functor which can be supplied to a Thread-
Pool as a task. It stores a pointer to the raw
packet data and performs the business logic us-
ing the previous helper classes.

3.1.5 Server

The Server class implements the DNS64 server.
It loads and stores the configuration, starts the
thread pool, opens the sockets, then receives
and converts DNS query packets into Query ob-
jects and stores them in a queue to be executed
by the thread pool.

3.2. Flow of a Query

In this section we describe the generic flow of a
query through the mtd64-ng server:
1. The Server receives a UDP packet on the

configured port from a Client.
2. The Server creates a Query object from the

packet and places it in the queue.
3. When there is an available worker thread,

the Query starts to execute.
4. The Query objects determines whether the

packet really is a DNS Query. If so, then
it forwards the query to one of the config-
ured DNS servers using the configured se-
lection mode.

5. The Query object receives the answer of
the DNS server. If it fails (timeout occurs
at timeout-time), then Query object tries
another DNS server, at most resend-at-
tempts time.

6. The Query object determines whether a
synthesis action is needed. Synthesis is re-
quired if: the question in the query is for
an ''AAAA'' record AND the domain exists
AND there is no ''AAAA'' record in the an-
swer section.

7. If a synthesis is not needed, the answer is
sent to the Client.

8. If a synthesis is needed, the Query class
synthesizes the answer using the DNS
packet manipulator classes and the Server
sends the synthesized answer to the Client.

3.3. Configuration File Changes

Because of using a thread pool, its size was
added as a new configuration parameter: num-
threads. This is the number of the working
threads, which process the requests from the
clients. The size of the tread pool proves to be
an important parameter, which significantly in-
fluences the performance of mtd64-ng. Please
see further details in subsection 4.3.
The other change is a small clarification only.
For setting the timeout time regarding the au-
thoritative DNS servers, MTD64 uses two con-
figuration parameters of integer type: timeout-
time-sec and timeout-time-usec. For setting a
timeout of 1.35s they should be set to 1 and
350000, respectively. This was found to be
somewhat cumbersome, so they were replaced
by a single parameter of double type, namely
timeout-time.
All other parameters were kept unchanged.

4. Initial Performance Estimation

The full performance analysis of mtd64-ng
should include its performance measurement
in various hardware and software environments
(including both different architecture CPUs and
several operating systems). It could be an effort
like the one documented in [5]. As the perfor-
mance estimation of mtd64-ng is only one of the
goals of this paper (besides the documentation
of design and implementation of mtd64-ng), we
do no perform such a detailed analysis. Rather,
the novelty of our performance estimation
method is its full conformance to the relevant
Internet Draft [7].

4.1. Performance Estimation Method

The method for benchmarking DNS64 servers
is described in Section 9 of [7]. Its test and traf-
fic setup uses only two devices: the Tester and
the DUT (Device Under Test), following the
test setup of [12]. However, in DNS64 testing,

the Tester plays two separate roles:
1. It sends ''AAAA'' record requests for dif-

ferent (systematically generated) domain
names at a predefined rate to the DUT. It
receives the replies from the DUT, and
decides whether they are in time (arrived
within timeout) as well as if they contain
a valid answer. It counts the number of in
time valid answers.

2. It provides authoritative DNS server func-
tionality for the DUT as follows: it sends
empty answers for all the ''AAAA'' record
requests and valid answers for the ''A''
record requests.

The DUT executes the examined DNS64 im-
plementation, which is illustrated in Figure 1.
The messages from 1 to 6 can be followed in
the figure. It receives ''AAAA'' record requests
(1) from the Tester, asks first for ''AAAA''
records (2), and after the empty reply (3), for
''A'' records (4) for the same domain name, then
synthesizes the IPv4 embedded IPv6 address
using the received valid ''A'' record (5) and fi-
nally, returns the synthesized ''AAAA'' record
(6).
The Internet Draft requires that the Tester must
send the ''AAAA'' record requests at a prede-
fined rate and it must decide if it received valid
answers for all of them from the DUT on time.
In practice, binary search is used to determine
the highest rate at which the DUT can reply to
all the queries with valid answers in time.
Up to now, there is only one Internet Draft com-
pliant DNS64 performance measurements tool
available: dns64perf++, documented in [11]
and downloadable from Github [13]. It per-
forms a single measurement (at a required rate
and during the required duration) and is to be
called from a program (e.g. a bash shell script)
which performs the binary search.
The Internet Draft is required to run 60 seconds
long measurements in each step of the binary
search and to perform the binary search 20
times, thus producing 20 results, and to sum-
marize the results by calculating the median, as
well as the 1st and 99th percentiles which cor-
respond to the minimum and maximum values
of the 20 results.
The Internet Draft is also required to perform a
so called self-test to ensure that the tester itself
is not a bottleneck, see subsection 9.2.1 of [7].

94 95G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

3.1.1 ThreadPool, WorkerThread

ThreadPool is a generic thread pool class writ-
ten in C++11 using the built-in thread classes.
Its constructor starts the given number of
worker threads (using the WorkerThread func-
tors to provide the main loop for the threads).
An std::deque queues the tasks and an std::con-
dition_variable is used to signal available tasks
to sleeping worker threads.
Tasks are moved into the queue using an std::-
function template. This makes it possible to add
functions, functors and lambda expressions to
the queue.

