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Abstract

DNS64 is an important IPv6 transition technology used in convergence with NAT64 to enable IPv6-only clients to com-
municate with IPv4-only servers. Several DNS64 implementations have been proposed as a solution. Their performance
is an important decision factor for network operators with regard to choosing the most appropriate one among them.
To that end, this article proposes a methodology for measuring their performance. The number of resolved queries
per second is proposed as performance metric and a step by step procedure is given for its measurement. The design
considerations behind the method are also disclosed and the performance requirements for the tester device are specified.
The feasibility of our method is proven and its execution is demonstrated in two case studies, which include an empirical
analysis of the tester as well as that of three open-source DNS64 implementations. The influence of the rate of existing
AAAA records on the performance of the DNS64 server, as well as the influence of the cache hit rate of the DNS64 server
on the performance of the DNS64 server are also measured and modeled. Our results and their precision may serve as
a reference for further tests.
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1. Introduction

DNS64 [1] servers together with NAT64 [2] gateways
play an important role in the IPv6 transition by enabling
an IPv6-only client to communicate with an IPv4-only
server. We expect this scenario to be very common in
the upcoming years because the ISPs (Internet Service
Providers) cannot provide public IPv4 addresses to their
ever increasing number of new clients, due to the depletion
of the public IPv4 address pool. They could distribute pri-
vate IPv4 addresses and use CGN (Carrier Grade NAT),
but the forward-looking procedure is to deploy global IPv6
addresses to the new clients. However, the majority of the
servers on the Internet still have IPv4 addresses only. We
believe that the NAT64/DNS64 tool suite [3] is one of the
best solutions for this problem. NAT64 is mentioned as the
only “feasible stateful translation mechanism” in [4]. Ref-
erence [5] gives an up to date survey of the IPv4 address
sharing methods, and concludes that: “The only actual
address sharing mechanism that really pushes forward the
transition to IPv6 is Stateful NAT64 (Class 4). All other
(classes of) mechanisms are more tolerant to IPv4.”

Several implementations exist for both DNS64 and
NAT64. When selecting from among them, performance
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marius.georgescu@rcs-rds.ro (Marius Georgescu),
youki-k@is.aist-nara.ac.jp (Youki Kadobayashi)

is a decisive factor for network operators. Having perfor-
mance data produced by using standardized benchmarking
methods enables network operators to compare different
implementations. RFC 2544 [6] aims to define such meth-
ods. IPv6 specificities were later addressed in [7], but this
document explicitly excluded IPv6 transition mechanisms
from its scope. The internet draft [8] aims to cover them.
There are several IPv6 transition methods and the draft
attempts to be general enough to cover most of them. To
that end, several categories were defined (e.g. encapsu-
lation, single or double translation) and a specific bench-
marking setup is recommended for each category. DNS64
is a solution which does not fit in these categories, and
therefore requires “individual attention”.

In this article, we focus on the methodology for bench-
marking DNS64 servers. Our aim is threefold. We would
like to give an insight into our considerations which re-
sulted in the method specified in [8], section 9. We
also provide a detailed example of how to carry out the
measurement procedure described in the draft. And last
but not least we would like to receive feedback from the
scientific community about the proposed benchmarking
method.

The remainder of this paper is organized as follows. In
section 2, the relevance of the DNS64 performance is stated
and a brief introduction to the operation of the DNS64
plus NAT64 IPv6 transition solution is given. In section
3, a short survey of other methodologies for the perfor-
mance analysis of DNS64 servers is presented. In section
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4, the proposed benchmarking methodology is described.
In section 5, performance requirements for the tester de-
vice are formulated. Section 6 is a general case study for
demonstrating how to carry out the proposed tests and
giving a deeper insight into the methods, as well as pro-
viding a reference concerning the expected accuracy of the
results. Section 7 is a supplementary case study for ex-
amining different test and traffic setups. In section 8, our
plans for future research are outlined. Finally, in section
9, the conclusions are stated.

2. Background information: relevance of DNS64

We examine the relevance of the DNS64 performance in
the first subsection, and for those not familiar with the
operation of DNS64 and NAT64, we present the operation
of these important IPv6 transition solutions in the second
subsection.

2.1. Relevance of DNS64 performance

A large ISP needs to resolve several hundred thousands
of DNS requests per second. For example, RCS&RDS, the
current employer of the second author, does about 300,000
queries per second, whereas Google Public DNS did a daily
average of 810,000 queries per second in 2012 [9].

As for DNS64, it is used only by the IPv6-only clients.
Their number is usually low in the beginning at all ISPs,
but it is expected to rise due to the depletion of the public
IPv4 address pool. We cannot see into the future, but if
the transition to IPv6 will use mainly the DNS64+NAT64
technology and there will be a time when the majority of
the clients will be already IPv6-only and they still need to
be able to connect to IPv4-only servers, then the DNS64
servers will be faced with a load of the above mentioned
magnitude. Practically it means that a delay in the DNS64
resolution will have an immediate negative effect on the
user experience of the high number of IPv6-only clients.

We believe that the science of computer communica-
tion needs a proper benchmarking methodology for DNS64
servers so that the performance of the different DNS64 im-
plementations may be accurately measured and compared
by using standardized performance metrics and researchers
may adequately qualify the different DNS64 implementa-
tions by obtaining reasonable and comparable performance
characteristics.

2.2. Operation of DNS64 and NAT64

We demonstrate the operation of DNS64 and NAT64
on the example of an IPv6-only client and an IPv4-only
web server taken verbatim from our conference paper [10].
Fig. 1 shows a scenario where an IPv6-only client commu-
nicates with an IPv4-only web server. The DNS64 server
uses the 64:ff9b::/96 NAT64 Well-Known Prefix [11] for
generating IPv4-embedded IPv6 addresses [11]. There are
two prerequisites for the proper operation:

1. A DNS64 server should be set as the DNS server of
the IPv6-only client.

2. Packets towards the 64:ff9b::/96 network are routed
to the NAT64 gateway (routing must be configured
that way).

Let us follow the steps of the communication:

1. The client asks its DNS server (which one is actu-
ally a DNS64 server) about the IPv6 address of the
www.hit.bme.hu web server.

2. The DNS64 server asks the DNS system about the
IPv6 address of www.hit.bme.hu.

3. No IPv6 address is returned.

4. The DNS64 server then asks the DNS system for the
IPv4 address of www.hit.bme.hu.

5. The 152.66.148.44 IPv4 address is returned.

6. The DNS64 server synthesizes an IPv4-embedded
IPv6 address by placing the 32 bits of the received
152.66.148.44 IPv4 address after the 64:ff9b::/96 pre-
fix and sends the result back to the client.

7. The IPv6 only client sends a TCP SYN segment us-
ing the received 64:ff9b::9842:f82c IPv6 address and
it arrives to the IPv6 interface of the NAT64 gateway
(since the route towards the 64ff9b::/96 network is set
so in all the routers along the path).

8. The NAT64 gateway constructs an IPv4 packet us-
ing the last 32 bits (0x9842f82c) of the destination
IPv6 address as the destination IPv4 address (this is
exactly 152.66.248.44), its own public IPv4 address
(198.51.100.10) as the source IPv4 address and some
other fields from the IPv6 packet plus the payload of
the IPv6 packet. It also registers the connection into
its connection tracking table (and replaces the source
port number by a unique one if necessary). Finally it
sends out the IPv4 packet to the IPv4 only server.

9. The server receives the TCP SYN segment and sends
a SYN ACK reply back to the public IPv4 address of
the NAT64 gateway.

10. The NAT64 gateway receives the IPv4 reply packet.
It constructs an appropriate IPv6 packet using the
necessary information from its state table. It sends
the IPv6 packet back to the IPv6 only client.

The communication may continue. It seems to the client
that it communicates to an IPv6 server. Similarly, the
server “can see” an IPv4 client. If it logs the IP addresses
of the clients than it will log the public IPv4 address of
the NAT64 gateway.

Most client-server applications can work well with the
DNS64+NAT64 solution. See more information about the
application compatibility in [12, 13, 14].

