
Revised version for the Springer Telecommunication Systems journal

1

Abstract The depletion of the global IPv4 address pool made

the deployment of IPv6, the new version of the Internet

Protocol, inevitable. In this paper, the transition mechanisms

for the first phase of IPv6 deployment are surveyed and the

DNS64 plus NAT64 solution is found appropriate. The most

important free and open source DNS64 implementations are

selected: BIND, TOTD, Unbound and PowerDNS. The test

environment and the testing method are described. The first

three of the selected DNS64 implementations are tested under

Linux, OpenBSD and FreeBSD whereas PowerDNS is tested

only under Linux. Their performance characteristics (response

time, number of answered requests per second, CPU and

memory consumption) are measured and compared. The effect

of the hardware architecture of the test computer is also

examined by using single-core, dual-core and quad-core test

computers. The stability of all the tested DNS64 solutions are

analyzed under overload conditions to test if they may be used

in production environments with strong response time

requirements. Our measurement results show significant

differences in the performance of the tested DNS64

implementations, e.g. Unbound served four times more

requests per second than PowerDNS (when executed by a

single-core CPU under Linux and load was generated by eight

clients). However, no absolute order can be determined,

because it is influenced by different factors such as the

architecture of the hardware, especially the number of cores,

because BIND and PowerDNS are multithreaded (therefore

they can profit from the multiple cores) but TOTD and

Unbound are not. Also the operating system of the DNS64

server has significant influence on the performance of the

DNS64 implementations under certain conditions. All the

details of our measurements are disclosed and all the results

are presented in the paper. An easy-to-use implementation

selection guide is also provided as a short summary of our

high number of results.

Keywords DNS64 · Internet · IPv6 deployment · IPv6

transition solutions · Performance analysis

 G. Lencse

lencse@sze.hu

S. Répás
repas.sandor@sze.hu

1 Department of Telecommunications, Széchenyi István University,

1 Egyetem tér, H-9026 Győr, Hungary

Submitted: 19 August, 2015, Revised: 27 November 2015.

1 Introduction

In the following years the Internet service providers (ISPs)

will not be able to provide public IPv4 addresses to their high

number of new clients because of the depletion of the global

IPv4 address pool. Either they use carrier grade NAT (CGN)

or they provide IPv6 addresses. The latter one is better for the

long run, but it results in the issue that the IPv6 only clients

have to be enabled to communicate with IPv4 only servers

which ones are in majority in the Internet today. The authors

believe that from among the several solutions proposed for

this problem, the combination of DNS64 [1] and NAT64 [2] is

the best available method that enables an IPv6 only client to

communicate with an IPv4 only server.

Four free DNS64 implementations were found and selected

for testing. The aim of our research was to compare the

performance of the selected implementations running on

different free operating systems (Linux, OpenBSD and

FreeBSD) and to analyze their behavior under heavy load

conditions. Our results are expected to give valuable informa-

tion to many network administrators when selecting the

appropriate IPv6 transition solution for their networks. We

also hope that the performance measurement methods we have

developed may be useful for other researchers too.

The performance analysis and comparison of some selected

NAT64 implementations under Linux and OpenBSD was also

a part of our research. Our preliminary results are available in

[3] and [4]. We plan to test further NAT64 implementations

too.

The remainder of this paper is organized as follows. In

section II some possible techniques are mentioned for the

communication of an IPv6 only client with an IPv4 only

server, then the operation of the DNS64+NAT64 solution is

introduced and a short survey of the results of the most current

publications is given. In section III the selection of the DNS64

implementations is discussed. The test environment and the

performance measurement method are described in sections

IV and V, respectively. In section VI the presentation method

of the results is given. The DNS64 performance results

produced by the single, dual and quad core test computers are

presented and discussed in sections VII, VIII and IX,

respectively. An easy-to-use implementation selection guide

and our future plans are disclosed in sections X and XI,

respectively. Section XII concludes our work.