3.1.2 DNSHeader, DNSLabel, DNSQName,
DNSQuestion, DNSResource,
DNSPacket

These classes represent different parts of the
DNS packet. DNSHeader represents the header
of a DNS packet. It is not constructed, but casted
on the raw data stream, making it more effi-
cient. Polymorphic setter and getter functions
perform the necessary bit masking and network
byte order vs. host byte order conversions.
DNSQName (DNS Query Name) aggregates
DNSLabels. DNSQuestions and DNSRe-
sources contain a DNSQName (besides other
standard fields).
DNSPacket aggregates one DNSHeader, plus
a given number of DNSQuestions and DNS-
Resources. Setter and getter functions perform
all the necessary conversions, including resiz-
ing the packet (and moving all the Questions,
Resources and Labels) when the rdata field of
a DNSQName or DNSResource is changed,
which is an essential operation in synthesiz-
ing an IPv4 embedded IPv6 address (''AAAA''
record) from IPv4 address (''A'' record).

3.1.3 DNSSource, DNSClient

The DNSSource interface provides an interface
to prepare and send DNS query packets to an
authoritative DNS server and to receive an-
swers. Implementing classes can use their own
strategies to do that (forwarding or recursing,
caching or not).
The DNSClient implements the DNSSource in-
terface and acts as a non-caching forwarder to

resolve DNS queries. This design makes it easy
to implement recursion or caching later on.

3.1.4 Query

The Query class implements a DNS query. It
is a functor which can be supplied to a Thread-
Pool as a task. It stores a pointer to the raw
packet data and performs the business logic us-
ing the previous helper classes.

3.1.5 Server

The Server class implements the DNS64 server.
It loads and stores the configuration, starts the
thread pool, opens the sockets, then receives
and converts DNS query packets into Query ob-
jects and stores them in a queue to be executed
by the thread pool.

3.2. Flow of a Query

In this section we describe the generic flow of a
query through the mtd64-ng server:
1. The Server receives a UDP packet on the

configured port from a Client.
2. The Server creates a Query object from the

packet and places it in the queue.
3. When there is an available worker thread,

the Query starts to execute.
4. The Query objects determines whether the

packet really is a DNS Query. If so, then
it forwards the query to one of the config-
ured DNS servers using the configured se-
lection mode.

5. The Query object receives the answer of
the DNS server. If it fails (timeout occurs
at timeout-time), then Query object tries
another DNS server, at most resend-at-
tempts time.

6. The Query object determines whether a
synthesis action is needed. Synthesis is re-
quired if: the question in the query is for
an ''AAAA'' record AND the domain exists
AND there is no ''AAAA'' record in the an-
swer section.

7. If a synthesis is not needed, the answer is
sent to the Client.

8. If a synthesis is needed, the Query class
synthesizes the answer using the DNS
packet manipulator classes and the Server
sends the synthesized answer to the Client.

3.3. Configuration File Changes

Because of using a thread pool, its size was
added as a new configuration parameter: num-
threads. This is the number of the working
threads, which process the requests from the
clients. The size of the tread pool proves to be
an important parameter, which significantly in-
fluences the performance of mtd64-ng. Please
see further details in subsection 4.3.
The other change is a small clarification only.
For setting the timeout time regarding the au-
thoritative DNS servers, MTD64 uses two con-
figuration parameters of integer type: timeout-
time-sec and timeout-time-usec. For setting a
timeout of 1.35s they should be set to 1 and
350000, respectively. This was found to be
somewhat cumbersome, so they were replaced
by a single parameter of double type, namely
timeout-time.
All other parameters were kept unchanged.

4. Initial Performance Estimation

The full performance analysis of mtd64-ng
should include its performance measurement
in various hardware and software environments
(including both different architecture CPUs and
several operating systems). It could be an effort
like the one documented in [5]. As the perfor-
mance estimation of mtd64-ng is only one of the
goals of this paper (besides the documentation
of design and implementation of mtd64-ng), we
do no perform such a detailed analysis. Rather,
the novelty of our performance estimation
method is its full conformance to the relevant
Internet Draft [7].

4.1. Performance Estimation Method

The method for benchmarking DNS64 servers
is described in Section 9 of [7]. Its test and traf-
fic setup uses only two devices: the Tester and
the DUT (Device Under Test), following the
test setup of [12]. However, in DNS64 testing,

the Tester plays two separate roles:
1. It sends ''AAAA'' record requests for dif-

ferent (systematically generated) domain
names at a predefined rate to the DUT. It
receives the replies from the DUT, and
decides whether they are in time (arrived
within timeout) as well as if they contain
a valid answer. It counts the number of in
time valid answers.

2. It provides authoritative DNS server func-
tionality for the DUT as follows: it sends
empty answers for all the ''AAAA'' record
requests and valid answers for the ''A''
record requests.

The DUT executes the examined DNS64 im-
plementation, which is illustrated in Figure 1.
The messages from 1 to 6 can be followed in
the figure. It receives ''AAAA'' record requests
(1) from the Tester, asks first for ''AAAA''
records (2), and after the empty reply (3), for
''A'' records (4) for the same domain name, then
synthesizes the IPv4 embedded IPv6 address
using the received valid ''A'' record (5) and fi-
nally, returns the synthesized ''AAAA'' record
(6).
The Internet Draft requires that the Tester must
send the ''AAAA'' record requests at a prede-
fined rate and it must decide if it received valid
answers for all of them from the DUT on time.
In practice, binary search is used to determine
the highest rate at which the DUT can reply to
all the queries with valid answers in time.
Up to now, there is only one Internet Draft com-
pliant DNS64 performance measurements tool
available: dns64perf++, documented in [11]
and downloadable from Github [13]. It per-
forms a single measurement (at a required rate
and during the required duration) and is to be
called from a program (e.g. a bash shell script)
which performs the binary search.
The Internet Draft is required to run 60 seconds
long measurements in each step of the binary
search and to perform the binary search 20
times, thus producing 20 results, and to sum-
marize the results by calculating the median, as
well as the 1st and 99th percentiles which cor-
respond to the minimum and maximum values
of the 20 results.
The Internet Draft is also required to perform a
so called self-test to ensure that the tester itself
is not a bottleneck, see subsection 9.2.1 of [7].