In practice, the word wide usage of the NAT64 Well-
Known Prefix has several hindrances, see sections 3.1 and
3.2 of [11]. Therefore the network operators allocate a
subnet from their own network for this purpose. It is called
Network Specific Prefix [11].
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Figure 1: The operation of the DNS64+NAT64 solution: an IPv6-only client communicates with and IPv4-only server [10]

3. Short survey of methods for performance anal-
ysis of DNS64 servers

In existing literature, we could find only a few articles
on this topic. Usually, articles other than ours do not deal
with DNS64, but rather focus on NAT64, and when its per-
formance is analyzed the performance of a given DNS64
implementation is also considered implicitly. For example,
the performance of the TAYGA NAT64 implementation is
compared to the performance of NAT44 in [15], whereas
TOTD is used as a DNS64 server. The performance of the
Ecdysis NAT64 implementation is compared to the per-
formance of the authors own HTTP ALG in [16]. Ecdysis
used its own DNS64 implementation. Similarly, the per-
formance of the Ecdysis NAT64 implementation (using its
own DNS64 implementation) is compared to the perfor-
mance of both the NAT-PT and an HTTP ALG in [17].

The Ecdysis NAT64 implementation was used together
with BIND as DNS64 implementation in [18]. In this pa-
per, DNS64 was addressed without NAT64: the CPU us-
age of DNS64 was compared to that of the DNS. However,
no methodology was provided for the performance analysis
of DNS64 servers.

The first known method for the performance analysis of
DNS64 servers was published in [19]. Its purpose was to
test the stability of a DNS64 implementation, more specif-
ically, to check if its behavior under heavy load complies
with the graceful degradation [20] principle. The same
method was used for stability testing and also performance
comparison of two DNS64 implementations [21]. The basic
idea of the method is to test the DNS64 servers by sending
many AAAA record requests from a namespace which:

• can be described systematically

• can be resolved to IPv4 only

• can be resolved without delay.

The testing method was implemented with bash shell
scripts using the host Linux command. However, this

command also requests an MX record by default, there-
fore its “-t AAAA” option was used later to query for
the AAAA record only [22]. The usage of the bash shell
scrips was rather inefficient, thus certain part (the in-
ner for cycle) was replaced by a short C program in [23].
The program was used for the performance analysis and
comparison of four DNS64 implementations executed by
a quad-core computer. To address the performance prob-
lem, a short test program named dns64perf was written
in C/C++ [24]. However, all these programs have very
important limitations as they were designed for stability
testing and performance comparison, but not for bench-
marking DNS64 implementations. What is the difference?

The following technical challenges need to be solved in
order to obtain a suitable DNS64 benchmarking environ-
ment.

• The benchmarking program should be able determine
exactly how many AAAA record requests can the
given DNS64 implementation service in a second.

• The performance results should not depend on the
tester. In other words, if the performance of the tester
is not enough to test a certain implementation, the
user needs to be notified.

The above mentioned methods have not surpassed these
challenges and therefore cannot be considered suitable for
benchmarking. This document discusses how these chal-
lenges can be overcome and to what extent.

4. Proposed benchmarking methodology

4.1. Objectives

The challenge is to find a well-defined performance met-
ric of DNS64 servers, which can be measured simply and
efficiently. Moreover, we need a procedure which describes
how to measure that performance metric. Our aim was to
follow the simple test setup with a Tester and a DUT (De-
vice Under Test) defined in section 6 of [6], or at least to
use a similar and simple test setup. As for the procedure,
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Figure 2: Test and traffic setup for benchmarking DNS64 servers

we intended to keep it simple and similar to other test
procedures, whereas we intended to cover all the impor-
tant circumstances or parameters which can significantly
influence the performance of a DNS64 server.

4.2. Test and traffic setup

In our earlier DNS64 performance tests, there were three
different roles:

• The clients sent the AAAA record requests for differ-
ent domain names.

• A DNS64 implementation answered the requests and
for doing so, it sent AAAA and A record requests to
the authoritative DNS server.

• The authoritative DNS server answered the AAAA
and A record queries of the DNS64 server.

To follow the above mentioned simple test setup with only
two devices, we decided to give the Tester two roles, that of
the client and that of the authoritative DNS server. Nat-
urally, the DUT plays the role of the DNS64 server, see
Fig. 2. (We discuss the potential advantages and disadvan-
tages of this two-device setup compared to a three-device
setup in section 6.11.) The operation of DNS64 is realized
by the following messages:

1. Query for the AAAA record of a domain name (from
client to DNS64 server)

2. Query for the AAAA record of the same domain name
(from DNS64 server to authoritative DNS server)

3. Empty AAAA record answer (from authoritative DNS
server to DNS64 server)

4. Query for the A record of the same domain name
(from DNS64 server to authoritative DNS server)

5. Valid A record answer (from authoritative DNS server
to DNS64 server)

6. Synthesized AAAA record answer (from DNS64
server to client)

We note that the above messages represent the scenario
when no AAAA record exists for the given domain name,
and the DNS64 server synthesizes the IPv4-embedded IPv6

address from the A record (IPv4 address) of the domain
name. If an AAAA record for the given domain name
exists, then it is returned to the DNS64 server in message
3 by the authoritative DNS server; message 4 and message
5 are left out and the DNS64 server returns the received
AAA record to the client in message 6. Although the above
order of the messages is logical, the DNS64 server may send
message 4 before it receives message 3 to minimize delay
(see section 5.1.8 of [1]). If the DNS64 server implements
caching and the requested domain name is present in its
cache memory, then message 1 is followed by message 6
and messages from 2 to 4 are omitted. Thus, besides the
worst case scenario with all six messages, there are two
other possible scenarios: the one when an AAAA record
exists (with messages 1, 2, 3 and 6) and the one when there
is a cache hit (with messages 1 and 6).

4.3. Performance metric and benchmarking procedure

4.3.1. Performance metric

We have chosen the number of successfully processed
DNS requests per second as performance metric. Its exact
definition is revealed by the measurement procedure.

4.3.2. Measurement procedure

The procedure was inspired by the throughput measure-
ment recommended by Bradner et al. in [6]. The following
steps are needed:

• Send a specific number of DNS queries at a specific
rate to the DUT and then count the replies received
in time (within a predefined timeout period from the
sending time of the corresponding query, having the
default value 1 second) from the DUT.

• If the count of sent queries is equal to the count of
received replies, the rate of the queries is raised and
the test is rerun. If fewer replies are received than
queries were sent, the rate of the queries is reduced
and the test is rerun.

• The maximum number of processed DNS queries per
second is the fastest rate at which the count of DNS
replies sent by the DUT is equal to the number of
DNS queries sent to it by the test equipment.

We note that using a higher rate than the one measured
with the above procedure might result in more success-
fully processed DNS record requests per second (and also
non zero unanswered queries). However, we prudentially
defined the performance metric with the above procedure
for at least three reasons:

1. Our goal is a well-defined performance metric, which
can be measured simply and efficiently. Allowing any
packet loss would result in a need for scanning/trying
a large range of rates to discover the highest rate of
successfully processed DNS queries.
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2. Even if users may tolerate a low loss rate (please note
the DNS uses UDP with no guarantee for delivery), it
cannot be arbitrarily high, thus, we could not avoid
defining a limit. However, any other limits than zero
percent would be hardly defensible.

3. Other benchmarking procedures use the same criteria
of zero packet loss and this is the standard in IETF
Benchmarking Methodology Working Group.

4.3.3. Parameters

We pointed out three different scenarios in section 4.2.
We recommend the testing of the worst case scenario as
compulsory and the others as optional. Its reason is trivial:
if a DNS64 implementation performs well in the worst case
scenario then it is a real guarantee for any other scenarios.
Leaving out this one, would result in a possibility for gam-
ing. The two other scenarios may give valuable insight,
but we cannot tell how relevant they are. As for caching,
the operating systems also do DNS caching, thus its rele-
vance depends on the similarity of the domain names used
by the members of the user community of a given DNS64
server. As for the existence of an AAAA record, its prob-
ability grows with the deployment of IPv6. Therefore, we
consider the existence of AAAA records and caching as
orthogonal parameters, and thus recommend various com-
binations of the two.