Performance analysis and comparison of four DNS64 implementations

under different free operating systems

G. Lencse1 · S. Répás1

Revised version for the Springer Telecommunication Systems journal

2

2 IPv6 Transition Mechanisms for the First

Phase of IPv6 Deployment

2.1 Most Important Solutions

The authors believe that the deployment of IPv6 will take

place over a long period of time and the two versions will

have to coexist for the foreseeable future and in the first phase

of the IPv6 transition, the main issue will be the

communication of an IPv6 only client with an IPv4 only

server (because the new clients can get only IPv6 addresses

due to the depletion of the public IPv4 address pool and a high

number of servers will still use only IPv4 in the upcoming

years). Several transition mechanisms can be used for this

task, of which the most notable ones are:

1. NAT-PT/NAPT-PT [5] started its life as a proposed
standard in 2000 but due to several issues it was put to
historic status in 2007 [6].

2. The use of an Application Level Gateway [7] is an
operable alternative, however, it is rather expensive as
ALGs have to be both developed and operated for all
the different applications.

3. The most general and flexible solution is the use of a
DNS64 [1] server and a NAT64 [2] gateway.

Our position can also be justified by [8]. They state: “The

mainstream of translation techniques is network translation.

Among the network translation mechanisms, IVI is a feasible

stateless translation mechanism, and NAT64 is a feasible

stateful translation mechanism.” They do not mention any

other feasible stateful methods and the applicability of the

stateless one is apparently very limited because of the

depletion of the public IPv4 address pool.

Reference [9] gives an up to date survey of the IPv4 address

sharing methods, and concludes that: “The only actual address

sharing mechanism that really pushes forward the transition to

IPv6 is Stateful NAT64 (Class 4). All other (classes of)

mechanisms are more tolerant to IPv4.”

2.2 Operation of DNS64+NAT64

We demonstrate the operation of the DNS64 + NAT64 IPv6

transition solution using the example of an IPv6 only client

and an IPv4 only web server taken from [10]. In this example,

the DNS64 server uses the 64:ff9b::/96 NAT64 Well-Known

Prefix [11] for generating IPv4-embedded IPv6 addresses

[11]. In a real-life solution, usually a network specific prefix

from the network of the ISP of the client is used instead of

64:ff9b::/96.

There are two prerequisites for the proper operation:

1. A DNS64 server should be set as the DNS server of

the IPv6 only client.

2. Packets towards the 64:ff9b::/96 network (or towards

the selected network specific prefix) should be

routed to a NAT64 gateway (routing must be

configured that way).

Now let us follow the steps of the communication (taken

verbatim from our conference paper [10]):

1. The client asks its DNS server (which one is actually

a DNS64 server) about the IPv6 address of the

www.hit.bme.hu web server.

2. The DNS64 server asks the DNS system about the

IPv6 address of www.hit.bme.hu.

3. No IPv6 address is returned.

4. The DNS64 server then asks the DNS system for the

IPv4 address of www.hit.bme.hu.

5. The 152.66.148.44 IPv4 address is returned.

6. The DNS64 server synthesizes an IPv4-embedded

IPv6 address by placing the 32 bits of the received

152.66.148.44 IPv4 address after the 64:ff9b::/96

prefix and sends the result back to the client.

7. The IPv6 only client sends a TCP SYN segment

using the received 64:ff9b::9842:f82c IPv6 address

and it arrives to the IPv6 interface of the NAT64

gateway (since the route towards the 64ff9b::/96

network is set so in all the routers along the path).

8. The NAT64 gateway constructs an IPv4 packet using

the last 32 bits (0x9842f82c) of the destination IPv6

address as the destination IPv4 address (this is

exactly 152.66.248.44), its own public IPv4 address

(198.51.100.10) as the source IPv4 address and some

other fields from the IPv6 packet plus the payload of

the IPv6 packet. It also registers the connection into

its connection tracking table (and replaces the source

1 “AAAA” www.hit.b
me.hu ?

DNS64
server

“AAAA” 64:ff9
b::9

842:f8
2c

Domain
Name

 System

SYN 64:ff9b::9842:f82c

NAT64 gateway

SYN 152.66.248.44

IPv4 only server

6

7

IPv6 only client
SYN ACK 198.51.100.10 9

Address: 2001:db8::ac31:b17
IPv6 Address: 2001:db8:abcd::1

IPv4 Address: 198.51.100.10

IPv4 Address: 152.66.248.44

Hostname: www.hit.bme.hu

10SYN ACK 2001:db8::ac31:b17

“AAAA” www.hit.bme.hu ?2

“A” www.hit.bme.hu ?4

“AAAA” (empty) 3

“A” 152.66.248.44 5

8

Fig. 1 The operation of the DNS64+NAT64 solution: an IPv6 only client communicates with and IPv4 only server [10]

Revised version for the Springer Telecommunication Systems journal

3

port number by a unique one if necessary). Finally it

sends out the IPv4 packet to the IPv4 only server.