96 97G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

4.2. Test Environment

4.2.1. Test Setup

The topology of the DNS64 test network is
shown in Figure 1. Though the Internet Draft
uses only two devices (Tester and DUT), we
have used two different physical devices for
the two functionalities of the Tester. Tester/
Measurer was a laptop for the execution of
the dns64perf++ program, whereas Tester/Au-
thDNS was a desktop computer for the execu-
tion of the authoritative DNS server. The DUT
was an Odroid C1+ SBC (Single Board Com-
puter). We justify our hardware selections after
their detailed specification in subsection 4.2.3.

4.2.2. Measurements and Parameters

To determine the performance of mtd64-ng, we
needed to know what size thread pool should be
used. For this reason, a series of measurements
was performed increasing the size of the thread
pool from 1 to 12. Later on, another series of

measurements was performed using larger
thread pools.
Finally we also tested BIND and MTD64 for
comparison purposes. We note that BIND used
4 listeners and 4 working threads. MTD64 used
one listener and as many working threads as
there were requests under processing.
The value of the timeout parameter of
dns64perf++ was always set to 1 second. This
choice is justified in [14]. Thus the timeout
value for the self-test was set to 0.25 second
conforming to subsection 9.2.1 of [7].

4.2.3. Hardware and Software

For the repeatability of our measurements, we
present the hardware and software parameters
of the devices of our test environment.
Tester/Measurer: Dell Latitude E6400 series
laptop with 2.53GHz Intel Core2 Duo T9400
CPU, 4GB 800MHz DDR2 SDRAM, 250GB
Samsung 840 EVO SSD, Intel 82567LM Gi-
gabit Ethernet NIC; Debian 8.4 GNU/Linux
operating system, 3.2.0-4-amd64 kernel,
dns64perf++ from [13].

Tester/AuthDNS: Desktop computer with
3.2GHz Intel Core i5-4570 CPU, 16GB
1600MHz DDR3 SDRAM, 250GB Samsung
840 EVO SSD, Realtek RTL8111F PCI Ex-
press Gigabit Ethernet NIC; Debian 8.2 GNU/
Linux operating system, 3.2.0-4-amd64 kernel,
BIND 9.9.5-9+deb8u3-Debian.
DUT: Odroid C1+ with 1.5GHz quad-core
ARM Cortex A5 CPU (Amlogic S805), 1GB
DDR3 SDRAM, 16GB Kingston micro SD
card, 1000BaseTX Ethernet NIC; Ubuntu
14.04.4 LTS GNU/Linux operating system,
3.10.80-131 armv7l kernel, mtd64-ng from
[10] (Latest commit: Mar 21, 2016), BIND
9.9.5-3ubuntu0.8-Ubuntu, MTD64 from [15]
(Latest commit: January 4, 2015),
Switch: 3CGSU05 5-port 3Com Gigabit Eth-
ernet switch.
We note that it is not a typical choice to use a
single board computer with an ARM CPU as a
DNS64 server. We have chosen this device for
two reasons:
1. It has low performance compared to the

two computers, thus the DUT is ensured to
be the performance bottleneck in the test
setup.

2. It has four cores, thus we expect that it bet-
ter models the current multi-core servers
than the old desktop computer with two
cores used in [9].

To avoid being a bottleneck, we have chosen a
modern quad-core desktop computer to be the
authoritative DNS server. As dns64perf++ can
utilize only two CPU cores, the dual-core lap-
top was good enough for its execution.

4.2.4. Configuration Settings

The most important configuration files of the
BIND authoritative DNS server were the fol-
lowing ones.
The /etc/bind/named.conf.local file contained:
zone "dns64perf.test" {
 type master;
 file "/etc/bind/db.dns64perf.test";
}

The db.dns64perf.test zone file was generated
by the bash shell script shown in Figure 2.
As for the configuration file of mtd64-ng, it had
to be modified to set different number of work-

laptop computer with
dual-core 2.53GHz Intel CPU

192.168.1.112/24

Tester/Measurer
dns64perf++

3Com 3CGSU05
Gigabit switch

2001:2::3/64

DUT: DNS64 Server
- mtd64-ng
- (BIND)
- (MTD64)

Tester/AuthDNS
BIND

192.168.1.113/24
2001:2::1/64

desktop computer with
quad-core 3.2GHz Intel CPU

Odroid C1+ SBC with
quad-core 1.5GHz ARM CPU

1. "AAAA"
query

6. synthesized
"AAAA"

2. "AAAA"
query

3. empty
"AAAA"

4. "A"
query

5. valid
"A"

Figure 1. Test and traffic setup for DNS64 performance measurements. Figure 2. Generator script for the zone file.

96 97G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

4.2. Test Environment

4.2.1. Test Setup

The topology of the DNS64 test network is
shown in Figure 1. Though the Internet Draft
uses only two devices (Tester and DUT), we
have used two different physical devices for
the two functionalities of the Tester. Tester/
Measurer was a laptop for the execution of
the dns64perf++ program, whereas Tester/Au-
thDNS was a desktop computer for the execu-
tion of the authoritative DNS server. The DUT
was an Odroid C1+ SBC (Single Board Com-
puter). We justify our hardware selections after
their detailed specification in subsection 4.2.3.