4.3.4. Reporting format

There may be random events, which influence the re-
sults. Consequently, the tests should be repeated multiple
times and the final result should be calculated by using a
particular summarizing function. Namely, the test should
be repeated at least 20 times and the median should be
used to summarize the results. To account for the vari-
ation of the results across the 20 repetitions, the 1st and
99th percentiles are recommended. We note that different
definitions exist for percentile. We use the definition from
section 11.3 of [25]. The rationale for using the median
as summarizing function and the percentiles as index of
dispersion is presented in section 6.10.

4.4. Timeout time and the duration of each test

Although the default timeout value of the Linux name
resolver is 5 seconds [26], our personal experience under
the Window 7 operating system is that the unanswered
DNS queries are resent after 1 second to a different DNS
server. We consider that the smallest timeout should be
tested, therefore we recommend 1s (one second) as the
default timeout value for DNS64 testing.

As for the duration of each test, we have chosen to use
full length trials of 60 seconds on the basis of our empir-
ical results (see in the case study). We recommend this
because, if the DNS64 implementation is able to store the
requests, then the result of a shorter test may be signifi-
cantly biased due to the following effect. Let tTest denote
the duration of the test, that is, the interval while the

Tester sends queries for AAAA records at rate rT . Let tTO

denote the value of the timeout within the Tester accepts
the replies from the DUT. To complete the test, the DUT
must answer tTest∗rT number of queries within tTest+tTO

time. That is, it is enough1 if the DUT can answer AAAA
record queries at rate rDUT , where:

rDUT =
tTest ∗ rT
tTest + tTO

= rT
1

1 + tTO

tTest

(1)

Now, it is evident that tTO � tTest is necessary for a
correct test result. Even if tTest = 60s and tTO = 1s then:

rDUT =
60

61
rT = 0.9836rT (2)

5. Performance requirements for the Tester

First of all, the Tester must be able to provide AAAA
queries at rT rate.

Second of all, as the authoritative DNS server is a part
of the Tester and each AAAA record query results in two
queries (one of them is for an AAAA record and the other
one is for an A record) thus the Tester must be able to
reply DNS queries at 2rT rate.

Thirdly, there should also be a timeout requirement laid
down for the authoritative DNS server. It is clear that the
faster the authoritative DNS server is, the more time will
be left for the DUT. Theoretically, we could arbitrarily
share the tTO timeout between the DUT and the authori-
tative DNS server. Before any decision, let us consider the
potential effects.

On one hand, the time budget of the DUT may be very
important if it stores a high number of requests in a cer-
tain data structure and it needs to insert new elements
into the data structure and find/delete old ones. If the
time complexity of these operations of the data structure
is logarithmic, then a little difference in the time budget
results in a significant difference in the size of the data
structure it may handle.

On the other hand, setting up too high requirements for
the Tester would result in unnecessary high costs.

Therefore, we decided to halve the tTO timeout between
the two devices. In other words, the Tester must answer
each query within 0.25tTO time and thus 0.5tTO remains
for the DUT.

Before a Tester may be used for testing at rate rT with
the required timeout of tTO, the Tester must perform a
self-test2 if it is able to answer its own queries at 2rT (1+δ)
rate within 0.25tTO timeout. The role of δ is to guarantee
that the Tester itself does not limit the performance of the
DUT. We recommend δ ≥ 0.1.

1If we omit the packet transmission times and propagation delays
of both the request and the reply.

2For performing the self-test, the Tester must be looped back
(omitting the DUT) and its authoritative DNS server subsystem
must be configured to be able to resolve the AAAA queries.
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Figure 3: Test and traffic setup for benchmarking DNS64 servers

We note that a powerful Tester, which can reply AAAA
and A queries within much less time than 0.25tTO leaves
more time for the DUT than a Tester which just passes the
self-test. Therefore, the results may depend on the Tester
as well.

6. General case study

In this case study, we demonstrate the feasibility of the
required tests and provide a straightforward method for
how to carry them out. In addition to that, we examine
how some parameters can influence the results. The accu-
racy of our results may also serve as a reference for other
test setups. A new test setup can be checked by testing one
of the implementations we also tested, and the variation
of the results can be compared to that of our results. We
also give some hints about what circumstances can cause
scattered results.

6.1. Hardware and software environment

We used the two-device setup3 for our DNS64 measure-
ments. The devices and their roles are shown in Fig. 3.

We provide the most important details of the used hard-
ware and software for the repeatability of the measure-
ments.

6.1.1. Dell PowerEdge R805

Two Quad-core AMD Opteron 2378 2400MHz CPUs,
32GB 800MHz DDR2 SDRAM, three Broadcom NetX-
treme BCM5721 Gigabit Ethernet NICs (PCI Express).

Ubuntu 14.04 LTS Linux operating system with the
3.13.0-32-generic kernel version.

3By using the two-device setup, we demonstrate that it is feasible
to use only a single computer as Tester. We argue that it is unneces-
sary to increase the number of machines for benchmarking purposes,
as a single machine can reasonably ramp up the query rate to re-
veal the performance limits. Our goal is to facilitate benchmarking
by everyone, under reasonable amount of resources, under reason-
able amount of time. (We demonstrate the alternative, three-device
setup in the complementary case study.)

6.1.2. Dell PowerEdge 860E

One Quad-core AMD Opteron 2378 1866MHz CPU,
8GB 667MHz DDR2 SDRAM, four Broadcom NetXtreme
II BCM5708 Gigabit Ethernet NICs (PCI Express)

Ubuntu 14.04 LTS Linux operating system with the
3.13.0-32-generic kernel version.

6.1.3. DNS64 performance measurement program

As for measurement tool, dns64perf++ 1.0.0 was used.
The implementation was developed by Dániel Bakai for
these purposes. The program is documented in [27] and
it is available as a free software under the GNU GPLv2
license from Github [28].

6.1.4. Authoritative DNS server and DNS64 servers

BIND9.9.8-P3 (compiled from source to be single-
threaded, in order to achieve more stable measurement
results) was used as both authoritative DNS server and
DNS64 server.

Two other DNS64 implementations were also tested:
TOTD 1.5.3 with the patch documented in [22] avail-
able from Github [29] and mtd64-ng 1.0.0, available from
Github [30].

6.2. Introduction of dns64perf++ in a Nutshell

We give a short summary of the properties of the per-
formance measurement tool on the basis of [27].

6.2.1. Namespace used
The test program can use the elements of the following

independent namespace:

{000..255}-{000..255}-{000..255}-{000..255}.dns64perf.test.

Or with a different notation:
k -l -m-n.dns64perf.test., where k, l,m, n ∈ [000, 255]

These domain names are to be mapped to the k.l.m.n
IPv4 address by the authoritative DNS server.

The actual namespace to be used, can be defined by the
CIDR notation of the corresponding IPv4 address range.

6.2.2. Input parameters of the program

The program takes the following command line param-
eters:

1. IPv6 address of the DNS64 server

2. Port number of the DNS64 server program

3. Subnet of the required namespace

4. Number of AAAA record requests to be sent

5. Burst size – must be 1.

6. Delay between bursts (in nanoseconds) – must be the
delay between the starting time of the sending of the
consecutive requests, that is: 109/rT

7. Timeout – specifies the timeout value (in seconds)
within which an answer is accepted.
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6.2.3. Operation of the program

The execution of dns64perf++ requires two CPU
cores, because the program uses two threads: one of them
sends AAAA record requests with proper timing (imple-
mented by busy waiting, thus this thread utilizes all com-
puting power of a CPU core), and the other thread receives
the replies, it records the arrival time of all the received
replies, as well as the fact that it contained an answer (an
IPv6 address resource record). When the specified timeout
value elapsed after the request sent last, the program eval-
uates its records and decides about every single request if
it was replied. If yes, then the RTT (Round-Trip Time) is
calculated. It also checks if the reply contained an answer.
If yes, then it is considered as valid, if its RTT is less than
or equal to the timeout value.

We note that the current version of the program can-
not utilize the computing power of more than two CPU
cores. This fact can be a limitation when it is used for
benchmarking DNS64 server implementations executed by
high-performance computers.