9. The server receives the TCP SYN segment and sends

a SYN ACK reply back to the public IPv4 address of

the NAT64 gateway.

10. The NAT64 gateway receives the IPv4 reply packet.

It constructs an appropriate IPv6 packet using the

necessary information from its state table. It sends

the IPv6 packet back to the IPv6 only client.

For a more detailed but still easy to follow introduction, see

[12] and for the most accurate and detailed information, see

the relating RFCs: [1] and [2].

We note that Section 7 of [1] describes three different

scenarios concerning where the DNS64 server is deployed. In

this paper, we consider the one described in subsection 7.1

that is “an IPv6 network to the IPv4 Internet” setup with

DNS64 in DNS server mode, where the DNS64 server is

placed in client side and it is used in DNS server mode (not in

stub resolver mode).

2.3 Survey of the Current Research Results

Several papers were published in the topic of the

performance of DNS64 and NAT64 since 2012. The

performance of the TAYGA NAT64 implementation (and

implicitly of the TOTD DNS64 implementation) is compared

to the performance of NAT44 in [13]. The performance of the

Ecdysis NAT64 implementation (that has its own DNS64

implementation) is compared to the performance of the

authors’ own HTTP ALG in [14]. The performance of the

Ecdysis NAT64 implementation (and implicitly the perfor-

mance of its DNS64 implementation) is compared to the

performance of both the NAT-PT and an HTTP ALG in [15].

All of these papers deal with the performance of a given

DNS64 implementation with a given NAT64 implementation.

On the one hand this is natural, as both services are necessary

for the operation, on the other hand this is a kind of “tie-in

sale” that may hide the real performance of a given DNS64 or

NAT64 implementation by itself. Even though both services

are necessary for the complete operation, in a large network

they are usually provided by separate, independent devices;

DNS64 is provided by a name server and NAT64 is performed

by a router. Thus the best implementation for the two services

can be – and therefore should be – selected independently.

The performance of the BIND DNS64 implementation and

that of the TAYGA NAT64 implementation are analyzed

separately and also their stability is tested in [16]. However,

only one implementation was considered for each service, so

even if they were proved to be stable and fast enough, more

research was needed for the comparison of the performance

(and also the stability) of multiple DNS64 and NAT64

implementations.

A good survey of the most recent DNS64 and NAT64

research results is given in [17]. They also compared the CPU

consumption of DNS64 to that of DNS as well as the CPU and

memory requirements of NAT64 to that of NAT and they

concluded that the DNS64+NAT64 system is an affordable

solution for an Internet service provider. However, the

stability of the different DNS64 and NAT64 implementations

under heavy load conditions and the comparison of their

performance were not addressed there.

The results of our DNS64 tests concerning BIND and

TOTD were published in [18]. TOTD was found to be faster

than BIND. However, TOTD was not stable due to an

implementation bug that was described and eliminated in [19].

Besides the correction, a significant security improvement was

performed on TOTD. Our patch was included by its developer

into the 1.5.3 version of TOTD which is available from [20].

This version is tested in our current experiments. As for

further improvements over our conference paper [18] on

which our current paper is based, two further DNS64

implementations are tested (see the next section), different

architecture test computers are used and the measurements are

made more accurate by using automation now.

This paper deals with DNS64 only. Our preliminary

research results concerning two NAT64 implementations (the

stateless TAYGA + iptables under Linux and the stateful PF

of OpenBSD) were published in [3] and [4]. Some further

experiments are still to be performed with these and also other

NAT64 implementations.

3 Selection of DNS64 Implementations

Only free software [21] (also called open source [22])

implementations were considered. We had multiple reasons

for this decision:

 The licenses of certain vendors (e.g. [23] and [24]) do

not allow the publication of benchmarking results.

 Free software can be used by anyone for any

purposes thus our results can be helpful for anyone.

 Free software is free of charge for us, too.

(This reasoning was first published in [25].)

BIND [26] was a natural choice for our implementation,

since it is the most widely used DNS implementation and it

contains native DNS64 support from version 9.8.