4.2.2. Measurements and Parameters

To determine the performance of mtd64-ng, we
needed to know what size thread pool should be
used. For this reason, a series of measurements
was performed increasing the size of the thread
pool from 1 to 12. Later on, another series of

measurements was performed using larger
thread pools.
Finally we also tested BIND and MTD64 for
comparison purposes. We note that BIND used
4 listeners and 4 working threads. MTD64 used
one listener and as many working threads as
there were requests under processing.
The value of the timeout parameter of
dns64perf++ was always set to 1 second. This
choice is justified in [14]. Thus the timeout
value for the self-test was set to 0.25 second
conforming to subsection 9.2.1 of [7].

4.2.3. Hardware and Software

For the repeatability of our measurements, we
present the hardware and software parameters
of the devices of our test environment.
Tester/Measurer: Dell Latitude E6400 series
laptop with 2.53GHz Intel Core2 Duo T9400
CPU, 4GB 800MHz DDR2 SDRAM, 250GB
Samsung 840 EVO SSD, Intel 82567LM Gi-
gabit Ethernet NIC; Debian 8.4 GNU/Linux
operating system, 3.2.0-4-amd64 kernel,
dns64perf++ from [13].

Tester/AuthDNS: Desktop computer with
3.2GHz Intel Core i5-4570 CPU, 16GB
1600MHz DDR3 SDRAM, 250GB Samsung
840 EVO SSD, Realtek RTL8111F PCI Ex-
press Gigabit Ethernet NIC; Debian 8.2 GNU/
Linux operating system, 3.2.0-4-amd64 kernel,
BIND 9.9.5-9+deb8u3-Debian.
DUT: Odroid C1+ with 1.5GHz quad-core
ARM Cortex A5 CPU (Amlogic S805), 1GB
DDR3 SDRAM, 16GB Kingston micro SD
card, 1000BaseTX Ethernet NIC; Ubuntu
14.04.4 LTS GNU/Linux operating system,
3.10.80-131 armv7l kernel, mtd64-ng from
[10] (Latest commit: Mar 21, 2016), BIND
9.9.5-3ubuntu0.8-Ubuntu, MTD64 from [15]
(Latest commit: January 4, 2015),
Switch: 3CGSU05 5-port 3Com Gigabit Eth-
ernet switch.
We note that it is not a typical choice to use a
single board computer with an ARM CPU as a
DNS64 server. We have chosen this device for
two reasons:
1. It has low performance compared to the

two computers, thus the DUT is ensured to
be the performance bottleneck in the test
setup.

2. It has four cores, thus we expect that it bet-
ter models the current multi-core servers
than the old desktop computer with two
cores used in [9].

To avoid being a bottleneck, we have chosen a
modern quad-core desktop computer to be the
authoritative DNS server. As dns64perf++ can
utilize only two CPU cores, the dual-core lap-
top was good enough for its execution.

4.2.4. Configuration Settings

The most important configuration files of the
BIND authoritative DNS server were the fol-
lowing ones.
The /etc/bind/named.conf.local file contained:
zone "dns64perf.test" {
 type master;
 file "/etc/bind/db.dns64perf.test";
}

The db.dns64perf.test zone file was generated
by the bash shell script shown in Figure 2.
As for the configuration file of mtd64-ng, it had
to be modified to set different number of work-

laptop computer with
dual-core 2.53GHz Intel CPU

192.168.1.112/24

Tester/Measurer
dns64perf++

3Com 3CGSU05
Gigabit switch

2001:2::3/64

DUT: DNS64 Server
- mtd64-ng
- (BIND)
- (MTD64)

Tester/AuthDNS
BIND

192.168.1.113/24
2001:2::1/64

desktop computer with
quad-core 3.2GHz Intel CPU

Odroid C1+ SBC with
quad-core 1.5GHz ARM CPU

1. "AAAA"
query

6. synthesized
"AAAA"

2. "AAAA"
query

3. empty
"AAAA"

4. "A"
query

5. valid
"A"

Figure 1. Test and traffic setup for DNS64 performance measurements. Figure 2. Generator script for the zone file.

98 99G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

ing threads. Therefore its configuration file was
prepared by a script using the mtd64-ng.conf.
core file containing the non-modified settings.
They were:
nameserver 192.168.1.112
dns64-prefix 2001:db8:dead:beef::/96
debugging no
timeout-time 1.0
resend-attempts 1
response-maxlength 512
port 53

The modifications were performed by the set-
mtd64-ng-wth script, which received the num-
ber of working threads as a parameter:
#!/bin/bash
killall mtd64-ng
cd /etc
cp mtd64-ng.conf.core mtd64-ng.conf
echo "num-threads $1" >> mtd64-ng.conf
mtd64-ng

(The script stopped mtd64-ng, prepared the
new configuration file and started mtd64-ng.)
The settings.conf configuration file of MTD64
contained logically the same information as the
mtd64-ng.conf.core file (only the syntax of the
timeout setting was different), therefore we do
not include the file.
The named.conf.options configuration file of
BIND had the following settings:
options {
 directory "/var/cache/bind";
 forwarders { 192.168.1.112; };
 forward only;
 dns64 2001:db8:dead:beef::/96 { };

 dnssec-validation no;
 auth-nxdomain no;
 listen-on-v6 { any; };
};

The measurements were performed by scripts.
The binary search script belonging to [14] was
used with the permission of its authors. It was
modified according to our needs (e.g. adding an
extra for cycle to test mtd64-ng with different
number of working threads). The script con-
tained several lines for logging or for display-
ing information. We present the script without
those lines, keeping only the important parts,
see Figure 3.
We note the Internet Draft has to perform the
tests eliminating the effect of caching. There-
fore the test script for the BIND DNS64 imple-
mentation contained some extra lines to restart
it after each step of the binary search. (The other
two implementations do not support caching.)