6.2.4. Output of the program

The program prints out the time required for sending
the specified number of requests (in nanoseconds) so that
the user can confirm its time accuracy.

It prints out the number of sent queries, the number of
received replies, the number of valid answers as well as the
average and standard deviation of the RTT of the received
replies.

It also dumps its records in CSV format (making avail-
able the raw information to the user).

6.3. Shell script for binary search

We used a bash shell script which executed a binary
search to determine the highest possible rate at which the
number of valid answers was equal to the number of sent
queries. The measurements were repeated 20 times. The
timeout value and the duration of the tests were used as
parameters and we have examined how their values can
influence the results.

The shell script was also responsible for eliminating
the effect of caching. This was done by restarting the
given DNS64 implementation after each step of the binary
search.

A possible alternative solution is to use different names-
paces for each tests, that is, for each iteration steps of all
20 repetitions. Depending on the query rate and the du-
ration of the tests, the authoritative DNS server may need
a large amount of memory.

For all our tests, we used the namespace which can be
described by the 198.0.0.0/11 subnet. (It made possible
testing up to 34,952 queries per second rate at 60 second
duration, which was enough for our purposes.)

Selft-test performance of single-threaded BIND

Figure 4: BIND9 authoritative DNS server performance results:
number of successfully answered AAAA record requests per second
(single-threaded, 800MHz CPU clock frequency)

6.4. Self-test for the Tester

We decided to measure the performance of the author-
itative DNS server in the same way we tested the perfor-
mance of the DNS64 server. We disclose both the details of
the measurements and the results, as they offer important
insights, as well as validate the proposed methodology.

6.4.1. Measurement method details

In order to ensure that the performance of the measure-
ment tool will be enough to measure the performance of
the authoritative DNS server, we used the following test
setup. The clock frequencies of cores 0-3 of the Tester were
set to 2400MHz using the cpufreq-set Linux command.
The affinity of dns64perf++ was set so that it could be
executed by these cores only (using the taskset Linux
command). Similarly, the clock frequencies of cores 4-7
of the Tester were set to 800MHz and the affinity of the
single-threaded BIND (used as authoritative DNS server)
was set so that it can be executed only by one of them.

The measurements were performed using different test
duration and timeout values. Presently, we are focusing on
the 60 seconds long one with 0.25 second timeout, because
this one was needed for the DNS64 tests.

As dns64perf++ can request only AAAA records, a
zone file was generated for BIND which contained AAAA
records for the namespace which can be described by the
198.0.0.0/11 subnet.

6.4.2. Results

The results were very stable, the minimum and the max-
imum of the successfully answered AAAA record requests
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Table 1: Mtd64-ng DNS64 performance: number of answered queries
per second, 1 worker thread, 1s timeout

Duration (s) 5 10 30 60
Average 3448.1 3160.9 2970.8 2926.3
Median 3448 3161 2971 2926
1st Perc. (min) 3442 3157 2967 2923
99th Perc. (max) 3452 3164 2974 2929
Standard Deviat. 2.81 1.77 1.92 1.66
MoE 99.9 2.07 1.31 1.41 1.22
Median Abs. Dev. 2.97 1.48 1.48 1.48
Calculated rate 2873.3 2873.6 2875.2 2878.0

Table 2: Mtd64-ng DNS64 performance: number of answered queries
per second, 1 worker thread, 0.5s timeout

Duration (s) 5 10 30 60
Average 3168.1 3025.7 2932.2 2920.3
Median 3168 3026 2932 2920
1st Perc. (min) 3162 3022 2930 2917
99th Perc. (max) 3175 3031 2936 2923
Standard Deviat. 3.35 2.19 1.58 1.48
MoE 99.9 2.47 1.60 1.16 1.09
Median Abs. Dev. 2.97 1.48 1.48 1.48
Calculated rate 2880.0 2881.9 2883.9 2895.9

per second were 13714 and 13759, respectively. See further
details in Fig. 4, which depicts the probability distribution
of the results for the 20 measurements.

6.5. Parameters for the DNS64 tests

In order to explore how the duration of the tests and
the timeout value influence the results, we used them as
parameters. The test duration values were: 5s, 10s, 30s
and 60s. The timeout values were: 0.5s, 1s and 5s. And we
used the before mentioned three DNS64 implementations:
BIND9, TOTD and mtd64-ng.

We do not include all results produced by using all
three implementations using all possible parameter com-
binations because of their high number. We selected those
that can be used for the demonstration of our most im-
portant observations.

Table 3: Mtd64-ng DNS64 performance: number of answered queries
per second, 1 worker thread, 5s timeout

Duration (s) 5 10 30 60
Average 5786.8 4338.7 3371.9 3135.9
Median 5787 4339.5 3372 3136
1st Perc. (min) 5780 4334 3368 3133
99th Perc. (max) 5792 4342 3375 3139
Standard Deviat. 3.19 2.20 1.53 1.62
MoE 99.9 2.35 1.62 1.13 1.19
Median Abs. Dev. 2.22 2.22 1.48 1.48
Calculated rate 2893.5 2893.0 2890.3 2894.8

6.6. DNS64 results of mtd64-ng

We start with mtd64-ng because it produced outstand-
ingly stable results. We note that only one worker thread
was used both for reducing its performance and making the
results more stable. It meant that the program was run-
ning in two threads: one for receiving the requests and one
for processing them. (In mtd64-ng terminology, the num-
ber of worker threads means the number of those threads
processing the requests. The default value for the number
of worker threads is 30, in order to be able to utilize the
available computing power of multi-core CPUs.)

Table 1 shows the results with our proposed 1 second
timeout value. The first line of the table specifies the test
duration, and all the other values are given as the func-
tion of it. The average and median values are very close
to each other at any test duration, and the largest differ-
ence between the minimum and the maximum values is 10
(occurred at 5 second test duration).

We note that the 1st and 99th percentiles correspond to
the minimum and maximum values, respectively, because
the number of repetitions is 20 (less than 100).

The number of answered queries per second shows a
visibly decreasing tendency, which we explain by the phe-
nomenon of storing requests and using up the timeout time
for servicing them. To check our hypothesis, the last line of
the table contains the values which were calculated accord-
ing to (1) using the median, the 1s timeout and the test
duration time values. These numbers predict very similar
values for the real, infinitely sustainable service rate of the
DUT between 2873 and 2878 queries per second.

In order to further validate our hypothesis, we have to
observe the results with 0.5s and 5s timeout values in Ta-
ble 2 and Table 3, respectively. They are also very sta-
ble and their prediction for the infinitely sustainable rate
is also very similar. Mtd64-ng is a good example of a
very stable DNS64 implementation, which can store the
pending requests and thus it can efficiently perform some
“gaming” in utilizing the timeout value for significantly
increasing its measured response rate. To that end, an
extreme example is, the median in Table 3 at 5s test du-
ration and 5s timeout, which is 5787 queries per second,
exactly the double of the calculated infinitely sustainable
rate of 2893.5 queries per second.

6.7. DNS64 results of BIND9

The results of the single threaded BIND9 DNS64 server
with 1s timeout can be seen in Table 4. They are also ac-
ceptably stable though the fact that the difference between
the minimum (3124) and the maximum (3515) is 391 at
60s test duration, which is more than 11% of the median
(3471), is a serious warning sign. Both average and median
show some decrease as the test duration grows from 5s to
60s, but this decrease is much less than it was in the case
of mtd64-ng. We included the calculated infinitely sustain-
able rate in the last line of the table, but these numbers
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Table 4: BIND9 DNS64 performance: number of answered queries
per second, 1 worker thread, 1s timeout

Duration (s) 5 10 30 60
Average 3547.3 3505.7 3485.2 3455.0
Median 3552.5 3506 3480.5 3471
1st Perc. (min) 3514 3465 3464 3124
99th Perc. (max) 3595 3535 3515 3515
Std. Dev. 20.15 19.51 15.05 79.51
MoE 99.9 14.83 14.36 11.08 58.51
Median Abs. Dev. 17.79 16.31 11.86 13.34
Calc. r. (wrong) 2960.4 3187.3 3368.2 3414.1

Table 5: TOTD DNS64 performance: number of answered queries
per second, 1 worker thread, 1s timeout

Duration (s) 5 10 30 60
Average 2577.6 2536.6 2426.9 2409
Median 2581 2532.5 2421.5 2412
1st Perc. (min) 2492 2453 2337 2332
99th Perc. (max) 2656 2617 2505 2502
Std. Dev. 41.02 48.63 51.76 54.56
MoE 99.9 30.18 35.78 38.09 40.15
Median Abs. Dev. 37.06 65.23 51.15 57.08
Calc. r. (wrong) 2150.8 2302.3 2343.4 2372.5

are visibly very different from each other, thus we can con-
clude that BIND9 cannot efficiently “game” with the rate
by storing the requests and answering them later on.