BIND is a large and complex software containing all the

different DNS functionalities (authoritative, recursive,

DNSSEC support, etc.). Our second choice was a lightweight

one, namely TOTD, which was implemented by Feike W.

Dillema as a part of the 6net project [27]. Its original version

used sequential transaction IDs (the generation of them

contained a trivial programming bug, which was discovered

and corrected in [19]) in the DNS messages therefore it was

vulnerable to cache poisoning using the transaction ID attack.

“This vulnerability was patched by a very computation

efficient solution using random permutations and alternating

ranges. The performance price of the increased security was

found to be practically invisible.” [19] This new version of

TOTD was used in our experiments.

Unbound [28] was our third choice. As its name suggests, it

was designed to be an alternative to BIND providing both

better performance and security [29]. Reference [30] states (on

page 553) that Unbound is significantly faster than BIND.

Note that the DNS64 patches for BIND and Unbound were

developed in the same Ecdysis project [31].

Revised version for the Springer Telecommunication Systems journal

4

Fourth, we also selected PowerDNS [32] for testing. It is

also free software under GPL but its developers offer

commercial support, too. It was named the third most popular

DNS server on the Internet in 2008 [33].

We found no more free DNS64 implementations.

All four DNS64 implementations were intended to be tested

under all the three free operating systems which are the most

typical ones for this purpose, namely: Linux, OpenBSD and

FreeBSD.

4 Test Environment for DNS64 Performance

Measurements

4.1 Structure of the Test Network

A test network was set up in the Infocommunications

Laboratory of the Department of Telecommunications, Széc-

henyi István University. The topology of the network is shown

in Fig. 2. The central element of the test network is the DNS64

server.

For the measurements, we needed a namespace that:

 can be described systematically

 can be resolved to IPv4 only

 can be resolved without delay

The 10-{0..10}-{0..255}-{0..255}.zonat.tilb.sze.hu name

space was used for this purpose. This namespace was mapped

to the 10.0.0.0 – 10.10.255.255 IPv4 addresses by the name

server teacherb.tilb.sze.hu at 192.168.100.105.

The DNS64 server mapped these IPv4 addresses to the IPv6

address range 2001:738:2c01:8001:ffff:ffff:0a00:0000 –

2001:738:2c01:8001:ffff:ffff:0a0a:ffff.

The DELL IPv6 only workstations at the bottom of the

figure played the role of the clients for the DNS64

measurements.

4.2 Configuration of the Computers

Three test computers with special configuration were put

together for the purpose of the DNS64 server. First, the CPU

and memory parameters were chosen to be as little as possible

from our available hardware base in order to be able to create

an overload situation with a finite number of clients, and only

the network cards were chosen to be fast enough. Later on

dual- and quad-core computers were selected for testing to

find out how the examined implementations can benefit from

the multi-core CPUs, which are dominant today.

Our first choice for the test computer was an old IBM

eServer xSeries 200. Its old 9.1GB SCSI disk was replaced by

a new SSD to be able to store the data during the

measurements easily, and two identical gigabit Ethernet NICs

were added. The configuration of the test computer was:

 694X-686A motherboard

 800MHz Intel Pentium III with 256 kB L2 cache and

MMX technology CPU

 128MB, 133MHz, 60ns ECC SDRAM

 BestConnection PCI SATA Raid controller + SATA

SSD converter (to connect the SSD)

 KF1310MCJ14 32GB SSD

 Two Intel® PRO/1000 GT Desktop Adapter Gigabit

Ethernet NICs

Note that the speed of the Gigabit Ethernet could not be

fully utilized due to the limitations of the PCI bus of the

motherboard, but the speed was still enough to overload the

CPU.