4.3. Performance Measurement Results

The results of the self-test were always above
24000 queries per second, thus even if we
choose the value of delta to be 0.2, the Tester
may be used for testing up to 10000 queries per
second (see subsection 9.2.1 of [7]).
The results of our first series of measurements
are presented in Table 2. The results are shown
as a function of the number of working threads.
Besides median, 1st and 99th percentiles whose
values are required by the Internet Draft, we
also presented the average and the standard de-
viations of the 20 results, because we contend

that they give further insight:
 ● If there is a significant difference between

the average and the median, it indicates that
the distribution of the results is skewed.

 ● If the standard deviation is high (e.g. higher
than 10% of the average) it indicates that
the results are too scattered.

We have also presented the median values as a
graph in Figure 4. It is clearly visible that the
increase of the number of working threads re-
sulted in the increase of the DNS64 performance
up to 8 working threads (from 3132 queries/s
to 8542 queries/s). After that, no more increase
can be seen, rather the performance shows some
degradation (down to 8433 queries/s), but the
degradation is less than the standard deviation

Figure 3. Extract from the measurement script (used with mtd64-ng).

Table 2. DNS64 performance of mt64-ng as a function of the number of working threads (1-12).

Number of
working threads 1 2 3 4 5 6 7 8 9 10 11 12

DNS64
performance
(queries per
second)

median 3132 4747 5885 6849 7490 7940 8249 8542 8446 8470 8496 8433

avg. 3050 4664 5796 6907 7570 7980 8356 8522 8459 8469 8438 8288

s. dev. 175 167 160 240 171 354 276 216 220 266 276 436

min. 2431 4095 5563 6141 7391 7167 8017 8191 8189 7871 7663 6975

max. 3141 4773 5963 7273 7937 8453 8833 9089 9217 8833 8737 8711

98 99G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

ing threads. Therefore its configuration file was
prepared by a script using the mtd64-ng.conf.
core file containing the non-modified settings.
They were:
nameserver 192.168.1.112
dns64-prefix 2001:db8:dead:beef::/96
debugging no
timeout-time 1.0
resend-attempts 1
response-maxlength 512
port 53

The modifications were performed by the set-
mtd64-ng-wth script, which received the num-
ber of working threads as a parameter:
#!/bin/bash
killall mtd64-ng
cd /etc
cp mtd64-ng.conf.core mtd64-ng.conf
echo "num-threads $1" >> mtd64-ng.conf
mtd64-ng

(The script stopped mtd64-ng, prepared the
new configuration file and started mtd64-ng.)
The settings.conf configuration file of MTD64
contained logically the same information as the
mtd64-ng.conf.core file (only the syntax of the
timeout setting was different), therefore we do
not include the file.
The named.conf.options configuration file of
BIND had the following settings:
options {
 directory "/var/cache/bind";
 forwarders { 192.168.1.112; };
 forward only;
 dns64 2001:db8:dead:beef::/96 { };

 dnssec-validation no;
 auth-nxdomain no;
 listen-on-v6 { any; };
};

The measurements were performed by scripts.
The binary search script belonging to [14] was
used with the permission of its authors. It was
modified according to our needs (e.g. adding an
extra for cycle to test mtd64-ng with different
number of working threads). The script con-
tained several lines for logging or for display-
ing information. We present the script without
those lines, keeping only the important parts,
see Figure 3.
We note the Internet Draft has to perform the
tests eliminating the effect of caching. There-
fore the test script for the BIND DNS64 imple-
mentation contained some extra lines to restart
it after each step of the binary search. (The other
two implementations do not support caching.)

4.3. Performance Measurement Results

The results of the self-test were always above
24000 queries per second, thus even if we
choose the value of delta to be 0.2, the Tester
may be used for testing up to 10000 queries per
second (see subsection 9.2.1 of [7]).
The results of our first series of measurements
are presented in Table 2. The results are shown
as a function of the number of working threads.
Besides median, 1st and 99th percentiles whose
values are required by the Internet Draft, we
also presented the average and the standard de-
viations of the 20 results, because we contend

that they give further insight:
 ● If there is a significant difference between

the average and the median, it indicates that
the distribution of the results is skewed.

 ● If the standard deviation is high (e.g. higher
than 10% of the average) it indicates that
the results are too scattered.

We have also presented the median values as a
graph in Figure 4. It is clearly visible that the
increase of the number of working threads re-
sulted in the increase of the DNS64 performance
up to 8 working threads (from 3132 queries/s
to 8542 queries/s). After that, no more increase
can be seen, rather the performance shows some
degradation (down to 8433 queries/s), but the
degradation is less than the standard deviation

Figure 3. Extract from the measurement script (used with mtd64-ng).

Table 2. DNS64 performance of mt64-ng as a function of the number of working threads (1-12).

Number of
working threads 1 2 3 4 5 6 7 8 9 10 11 12

DNS64
performance
(queries per
second)

median 3132 4747 5885 6849 7490 7940 8249 8542 8446 8470 8496 8433

avg. 3050 4664 5796 6907 7570 7980 8356 8522 8459 8469 8438 8288

s. dev. 175 167 160 240 171 354 276 216 220 266 276 436

min. 2431 4095 5563 6141 7391 7167 8017 8191 8189 7871 7663 6975

max. 3141 4773 5963 7273 7937 8453 8833 9089 9217 8833 8737 8711

100 101G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

of the measurement results, therefore we con-
sidered that further measurements were neces-
sary before stating anything about the tendency.
During the second series of measurements the
size of the thread pool was increased from 10
to 100. The results are presented in Table 3 and
the median values are also displayed as a graph
in Figure 5. Now, the tendency is clearly visi-
ble: the DNS64 performance of mtd64-ng de-
creased to about 6000 queries per second at 30
working threads but it stabilized at that value.