6.8. DNS64 results of TOTD

The results of the TOTD DNS64 server with 1s timeout
can be seen in Table 5. They are also acceptably stable.
However, we consider it a warning sign that the difference
between the minimum and the maximum is between 160
and 170 at any test duration which is about 6-7% of the
median. Both average and median show some decrease as
the test duration grows from 5s to 60s, but – similar to
BIND9, – this decrease is much less than it was in the
case of mtd64-ng. Again, we included the calculated in-
finitely sustainable rate in the last line of the table, but
these numbers are significantly different from each other,
thus we can conclude that TOTD as well is unable to ef-
ficiently “game” with the rate by storing the requests and
answering them later.

6.9. Overview of the results

6.9.1. Comparison with earlier results

Although the performance comparison of the different
implementations is not our main goal, we have to mention
that the performances of TOTD and BIND9 are now in a
reverse order than they were found earlier in [21, 22, 23].
We see two possible reasons.

1. The version of BIND9 is now higher than it was in the
earlier examinations and the DNS64 performance of
the program could have been improved significantly.

2. The applied measurement methods are significantly
different. Our benchmarking method considers late
replies as lost, and it harshly penalizes lost replies:
even if a single query is not answered from among
several thousand ones, the test fails.

6.9.2. Sustainable rate calculation

Although the calculation for the sustainable rate was
successfully demonstrated in the case of mtd64-ng, the
same method proved to be unusable with BIND9 and
TOTD. Consequently, the method cannot be used in gen-
eral. However, the possibility of such gaming makes the
usage of full 60 seconds long duration tests a must.

Of course, there is a trade-off between the accuracy of
the results and speed of benchmarking. Using longer test
duration will result in less chance for gaming. The max-
imum possible gain of gaming is under 2% according to
(2) when using 60 seconds duration. By doubling the test
duration, one could reduce the possible gain to less than
1% according to (3).

rDUT =
120

121
rT = 0.9917rT (3)

However, we came to the conclusion that it is not worth
the effort. When considering this question we should also
bear in mind that the 60 or 120 seconds long test is exe-
cuted in the core of several nested cycles. The most inner
cycle is the binary search. Its number of necessary steps
depend on the initial testing rate (e.g. in our experiments
16 steps were enough, but about 20 steps may be nec-
essary if the maximum possible rate is 1,000,000 queries
per second). The next cycle comes from the 20 repeti-
tions of the experiment. If optional tests are also done for
testing the effect of different proportion of existing AAAA
records and/or cache hits, they are two orthogonal param-
eters, too. In addition to that, several other parameters
may be tested, e.g. in the case of mtd64-ng the optimal
number of working threads may be determined by a series
of experiments. And of course, one may aim to test several
DNS64 implementations to compare their performances.

6.10. Question of average versus median

Average (also called mean or arithmetic mean) and me-
dian are both often used as summarizing functions of the
results of multiple experiments. In our earlier papers
[21, 22, 23], we used average (together with standard de-
viation), but it had been chosen without any special con-
siderations. Whereas average is more inclusive and less
sensitive to noise, it is more sensitive to outliers. If the
distribution is significantly skewed or multimodal then me-
dian is more representative. Reference [31] suggests the
usage of mean if the difference between them is limited,
and median otherwise. However, in our case it would be
completely inadequate to use mean one time and median
some other time. We have to choose one of them which
can be used in all cases. It must be the one which is more
sufficient if there is significant difference between them and
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Selft-test performance of multi-threaded BIND

queries per second

Figure 5: BIND9 authoritative DNS server performance results:
number of successfully answered AAAA record requests per second
(multi-threaded, 800MHz CPU clock frequency)

it is acceptable if they are close to each other. To address
this question on the practical side, we show a case when
the results are much more scattered then they were in the
previous examples. Now BIND is used as multi-threaded.
As observed from Fig. 5, the distribution of the results was
quite skewed. In this context, the median is more repre-
sentative as a summarized quantity. In terms of variation,
the 1st and 99th percentiles showed to capture the most
relevant part of the dataset distribution. We found a sim-
ilar trend in most of the collected data (see also Fig. 4).
Subsequently, we recommend the median for summarizing
the results and the 1st and 99th percentiles as indices of
dispersion.

6.11. Two-device setup versus three-device setup

Until now, we followed the two-device setup as shown in
Fig. 2. This approach required the Tester to play two roles:
to perform the task of an authoritative DNS server and
to execute the performance test program. This approach
did not cause serious limitations because of our special
conditions:

• Our test program, dns64perf++ could utilize only two
CPU cores.

• Our authoritative DNS server, BIND9 was executed
as single threaded.

• The memory of the Tester computer was more than
enough because the DUT was restarted after each
tests (instead of using a large zone file to provide in-
dependent namespace for each tests).

However, in other cases it may be recommendable using
a three-device setup where the two functions of the tester
are provided by two independent computers:

• Tester/AuthDNS plays the role of the authoritative
DNS server

• Tester/Measurer executes the test program.

In our case study, that was not necessary. However, when
benchmarking DNS64 implementations executed by mod-
ern high performance servers with e.g. 16 or 32 cores, the
three-device setup will probably be necessary. (The three-
device setup is demonstrated in section 7.)

6.12. Possible causes of scattered results

We have identified a number of reasons which may result
in the high variation of the results. Some of them are
reporting errors and some of them are just describing the
unchangeable character of the DUT:

• CPU frequency scaling is enabled. We recommend to
disable it in BIOS or to set it to a fixed value (using
the cpufrequtils package under Linux).

• There are some missed interrupts. We recommend to
use servers and not desktop PCs.

• Multi-threaded versions of some DNS64 implementa-
tions may also be the cause. We recommend to per-
form the tests also with a single threaded implemen-
tation.

• It may be a feature of the tested DNS64 implementa-
tion. We recommend to test also one of those im-
plementations we tested. (If similarly stable results
are produced with mtd64-ng then the measurement
system is likely to work well.)

6.13. Checking the size of the name space

We have made some calculations to check the feasibility
of testing a very high speed DNS64 server. If its max-
imum possible speed is 1Mqps (one million queries per
second) then the rate of the self-test of the Tester should
be 2.2Mqps and, as the duration is 60s, it requires 132M
different domain names. The defined name space con-
tains altogether 232 = 4G different domain names, thus
the name space is more than enough for a single test.
And what about the memory requirements of storing this
high number of DNS records? According to our experi-
ence, BIND used about 4GB RAM when we loaded a “/8”
sized name space having 224 = 16M elements. Thus, about
33GB RAM would be needed for storing the 132M domain
names. It is not a problem for a modern server having
64GB or more RAM. However, it would be too costly to
store different names for a whole binary search (consisting
about 22 steps during the self-test and “only” about 21
steps using each maximum 66M domain names during the
DNS64 test), and practically impossible for storing them
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for all 20 repetitions of the binary search. Consequently,
when testing at such high rates, we recommend to restart
the DUT between each iteration step. (Naturally, if we
can be sure that its cache is exhausted during a single test
run then no restart is necessary; the name space can be
reused.)

FakeDNS, which we mention at the end of subsec-
tion 8.4, also solves the memory problem of the author-
itative DNS server.

6.14. Discussion

NAT64/DNS64 is one of the best choices in terms of
IPv6 transition technologies. Measuring the performance
of various implementations is a step forward towards bet-
ter understanding which implementations to use in this
context, or what are the pitfalls of using a certain imple-
mentation. In this article, we have proposed a benchmark-
ing methodology which can achieve this task. To prove
the validity of the proposed approach, we have used it to
gather empirical data for three existing DNS64 implemen-
tations. However, the method is not without limitations.