Our second choice for the test computer was an Intel Atom

D525 based computer:

 Intel D525MW motherboard with integrated 1.8GHz

dual core Intel Atom D525 CPU with 1MB L2 cache

 2x 2GB, 800MHz, non-ECC DDR3 SDRAM

 KF1310MCJ14 32GB SSD

 One integrated and one Mini PCIe Realtek

RTL8111DL Gigabit Ethernet NICs

Our third choice was a Sun Fire X4200 M2 server:

 Sun Microsystems Sun Fire X4200 Server

motherboard with four integrated Intel 82546EB

Gigabit Ethernet Controllers

 Two 2.2GHz Dual Core AMD Opteron 275 CPUs

with 1MB L2 cache

 4x 1GB 400MHz ECC DDR SDRAM

 SATA SSD converter (to connect the SSD)

 KF1310MCJ14 32GB SSD

For all the other purposes (the 8 client computers and for

the authoritative DNS server for the measurements with the

first two test computers with the exception of the CPUs)

8x Dell Precision 490

192.168.100.101/24

2001:738:2c01:8001::1/64

2001:738:2c01:8001::101/64 2001:738:2c01:8001::108/64. . .

192.168.100.105/24

client computers
for all the tests

TL-SG5426 Vlan 10

client1 client8

Lab network

Authoritative DNS server

teacherb.tilb.sze.hu

TL-SG5426 Vlan 20

DNS64
server

Dell Precision 490

Pentium III
 or Atom

or Opteron

or SunFire X4150

Fig. 2 Topology of the DNS64 test network for the measurements

Revised version for the Springer Telecommunication Systems journal

5

standard DELL Precision Workstation 490 computers were

used with the following configuration:

 DELL 0GU083 motherboard with Intel 5000X

chipset

 Two Intel Xeon 5140 2.3GHz dual core processors

 4x 1GB 533MHz DDR2 SDRAM (accessed quad

channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet

controller (PCI Express)

Note that the configuration of these computers was slightly

changed since the measurements were done for [18].

A workstation of the same type but with somewhat faster

CPUs was used as the authoritative DNS server for the

measurements with the first two test computers. The CPUs

were:

 Two Intel Xeon 5160 3.0GHz dual core processors

And a SunFire X4150 Sun Server was used as the

authoritative DNS server for the measurements with the third

test computer:

 Sun Microsystems S92 motherboard

 Two Quad Core Intel Xeon E5440 2.83GHz CPU

 8GB DDR2 800MHz RAM

 Two near-line SAS 160GB HDDs

 Two Intel 82571EB Gigabit Ethernet NICs

 Two Intel 80003ES2LAN Gigabit Ethernet NICs

(one of them was used for the measurements)

Debian Wheezy 7.6 GNU/Linux operating system was

installed on all the computers, including the test computers

when they were used under Linux, but excluding the

authoritative DNS servers which had version 7.1. The version

of the OpenBSD and FreeBSD operating systems installed on

the test computers were 5.5 and 10.0, respectively. The 64-bit

computers always had the 64-bit version of the given

operating systems.

5 DNS64 Performance Measurement Method

5.1 IPv4 DNS Server Settings

The authoritative DNS server teacherb.tilb.sze.hu

used the 192.168.100.105 IP address. BIND was used for

authoritative name server purposes in all the DNS64

experiments. The version of BIND was 9.8.4 as this one can

be found in the Debian Wheezy 7.1 distribution and there was

no need for special functions (unlike in the case of the DNS64

server).

The 10.0.0.0/16-10.10.0.0/16 IP address range was

registered into the zonat.tilb.sze.hu zone with the

appropriate symbolic names. The zone file was generated by

the following script:

#!/bin/bash
cat > db.zonat.tilb.sze.hu << EOF
\$ORIGIN zonat.tilb.sze.hu.
\$TTL 1
@ IN SOA teacherb.tilb.sze.hu. kt.tilb.sze.hu. (
 2012012201 ; Serial
 28800 ; Refresh
 7200 ; Retry
 604800 ; Expire

 2) ; Min TTL
@ 86400 IN NS teacherb.tilb.sze.hu.
EOF
for a in {0..10}
do
 for b in {0..255}
 do
 echo '$'GENERATE 0-255 10-$a-$b-$ IN A \
 10.$a.$b.$ >> db.zonat.tilb.sze.hu
 done
done
echo "" >> db.zonat.tilb.sze.hu

The first general line of the zone file (describing the

symbolic name resolution) was the following one:

$GENERATE 0-255 10-0-0-$ IN A 10.0.0.$

A line of this kind is equivalent to 256 traditional “IN A”

lines; the $GENERATE directive was used for shorthand

purposes.

As it can be seen from the script above and as it has been

mentioned earlier, these symbolic names have only “A”

records (i.e. IPv4 addresses) and no “AAAA” records (i.e.