As for the interpretation of the results, the rea-
son of the initial increase of the performance
is very simple: the increase of the number of
working threads from 1 to 4 made it possible to
utilize all four CPU cores. The further increase
of the performance from 4 to 8 working threads
can be explained by the fact that the DNS64
server had to send two queries to the authori-
tative DNS server for each request and while
waiting for replies, the CPU cores could be uti-
lized by the processing of other requests. The
DNS64 performance did not show significant
decrease from 8 to 12 working threads, but it
was about 30% less for 30 or higher numbers
of threads. We consider a possible explanation
of this phenomenon the less effective use of the
CPU cache (less cache hits), due to the higher
memory usage of the unnecessarily high num-
ber of working threads.
Table 3 also contains the DNS64 perfor-
mance results of BIND and MTD64. As we
expected, mtd64-ng outperformed both BIND
and MTD64. Considering the best performance
of mtd64-ng at 8 working threads (8542 que-
ries/s), it outperformed BIND (1374 queries/s)
and MTD64 (5602 queries/s) 6.2 times and
1.5 times, respectively. Even if one prefers to
compare the performance of mtd64-ng using
4 working threads with the performance of
BIND, which uses also 4 working threads (but
4 listeners whereas mtd64-ng uses only 1 lis-
tener), the proportion is still 4.98, which is to
be rounded to 5.0. And even if far too many
threads are used, mtd64-ng is still somewhat
faster than MTD64.

5. Plans for Future Research and
Development

Our long term goal is to develop a high per-
formance DNS64 server, which can be used in
production systems. This goal is planned to be
achieved step by step, adding different func-
tions and optimizing mtd64-ng gradually.
One of the short term development tasks is to
use multiple listeners instead of the current sin-
gle one to avoid being a bottleneck and then test
the performance of mtd64-ng up to 8 or 12 CPU
cores.
Our next goals are implementation of caching
and testing its efficiency. We believe that our
current object oriented redesign has been a
great help in adding functionalities like caching
more easily.
In the long run, we also plan some improve-
ments like the ones listed in subsection VI.B of
[8].
Before recommending mtd64-ng to be used in
production systems, we plan to do its extensive
functional and security testing.

6. Conclusion

We conclude that the object oriented redesign
and reimplementation of MTD64, resulting
in mtd64-ng, was a significant step in the life
cycle of this new DNS64 server program, not
only by the elimination of two significant flaws
(memory leaking and its potential vulnerability
to DoS attacks), but also by resulting in a bet-
ter quality source code and paving the path for
adding further functionalities.
As for the high performance of the DNS64
server, we have shown that it is not only kept
but even further improved.
We conclude that the development of mtd64-ng
is worth continuing until a production class
DNS64 server implementation is achieved.

References

[1] M. Bagnulo et al., "The NAT64/DNS64 Tool Suite
for IPv6 Transition", IEEE Communication Maga-
zine, vol. 50, no 7, pp. 177–183, 2012.
http://dx.doi.org/10.1109/MCOM.2012.6231295

[2] Free Software Foundation, ''The Free Software
Definition''
http://www.gnu.org/philosophy/free-sw.en.html

[3] Open Source Initiative, ''The Open Source Def-
inition''
http://opensource.org/docs/osd

[4] M. Bagnulo et al., "DNS64: DNS Extensions for
Network Address Translation from IPv6 Clients
to IPv4 Servers", IETF RFC 6147.
http://dx.doi.org/10.17487/rfc6147

[5] G. Lencse and S. Répás, "Performance Analysis
and Comparison of Four DNS64 Implementa-
tions under Different Free Operating Systems",
Telecommunication Systems, vol. 63, no. 4, pp.
557–577.
http://dx.doi.org/10.1007/s11235-016-0142-x

[6] C. Bao et al., "IPv6 Addressing of IPv4/IPv6
Translators", IETF RFC 6052.
http://dx.doi.org/10.17487/rfc6052

[7] M. Georgescu and G. Lencse, "Benchmarking
Methodology for IPv6 Transition Technologies",
IETF BMWG, Internet Draft
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6
-tran-tech-benchmarking-08

[8] G. Lencse and A. G. Soós, "Design, Implementa-
tion and Testing of a Tiny Multi-Threaded DNS64
Server", International Journal of Advances in
Telecommunications, Electrotechnics, Signals
and Systems, vol. 5, no. 2, pp. 68–78. 2016.
http://dx.doi.org/10.11601/ijates.v5i2.129

[9] G. Lencse, "Performance Analysis of MTD64,
Our Tiny Multi-Threaded DNS64 Server Im-
plementation: Proof of Concept", International
Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 5, no
2, pp. 116–121, 2016.
http://dx.doi.org/10.11601/ijates.v5i2.166

[10] D. Bakai, "A Lightweight Multithreaded C++11
DNS64 Server", mtd64-ng source code.
https://github.com/bakaid/mtd64-ng

[11] G. Lencse and D. Bakai, "Design and Imple-
mentation of a Test Program for Benchmarking
DNS64 Servers", IEICE Transactions on Com-
munications, vol. E100-B, no. 6, pp. 947–954,
2017.
http://dx.doi.org/10.1587/transcom.2016EBN0007

[12] S. Bradner and J. McQuaid, "Benchmarking
Methodology for Network Interconnect Devices",
IETF RFC 2544.
http://dx.doi.org/10.17487/rfc2544

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12

Number of replied queries per second

Figure 4. DNS64 performance of mtd64-ng as a
function of the number of working threads (1-12).