One of the fundamental limitations is the performance
of the Tester. As described previously, in order to test
the performance of a DUT, the Tester needs to be at least
twice as fast. To acknowledge and work around this fun-
damental limitation, we have proposed the concept of self-
test which identifies when a Tester is unsuitable to measure
the performance of a DUT.

A related limitation is the Tester setup. In the context
where the DUT needs to be tested at higher rates, we
recommend the two-machine Tester setup.

In the case study, one of the proved limitations is the
ability to “game” with the rate by storing the DNS re-
quests and answering them later on. However, this is a
somewhat expected behavior for DNS implementations, as
the timeout is not a design choice, but a necessity. More
details are presented in subsection 8.1.

Other limitations and future work directions are pre-
sented in section 8.

7. Supplementary case study

In the general case study, we have addressed only the
worst case scenario, when all six messages (shown in Fig. 2)
had to be sent. The case when AAAA records exist for a
given percentage of the domain names can be easily tested
by using appropriate zone files. In addition, the case when
a given percentage of the domain names is cached by the
DNS64 server requires special considerations, which were
not covered yet. The before mentioned three-device setup
also seems to be worth testing.

In this supplementary case study, we consider the fea-
sibility and possible methods for the cases when AAAA
records exist for some of the domain names or when some
of the domain names are cached. We conduct measure-
ments for both cases using the three-device setup.

7.1. Methods for testing with existing AAAA records and
caching

On the one hand, the case when AAAA records exist
for a given percentage of the domain names can be easily
tested by constructing appropriate zone files, which con-
tain AAAA records for the required proportion of the do-
main names. We consider that setups when 0%, 20%, 40%,
60%, 80% and 100% of the domain names have AAAA
records should be tested.

On the other hand, to construct a method for the testing
of caching may be a difficult problem if the DUT is handled
as a black box, because one needs to know the size of
its memory and its cache control algorithm to construct
proper test data sequence which contains domain names,
exactly 20%, 40%, 60%, etc. of which are cached. To
understand why the problem is difficult, let us consider the
following solution. Let ni denote different domain names.
A naive algorithm for generating a sequence of 10 domain
names containing 2, 4 and 6 cache hits could produce the
following sequences:
n1, n1, n1, n4, n5, n6, n7, n8, n9, n10;
n1, n1, n1, n1, n1, n6, n7, n8, n9, n10;
n1, n1, n1, n1, n1, n1, n1, n8, n9, n10;
Though these sequences appear correct for the first

sight, unfortunately they will not result in 2, 4 or 6 cache
hits if they are sent at a too high rate (because the in-
formation will not yet be cached). The difficulty is that
the repetition(s) should not happen “too early” in the se-
quence after the first occurrence of a given domain name
to be already present in the cache, whereas they should not
happen “too late” in the sequence to be still present in the
cache.

We recommend a simple solution which uses only a sin-
gle domain name that is repeated and fills that domain
name into the cache of the DNS64 server using a prelim-
inary measurement step. This step can be done by using
either dns64perf++ or e.g. the host Linux command
for sending a single AAAA record request for the domain
name we want to be cached. After its being answered, it is
cached (if our DNS64 implementation supports caching),
and if we repeat it frequently enough (e.g. it is sent as
every fifth domain name when 20% cache hit is needed)
then it will remain present in the cache.

We must note that this kind of testing shows only that
how much faster a DNS64 implementation can be when a
given percentage of cache hit is achieved, but it does not
provide information about the question that what cache
hit rate will be achieved by a given DNS64 implementa-
tion in a real life situation. It can also be another direction
of future research to work out a different method for ad-
dressing this question.

7.2. Theoretical model for results with existing AAAA
records and caching

We propose a simple theoretical model for how the reply
time of a DNS64 server may depend on the proportion of
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the existing AAAA records and cache hits. This model
takes into consideration what reply time a small number
of individual requests may expect. First, we introduce
notations for the duration of some important steps:

TQ “time of a Query”: the duration while message 1 (see
Fig. 2) is sent, received, queued and processed.

TC “time of a Cache lookup”: the duration while the cache
of the DNS64 server is looked up for a given domain
name. (We note that the work of refreshing the cache
of the DNS64 server must also be considered.)

TA “time of an Authoritative answer”: the duration while
message 2 is constructed, sent and received, message
3 is produced, sent, received, queued and processed
by the DUT. It is considered to be equal with the
time while message 4 is constructed, sent and received,
message 5 is produced, sent, received, queued and pro-
cessed by the DUT.

TS “time of a Synthesis”: the duration while the IPv4
embedded IPv6 address is synthesized.

TR “time of a Reply: the duration while message 6 is as-
sembled, sent, and received.

For the simplicity, we suppose that:

• message 2 is sent only after an unsuccessful cache
lookup (not in parallel)

• message 4 is sent after receiving and empty message
3 (not sent in parallel with message 2)

• the assembly time of message 6 does not depend on
where the AAAA record comes from.

Let p4A and pC denote the probability of the existence
of the AAAA record and the probability of the cache hit,
respectively.

When only the existence of AAAA records is considered,
the reply time of a query may be calculated as:

T4A = TQ + TC + TA + (1− p4A)(TA + TS) + TR (4)

When only the effect of the caching is considered the
reply time of a query may be calculated as:

TC = TQ + TC + (1− pC)(2TA + TS) + TR (5)

When both the existence of AAAA records and the effect
of caching are considered, the reply time of a query may
be calculated as:

T4A&C = TQ + TC

+ (1− pC)(TA + (1− p4A)(TA + TS)) + TR (6)

Important notes:

• In formula (6), we considered that the existence of an
AAAA record and the occurrence of a cache hit are
independent events.

Sun Fire X4150

2001:2::1/64

DUT
(running DNS64 server)

Tester/AuthDNS
(running 

authoritative DNS 
server) 

198.18.0.2/24
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2001:2::2/64

198.18.0.1/24
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Figure 6: Test setup for DNS64 measurements using three devices

• Formulas (4)-(6), can be used only for a few individ-
ual messages. Otherwise the queuing times will be
significantly influenced by the values of pC and p4A.

We may be able to check formulas (4) and (5) in the fol-
lowing two subsections.

7.3. Examining the existence of AAAA records

We used the so called three-device setup to take mea-
surements with different rates of existing AAAA records.
The three devices and their roles are shown in Fig. 6.

Below we provide the most important details of the used
hardware and software for the repeatability of the mea-
surements.

7.3.1. Tester/Measurer

Dell Precision Workstation with two dual-core Intel
Xeon 5160 3GHz CPUs, 4x1GB 533MHz DDR2 SDRAM
(accessed quad-channel), Intel PT Quad 1000 type four
port Gigabit Ethernet controller (PCI Express).

7.3.2. DUT

Dell Precision Workstation with two dual-core Intel
Xeon 5140 2.33GHz CPUs, but operated at 2GHz and only
2 cores were online, 4x1GB 667MHz DDR2 SDRAM (ac-
cessed quad-channel), Intel PT Quad 1000 type four port
Gigabit Ethernet controller (PCI Express).

7.3.3. Tester/AuthDNS

SunFire X4150 server with two quad-core Intel Xeon
E5440 2.83GHz CPUs, 4x2GB 667MHz DDR2 SDRAM,
four integrated Intel 82571EB Gigabit Ethernet con-
trollers.
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7.3.4. Software

All four computers had Debian 8.6 GNU/Linux oper-
ating systems with 3.16.0-4-amd64 kernel version. The
before mentioned dns64perf++ 1.0.0 was used as mea-
surement tool and BIND 9.9.5-9+deb8u7-Debian was used
as both DNS64 server and authoritative DNS server.

7.3.5. Measurements

To be able to observe how the proportion of the existing
AAAA records may influence the performance of a DNS64
server, 6 series of measurements were performed with do-
main names, 0%, 20%, 40%, 60%, 80% and 100% of which
had AAAA records. The duration of each test was 60 sec-
onds, the timeout was 1 second and the binary search was
performed 20 times with each rate of AAAA records.