IPv6 addresses), so the generation of the IPv6 addresses was

the task of the DNS64 server.

5.2 The operation mode of the DNS servers

If a DNS (or DNS64) server receives a recursive query, it

can act in two ways: it may resolve the query itself by

performing a series of iterative queries or it may ask another

name server to resolve the query. A name server that resolves

the recursive queries is called recursor and a name server that

asks another name server to resolve them is called forwarder.

Both operation modes may be relevant in production

systems. On the one hand, it is often desirable to work as a

recursor in order to do the whole job without the help of

another server. On the other hand security policy may require

the DNS64 server to work as a forwarder and only the

standard caching DNS server is given the right to query other

name servers on the Internet. Thus we need to find the best

solution in both operation modes.

Whereas BIND and PowerDNS can be either of them,

TOTD can act only as a forwarder and Unbound (at least the

version we tested) can provide DNS64 functionality only in

the case if it is started as a recursor. Therefore we measured

the performance of the tested DNS64 implementations in all

their possible operation modes.

5.3 DNS64 Server Settings

The first three of the selected DNS64 implementations were

tested under Linux, OpenBSD and FreeBSD whereas

PowerDNS was tested only under Linux.

5.3.1 Preparation of the Linux test system

The network interfaces of the freshly installed Debian

Wheezy Linux operating system on the test computer were set

according to Fig. 2.

Netfilter (iptables) was not used during the measurements.

To see the possible issues and their solutions using netfilter,

see [18].

Revised version for the Springer Telecommunication Systems journal

6

5.3.2 Preparation of the BSD test systems

Similarly to the Linux test system, the network interfaces of

the BSD systems were set up as shown in Fig. 2.

PF was not installed on the FreeBSD system.

On the OpenBSD system the state keeping was switched off

by the following line in /etc/pf.conf:

pass no state

In this way, PF does not record the state of any requests and

answers.

5.3.3 Set up of the BIND DNS64 server

The BIND 9.8.5-P2 was compiled from source under Linux

and OpenBSD. FreeBSD version 10.0 already contained the

9.8.7-P1 version of BIND.

The 2001:738:2c01:8001:ffff:ffff::/96 (network specific)

prefix was set to BIND for the DNS64 function using the

dns64 option in the /etc/bind/named.conf.options

file. Now, BIND was ready to operate as a recursor. BIND

was also set as a forwarder by the following additional settings

in the named.conf file:

forwarders { 192.168.100.105; };
forward only;

5.3.4 Set up of the TOTD DNS64 server

TOTD 1.5.3. including our security enhancement patch was

used. As TOTD is just a DNS forwarder and not a DNS

recursor, it was set to forward the queries to the BIND running

on the teacherb computer. The content of the

/etc/totd.conf file was set as follows:

forwarder 192.168.100.105 port 53
prefix 2001:738:2c01:8001:ffff:ffff::
retry 300

5.3.5 Set up of the Unbound DNS64 servers

Unbound v1.4.20 with ecdysis patch was used. The server

section of the unbound.conf configuration file contained:

private-domain: “sze.hu”
module-config: “dns64 validator iterator”
dns64-prefix: 2001:738:2c01:8001:ffff:ffff::/96

Unbound does not provide the DNS64 functionality when it

is set up as a forwarder, thus it was tested only as a recursor.

5.3.6 Set up of the PowerDNS DNS64 server

PowerDNS Recursor v3.5.2 was used. It worked only under

Linux. (As its performance was the lowest from among the

four implementations during our preliminary tests executed by

the Pentium III computer, we gave up compiling it under the

BSD systems.)

The settings in the recursor.conf file were:

lua-dns-script=/etc/powerdns/dns64.lua
dns64.lua:
function nodata (remoteip, domain, qtype, records)
 if qtype ~= pdns.AAAA then return -1, {} end \
 -- only AAAA records
 setvariable()
 return "getFakeAAAARecords", domain, \
 "2001:738:2c01:8001:ffff:ffff::"
end

function endswith(s, send)
 return #s >= #send and s:find(send, #s-#send+1, true)
and true or false
end