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70 80 90 100 110

Number of replied queries per second

Figure 5. DNS64 performance of mtd64-ng as a
function of the number of working threads (10-100).

Table 3. DNS64 performance of mtd64-ng as a function of the number of working threads (10-100) + comparison
with BIND (4 working threads) and MTD64.

Number of
working threads 10 20 30 40 50 60 70 80 90 100 BIND MTD64

DNS64
performance
(queries per
second)

median 8470 6368 6108 6146 6116 5956 5804 6071 6054 6074 1374 5602

avg. 8469 6346 6027 6041 6038 5947 5789 6043 6027 6043 1354 5523

s. dev. 266 473 253 252 175 191 258 153 201 183 86 374

min. 7871 5119 5119 5247 5755 5599 5247 5797 5599 5611 1023 4607

max. 8833 7169 6241 6305 6337 6209 6153 6273 6273 6401 1473 6145

http://dx.doi.org/10.1109/MCOM.2012.6231295
http://dx.doi.org/10.17487/rfc6147
http://dx.doi.org/10.1007/s11235-016-0142-x
http://dx.doi.org/10.17487/rfc6052
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-08
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-08
http://dx.doi.org/10.11601/ijates.v5i2.129
http://dx.doi.org/10.11601/ijates.v5i2.166
http://dx.doi.org/10.1587/transcom.2016EBN0007
http://dx.doi.org/10.17487/rfc2544

100 101G. Lencse and D. Bakai Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

of the measurement results, therefore we con-
sidered that further measurements were neces-
sary before stating anything about the tendency.
During the second series of measurements the
size of the thread pool was increased from 10
to 100. The results are presented in Table 3 and
the median values are also displayed as a graph
in Figure 5. Now, the tendency is clearly visi-
ble: the DNS64 performance of mtd64-ng de-
creased to about 6000 queries per second at 30
working threads but it stabilized at that value.

As for the interpretation of the results, the rea-
son of the initial increase of the performance
is very simple: the increase of the number of
working threads from 1 to 4 made it possible to
utilize all four CPU cores. The further increase
of the performance from 4 to 8 working threads
can be explained by the fact that the DNS64
server had to send two queries to the authori-
tative DNS server for each request and while
waiting for replies, the CPU cores could be uti-
lized by the processing of other requests. The
DNS64 performance did not show significant
decrease from 8 to 12 working threads, but it
was about 30% less for 30 or higher numbers
of threads. We consider a possible explanation
of this phenomenon the less effective use of the
CPU cache (less cache hits), due to the higher
memory usage of the unnecessarily high num-
ber of working threads.
Table 3 also contains the DNS64 perfor-
mance results of BIND and MTD64. As we
expected, mtd64-ng outperformed both BIND
and MTD64. Considering the best performance
of mtd64-ng at 8 working threads (8542 que-
ries/s), it outperformed BIND (1374 queries/s)
and MTD64 (5602 queries/s) 6.2 times and
1.5 times, respectively. Even if one prefers to
compare the performance of mtd64-ng using
4 working threads with the performance of
BIND, which uses also 4 working threads (but
4 listeners whereas mtd64-ng uses only 1 lis-
tener), the proportion is still 4.98, which is to
be rounded to 5.0. And even if far too many
threads are used, mtd64-ng is still somewhat
faster than MTD64.

5. Plans for Future Research and
Development

Our long term goal is to develop a high per-
formance DNS64 server, which can be used in
production systems. This goal is planned to be
achieved step by step, adding different func-
tions and optimizing mtd64-ng gradually.
One of the short term development tasks is to
use multiple listeners instead of the current sin-
gle one to avoid being a bottleneck and then test
the performance of mtd64-ng up to 8 or 12 CPU
cores.
Our next goals are implementation of caching
and testing its efficiency. We believe that our
current object oriented redesign has been a
great help in adding functionalities like caching
more easily.
In the long run, we also plan some improve-
ments like the ones listed in subsection VI.B of
[8].
Before recommending mtd64-ng to be used in
production systems, we plan to do its extensive
functional and security testing.

6. Conclusion

We conclude that the object oriented redesign
and reimplementation of MTD64, resulting
in mtd64-ng, was a significant step in the life
cycle of this new DNS64 server program, not
only by the elimination of two significant flaws
(memory leaking and its potential vulnerability
to DoS attacks), but also by resulting in a bet-
ter quality source code and paving the path for
adding further functionalities.
As for the high performance of the DNS64
server, we have shown that it is not only kept
but even further improved.
We conclude that the development of mtd64-ng
is worth continuing until a production class
DNS64 server implementation is achieved.