7.3.6. Results

The results of the measurements aimed at investigating
the effect of the AAAA record rate on the performance
of the DNS64 server are presented in Table 6. Increasing
the rate of existing AAAA records from 0% to 100%, the
median of the number of queries per second grows from
3,682 to 5,976. Considering the differences between the
performances of the consecutive measurements, they are
also growing from 298 to 685. This observation seems to
be in a qualitative agreement with our theoretical model,
where the reply time showed linear decrease in the function
of the AAAA rate. Of course, there is no direct connection
between the reply time and the maximum query rate, but
if we omit the first and last members (that is TQ and TR)
from the sum of (4), the remaining members somewhat
reflect the amount of work of the DUT, thus the replied
query rate of the DUT may be proportional to its recipro-
cal as follows:

R4A = α
1

TC + TA + (1− p4A)(TA + TS)
(7)

We would like to emphasize the role of TC . Without it,
if we neglect the time (amount of work) necessary for the
synthesis of the IPv4 embedded IPv6 address, the approx-
imation would suggest that the 100% AAAA record rate
should double the performance of the DNS64 server com-
pared to its performance at 0% AAAA record rate, what
does not correspond to our measurement results. However
this approach would entirely disregard the work and time
used by the DNS64 server for caching. (Please recall, that
BIND uses caching, even if we eliminated all its possible
benefits by using all different domain names and restarting
BIND between the steps of the binary search.)

As for the quality of the results, the difference between
the maximum and minimum is always less than 2.5% of
the median thus they can be qualified stable enough.

7.4. Examining the effect of caching

The original dns64perf++ program does not support
the testing of caching for the reason that no testing method

was proposed at the time of its implementation. Dur-
ing the review process of this paper we have enabled
dns64perf++ to support the above described simple
method, which can be used to test how a given cache
hit rate influences the achievable performance of different
DNS64 implementations.

We note that the implementation of the above suggested
method was not as simple as expected. Although it was
easy to modify the source code of the dns64perf++ pro-
gram to change some of the domain names to the one which
had been cached, this change (without some other modi-
fications) would have caused a serious problem in the op-
eration of the dns64perf++ program, which utilizes the
fact that DNS answers contain the request and it reads the
first label of the domain name in question, to identify the
reply, because the Transaction ID of the DNS messages is
only 16 bits long, which is far too short for the unambigu-
ous identification of the replies (without which it cannot
be decided which queries are answered in time) [27]. The
details of the necessary modifications can be found in [32]
and the modified source code is available from [33].

For testing the effect of caching, the same hardware
and software environment was used which had been put
together for testing the effect of the existence of AAAA
records. To be able to observe how the proportion of
the cache hit rate may influence the performance of a
DNS64 server, 6 series of measurements were performed
with domain names, 0%, 20%, 40%, 60%, 80% and 100%
of which were the same as the one, which had previously
been loaded into the cache of BIND by a host command.
The duration of each test was 60 seconds, the timeout was
1 second and the binary search was performed 20 times
with each cache hit rate. The results of the measurements
are presented in Table 7. Increasing the cache hit rate from
0% to 100%, the median of the number of queries per sec-
ond grows from 3,656 to 32,050, where the latter is 877% of
the first value. The differences between the performances
of the consecutive measurements are also increasing more
and more steeply. The performance at 100% cache hit rate
(32,050qps) is more than the double of the performance at
80% cache hit rate (13,157qps). These observations can
be easily explained by our theoretical model if we approxi-
mate the caching reply query rate of the DUT in a similar
way as we did when examining the effect of the existence
of the AAAA records (by omitting TQ and TR):

RC = β
1

TC + (1− pC)(2TA + TS)
(8)

Let us consider a simple numeric example. The choice
of TC = 0.2(2TA + TS) would result in RC(100%) =
2RC(80%).

As for the quality of the results, now the difference be-
tween the maximum and minimum queries per second rate
at 100% cache hit rate is 1926, which is about 6% of the
median. It can be considered acceptable.
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Table 6: BIND9 DNS64 performance: number of answered queries per second as a function of AAAA recored rate, 2 working threads

AAAA record rate (%) 0 20 40 60 80 100
Median 3,682 3,980 4,338 4,771 5,291 5,976
1st Percentile (minimum) 3,641 3,935 4,279 4,733 5,239 5,935
99th Percentile (maximum) 3,733 4,001 4,385 4,809 5,325 6,017

Table 7: BIND9 DNS64 performance: number of answered queries per second as a function of cache hit rate, 2 working threads

Cache hit rate (%) 0 20 40 60 80 100
Median 3,656 4,466 5,684 7,782 13,157 32,050
1st Percentile (minimum) 3,615 4,411 5,629 7,679 12,185 30,463
99th Percentile (maximum) 3,745 4,515 5,761 7,937 13,313 32,389

8. Plans for future work

8.1. Problem of sustainable rate
We have shown a possible way of “gaming” with the

timeout: how a DNS64 server can show higher perfor-
mance during a finite duration test than it could sustain
infinitely. We have demonstrated with the example of
mtd64-ng that this kind of gaming is possible and we have
given an upper bound for the difference between the mea-
sured and the infinitely sustainable rate. (It is less than
2% with 1s timeout and 60s test duration.)

However, it was only one of the possible reasons why
the results of a finite test may not reflect the performance
of a longer interval. Other issues are possible with DNS64
servers which are not typical with network interconnect
devices. As an example, we mention memory leaking. If
the DUT is seen as a black box, memory leaking cannot be
discovered easily. The user might only experience a sudden
server crash, which may happen after an hour, a week,
or even a year, depending on the extent of the memory
leaking. Our benchmarking method has no defense against
such problems.

8.2. Can a fast Tester help a DNS64 implementation?
We have laid down the rule that a Tester must first

successfully complete a self-test for being suitable for test-
ing. However, our conditions specified only an upper time
limit: for being able to test a DNS64 implementation at
rT rate with tTO timeout, the tester must be able to an-
swer authoritative DNS requests at 2rT (1 + δ) rate within
0.25tTO timeout. What if the Tester answers just within
0.25tTO timeout or if it replies significantly faster than
that? Can a fast Tester help a DNS64 implementation to
achieve significantly higher rates than it could with a just
suitable Tester? We intend to answer these questions in
the future.

8.3. Further examining the effect of caching
To complement our suggested simple method, we also

plan to design a method that will be suitable for the es-
timation of real life performance of DNS64 with caching.
This task includes the invention of repetition patterns suit-
able for fair testing with different cache control algorithms
and cache sizes.

8.4. Hints for authoritative DNS server program

We have chosen BIND as an authoritative DNS server
program because we had experience with it. However, it
is not necessarily the best choice. We know from Carsten
Strotmann (through personal communication) that BIND
did not scale up very well when he used it as a resolver (it
could utilize only the performance of 6-8 cores of a 36 core
computer due to locking issues) and Unbound significantly
outperformed it (1,200,000 queries per second vs. 500,000
queries per second). But, unfortunately, Unbound is not
an authoritative DNS server. We are currently testing the
authoritative DNS server functionalities of several DNS
implementations executed by a 12 cores computer and our
preliminary results show that YADIFA has significantly
higher performance than BIND.

As an alternative, a special-purpose program, called
FakeDNS is being developed. This one is not a real DNS
server, but it synthesizes the A or AAAA records using the
numbers found in the first label of the particular domain
name in the query. The program uses the code base of
the mtd64-ng DNS64 server program and we expect that
it will be significantly faster than any real DNS server.

8.5. RTT of the replies as a possible secondary metric

The RTT of the valid replies could be used as a sec-
ondary performance metric of DNS64 servers. Although
dns64perf++ calculates and outputs the RTT values in
CSV format, the RTT values highly depend on the delay
caused by the authoritative DNS server. The RTT val-
ues could be used as a complementary metric if the delay
caused by the authoritative DNS server could be isolated.
We consider using the following two approaches for solving
this:

• The reply time of the authoritative DNS server could
be logged and used during post-processing.

• Much smaller reply time could be required from the
authoritative DNS server, which is negligible com-
pared to tTO.

The currently developed FakeDNS program might help in
both of these issues.

14



8.6. Investigation of the effect of CPU cache

At certain low rates, the used portion of the zone file fits
into the L2 or L3 cache of the CPU of the authoritative
DNS server, which may result in faster replies from the
authoritative DNS server. As discussed in subsection 8.2,
it may influence the performance of the DNS64 server.
FakeDNS may eliminate this problem, too.

Although the DUT is viewed as a black box, it is also
a computer and its performance may be influenced by its
CPU cache hierarchy. If the DNS64 implementation uses
caching, it depends on the size of its DNS cache and the
size and policy of the CPU cache, how effective the CPU
cache can be when the elements of the DNS cache have to
be reached.

8.7. Production class Tester implementation

Even the most current version of dns64perf++, which
has been enabled for testing the caching performance of
DNS64 servers, is only a prototype, which is appropriate
for proving the correctness of our proposed methodology
but may be of insufficient performance for testing high
performance DNS64 servers. It is so, because it uses only
one thread for sending queries and the main thread for re-
ceiving the answers. It was found that it can send about
200,000 queries per second, or at most 250,000qps if we can
tolerate some inaccuracies [27]. For the self-test of a pro-
duction class Tester, we need a program, which can send
and receive at one order of magnitude higher rates (about
2,000,000qps rate may be needed for a self-test). It may
perhaps be achieved by using 10 threads for sending and 10
threads for receiving executed by a 24 cores computer (to
leave some cores free for the host operating system). Of
course, we cannot foresee, how its performance will scale
up, until our multi-threaded implementation is ready.

9. Conclusion

NAT64/DNS64 is one of the forward-looking IPv6 tran-
sition technologies. DNS64 is at the core of its function
and various implementations have already been developed.
The performance analysis of these implementations is a
critical step in choosing the most appropriate one as well
as learning how to improve them.

We have proposed a methodology for benchmarking
DNS64 servers and also demonstrated its operation in two
detailed case studies. In the process, we were able to iden-
tify possible pitfalls, such as the possibility of gaming with
the results by taking advantage of the timeout value, or
choosing the most suitable summarizing function. We have
also demonstrated the operation of different test and traf-
fic setups, e.g. the physical realization of the Tester with
a single device or with two devices and the lack of or the
existence of AAAA records and caching.

We have also discussed several problems to be addressed
in the future.

Ultimately, this was done in an effort to build a method-
ology which can rise up to the expectations of the academic
community as well as open standardization bodies, such as
the IETF.

Acknowledgements

The first author would like to thank Adél Kiviharju-Turi
for English-language proofreading of the paper.

References

[1] M. Bagnulo, A. Sullivan, P. Matthews, I. Beijnum, DNS64:
DNS extensions for network address translation from IPv6
clients to IPv4 servers, IETF RFC 6147 (2011). doi:10.
17487/RFC6147.

[2] M. Bagnulo, P. Matthews, I. Beijnum, Stateful NAT64: Net-
work address and protocol translation from IPv6 clients to IPv4
servers, IETF RFC 6146 (2011). doi:10.17487/RFC6146.

[3] M. Bagnulo, A. Garcia-Martinez, I. V. Beijnum, The
NAT64/DNS64 tool suite for IPv6 transition, IEEE Commun.
Magazine 50 (7) (2012) 177–183. doi:10.1109/MCOM.2012.
6231295.

[4] P. Wu, Y. Cui, J. Wu, J. Liu, C. Metz, Transition from IPv4
to IPv6: A state-of-the-art survey, IEEE Commun. Surveys and
Tutorials 15 (3) (2013) 1407–1424. doi:10.1109/SURV.2012.
110112.00200.

[5] N. Skoberne, O. Maennel, I. Phillips, R. Bush, J. Zorz,
M. Ciglaric, IPv4 address sharing mechanism classification and
tradeoff analysis, IEEE/ACM Trans. Netw. 22 (2) (2014) 391–
404. doi:10.1109/TNET.2013.2256147.

[6] S. Bradner, J. McQuaid, Benchmarking methodology for net-
work interconnect devices, IETF RFC 2544 (1999). doi:
10.17487/RFC2544.

[7] C. Popoviciu, A. Hamza, G. V. de Velde, D. Dugatkin, IPv6
benchmarking methodology for network interconnect devices,
IETF RFC 5180 (2008). doi:10.17487/RFC5180.

[8] M. Georgescu, L. Pislaru, G. Lencse, Benchmarking method-
ology for IPv6 transition technologies, IETF BMWG Internet
Draft (2017).
URL https://tools.ietf.org/html/
draft-ietf-bmwg-ipv6-tran-tech-benchmarking-07

[9] J. K. Chen, Google public DNS: 70 billion requests a day and
counting, Google Official Blog.
URL https://googleblog.blogspot.hu/2012/02/
google-public-dns-70-billion-requests.html

[10] G. Lencse, A. G. Soós, Design of a tiny multi-threaded dns64
server, in: Proc. 38th Int. Conf. on Telecommunications and
Signal Processing (TSP 2015), Prague, Czech Republic, 2015,
pp. 27–32. doi:10.1109/TSP.2015.7296218.

[11] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, X. Li, IPv6
addressing of IPv4/IPv6 translators, IETF RFC 6052 (2010).
doi:10.17487/RFC6052.

[12] N. Skoberne, M. Ciglaric, Practical evaluation of stateful
NAT64/DNS64 translation, Advances in Electrical and Com-
puter Engineering 11 (3) (2011) 49–54. doi:10.4316/AECE.
2011.03008.

[13] V. Bajpai, N. Melnikov, A. Sehgal, J. Schonwalder, Flow-
based identification of failures caused by IPv6 transition mech-
anisms, in: Proc. 6th IFIP WG 6.6 Internat. Conf. on Au-
tonomous Infrastructure, Management, and Security (AIMS
2012), Luxembourg, Luxembourg, 2012, pp. 139–150. doi:
10.1007/978-3-642-30633-4_19.

[14] S. Répás, T. Hajas, G. Lencse, Application compatibility of the
NAT64 IPv6 transition technology, in: Proc. 37th Int. Conf.
on Telecommunications and Signal Processing (TSP 2014),
Berlin, Germany, 2014, pp. 49–55. doi:10.1109/TSP.2015.
7296383.

15

http://dx.doi.org/10.17487/RFC6147
http://dx.doi.org/10.17487/RFC6147
http://dx.doi.org/10.17487/RFC6146
http://dx.doi.org/10.1109/MCOM.2012.6231295
http://dx.doi.org/10.1109/MCOM.2012.6231295
http://dx.doi.org/10.1109/SURV.2012.110112.00200
http://dx.doi.org/10.1109/SURV.2012.110112.00200
http://dx.doi.org/10.1109/TNET.2013.2256147
http://dx.doi.org/10.17487/RFC2544
http://dx.doi.org/10.17487/RFC2544
http://dx.doi.org/10.17487/RFC5180
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-07
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-07
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-07
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-07
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
https://googleblog.blogspot.hu/2012/02/google-public-dns-70-billion-requests.html
http://dx.doi.org/10.1109/TSP.2015.7296218
http://dx.doi.org/10.17487/RFC6052
http://dx.doi.org/10.4316/AECE.2011.03008
http://dx.doi.org/10.4316/AECE.2011.03008
http://dx.doi.org/10.1007/978-3-642-30633-4_19
http://dx.doi.org/10.1007/978-3-642-30633-4_19
http://dx.doi.org/10.1109/TSP.2015.7296383
http://dx.doi.org/10.1109/TSP.2015.7296383


[15] K. J. O. Llanto, W. E. S. Yu, Performance of NAT64 versus
NAT44 in the context of IPv6 migration, in: Proc. Internat.
Multiconf. of Engineers and Computer Scientists 2012 (IMECS
2012), Hong Kong, Hongkong, 2012, pp. 638–645.
URL http://www.iaeng.org/publication/IMECS2012/
IMECS2012_pp638-645.pdf

[16] C. P. Monte, M. I. Robles, G. Mercado, C. Taffernaberry, M. Or-
biscay, S. Tobar, R. Moralejo, S. Pérez, Implementation and
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