References

[1] M. Bagnulo et al., "The NAT64/DNS64 Tool Suite
for IPv6 Transition", IEEE Communication Maga-
zine, vol. 50, no 7, pp. 177–183, 2012.
http://dx.doi.org/10.1109/MCOM.2012.6231295

[2] Free Software Foundation, ''The Free Software
Definition''
http://www.gnu.org/philosophy/free-sw.en.html

[3] Open Source Initiative, ''The Open Source Def-
inition''
http://opensource.org/docs/osd

[4] M. Bagnulo et al., "DNS64: DNS Extensions for
Network Address Translation from IPv6 Clients
to IPv4 Servers", IETF RFC 6147.
http://dx.doi.org/10.17487/rfc6147

[5] G. Lencse and S. Répás, "Performance Analysis
and Comparison of Four DNS64 Implementa-
tions under Different Free Operating Systems",
Telecommunication Systems, vol. 63, no. 4, pp.
557–577.
http://dx.doi.org/10.1007/s11235-016-0142-x

[6] C. Bao et al., "IPv6 Addressing of IPv4/IPv6
Translators", IETF RFC 6052.
http://dx.doi.org/10.17487/rfc6052

[7] M. Georgescu and G. Lencse, "Benchmarking
Methodology for IPv6 Transition Technologies",
IETF BMWG, Internet Draft
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6
-tran-tech-benchmarking-08

[8] G. Lencse and A. G. Soós, "Design, Implementa-
tion and Testing of a Tiny Multi-Threaded DNS64
Server", International Journal of Advances in
Telecommunications, Electrotechnics, Signals
and Systems, vol. 5, no. 2, pp. 68–78. 2016.
http://dx.doi.org/10.11601/ijates.v5i2.129

[9] G. Lencse, "Performance Analysis of MTD64,
Our Tiny Multi-Threaded DNS64 Server Im-
plementation: Proof of Concept", International
Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 5, no
2, pp. 116–121, 2016.
http://dx.doi.org/10.11601/ijates.v5i2.166

[10] D. Bakai, "A Lightweight Multithreaded C++11
DNS64 Server", mtd64-ng source code.
https://github.com/bakaid/mtd64-ng

[11] G. Lencse and D. Bakai, "Design and Imple-
mentation of a Test Program for Benchmarking
DNS64 Servers", IEICE Transactions on Com-
munications, vol. E100-B, no. 6, pp. 947–954,
2017.
http://dx.doi.org/10.1587/transcom.2016EBN0007

[12] S. Bradner and J. McQuaid, "Benchmarking
Methodology for Network Interconnect Devices",
IETF RFC 2544.
http://dx.doi.org/10.17487/rfc2544

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12

Number of replied queries per second

Figure 4. DNS64 performance of mtd64-ng as a
function of the number of working threads (1-12).

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70 80 90 100 110

Number of replied queries per second

Figure 5. DNS64 performance of mtd64-ng as a
function of the number of working threads (10-100).

Table 3. DNS64 performance of mtd64-ng as a function of the number of working threads (10-100) + comparison
with BIND (4 working threads) and MTD64.

Number of
working threads 10 20 30 40 50 60 70 80 90 100 BIND MTD64

DNS64
performance
(queries per
second)

median 8470 6368 6108 6146 6116 5956 5804 6071 6054 6074 1374 5602

avg. 8469 6346 6027 6041 6038 5947 5789 6043 6027 6043 1354 5523

s. dev. 266 473 253 252 175 191 258 153 201 183 86 374

min. 7871 5119 5119 5247 5755 5599 5247 5797 5599 5611 1023 4607

max. 8833 7169 6241 6305 6337 6209 6153 6273 6273 6401 1473 6145

http://dx.doi.org/10.1109/MCOM.2012.6231295
http://dx.doi.org/10.17487/rfc6147
http://dx.doi.org/10.1007/s11235-016-0142-x
http://dx.doi.org/10.17487/rfc6052
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-08
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-08
http://dx.doi.org/10.11601/ijates.v5i2.129
http://dx.doi.org/10.11601/ijates.v5i2.166
http://dx.doi.org/10.1587/transcom.2016EBN0007
http://dx.doi.org/10.17487/rfc2544

102 G. Lencse and D. Bakai

[13] D. Bakai, "A C++11 DNS64 Performance Tester,
dns64perf++", source code.
https://github.com/bakaid/dns64perfpp

[14] G. Lencse et al., "Benchmarking Methodology
for DNS64 Servers", Computer Communications,
published online
http://dx.doi.org/10.1016/j.comcom.2017.06.004

[15] A. G. Soós, "MTD64: Multi-Threaded DNS64
server", source code.
https://github.com/Yoso89/MTD64

Received: September 2016
Revised: April 2017

Accepted: May 2017

Contact addresses:
Gábor Lencse

Department of Networked Systems and Services
Budapest University of Technology and Economics

2 Magyar tudósok körútja
H-1117 Budapest

Hungary
e-mail: lencse@hit.bme.hu

Dániel Bakai
Department of Networked Systems and Services

Budapest University of Technology and Economics
2 Magyar tudósok körútja

H-1117 Budapest
Hungary

e-mail: bakaid@kszk.bme.hu

Gábor Lencse received his MSc and PhD in computer science from
the Budapest University of Technology and Economics, Budapest,
Hungary in 1994 and 2001, respectively. He works for the Department
of Telecommunications, Széchenyi István University, Győr, Hungary
since 1997. Now, he is an Associate Professor. He is also a part time
Senior Research Fellow at the Department of Networked Systems and
Services, Budapest University of Technology and Economics since
2005. His research interests include performance analysis of commu-
nication systems, parallel discrete event simulation methodology and
IPv6 transition methods.

DánieL bakai is a BSc student studying computer science at the Bu-
dapest University of Technology and Economics, Budapest, Hungary.
He does project work for the Department of Networked Systems and
Services, Budapest University of Technology and Economics since
February 2015. He is also the author of the dns64perf++ DNS64 server
benchmarking program.

 HistoryItem_V1
 Shuffle

 Create a new document
 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 D:20170621125020

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1

 HistoryList_V1
 qi2base