5.3.7 Client Settings

Debian Wheezy 7.6 was installed on the DELL computers

used for client purposes. On these computers, the DNS64

server was set as name server in the following way:

echo "nameserver 2001:738:2c01:8001::1" > \
 /etc/resolv.conf

5.4 DNS64 Performance Measurements

5.4.1 Elementary measurement scripts

The CPU and memory consumptions of the DNS64 server

were measured in the function of the number of requests

served. The measure of the load was set by starting test scripts

on different number of client computers (1, 2, 4 and 8). In

order to avoid the overlapping of the namespaces of the client

requests (to eliminate the effect of the DNS caching), the

requests from the number i client used target addresses from

the 10.$i.0.0/16 network. In this way, every client could

request 216 different address resolutions. For the appropriate

measurement of the execution time, 256 experiments were

done and in every single experiment, 256 address resolutions

were performed using the standard host Linux command. The

execution time of the experiments was measured by the GNU

time command. (Note that this command is different from the

time command of the bash shell.)

The clients used the following script to execute the 256

experiments:

#!/bin/bash
i=`cat /etc/hostname|grep -o .$`
rm dns64-$i.txt
for b in {0..255}
do
 /usr/bin/time -f "%E" -o dns64-$i.txt \
 –a ./dns-st-c.sh $i $b
done

The synchronized start of the client scripts was done by

using broadcast, see the details later on.

The dns-st-c.sh script (taking two parameters) was

responsible for executing a single experiment with the resolu-

tion of 256 symbolic names:

#!/bin/bash
for c in {0..252..4} # that is 64 iterations
do
 host –t AAAA 10-$1-$2-$c.zonat.tilb.sze.hu &
 host –t AAAA 10-$1-$2-$((c+1)).zonat.tilb.sze.hu &
 host –t AAAA 10-$1-$2-$((c+2)).zonat.tilb.sze.hu &
 host –t AAAA 10-$1-$2-$((c+3)).zonat.tilb.sze.hu
done

In every iteration of the for cycle, four host commands

were started, from which the first three were started

asynchronously (“in the background”) that is, the four

commands were running in (quasi) parallel; and the core of the

cycle was executed 64 times, so altogether 256 host

commands were executed. (The client computers had two dual

core CPUs that is why four commands were executed in

parallel to generate higher load.)

Revised version for the Springer Telecommunication Systems journal

7

Note that in [18] we did not use the -t AAAA option and

thus then also the MX record was requested by the host

command. But now we focused on the AAAA record only (as

usually only this one is relevant, e.g. when browsing the web).

However, our client computers were not powerful enough to

be able to overload the Sun test computer (having four cores)

using the above dns-st-c.sh bash script. Thus we wrote a C

program that sent 64 DNS queries and it was started in four

instances (to utilize the 4 cores of the clients) in the

measurements with the Sun computer by the following dns-

st-c-4.sh bash script:

#!/bin/bash
dns-st-c $1 $2 0 64 5 &
dns-st-c $1 $2 64 64 5 &
dns-st-c $1 $2 128 64 5 &
dns-st-c $1 $2 192 64 5

The C program took five parameters. It requested argv[4]

number of AAAA records of symbolic names in the

zonat.tilb.sze.hu zone starting the first label (hostname)

from 10-argv[1]-argv[2]-argv[3] and using consecutive

integers in the place of argv[3]. After sending a query, it

always waited for the answer and continued after receiving it

or the time out value given in argv[5] (measured in second).

Its source code is not included because of its size, but it can be

downloaded from: http://ipv6.tilb.sze.hu/STS-DNS64/

(capitalization matters).

In the series of measurements, the number of clients was

increased from one to eight (the used values were: 1, 2, 4 and

8) and the time of the DNS resolution was measured. The

CPU and memory utilization were also measured on the test

computer running DNS64. As for measuring the CPU

utilization, not the direct CPU usage of the DNS64 server

process was measured, because that method would leave out

the CPU usage of some work from the accounting that was

done not directly by the server process rather by the kernel but

served the interest of the DNS64 service, e.g. processing

packet headers. In the same way, the memory consumption of

the DNS64 server process was calculated as the largest

decrease of the free memory during the measurements. We

admit that our method may also include the CPU and memory

usage of other tasks too, but we considered it a less critical

problem. Thus we measured and upper bound for both CPU

and memory utilization.

Under Linux, the following command line was used:

nice –n 10 dstat -T -t -c -m -p -i -I 44,45 -n -N \
 eth1,eth2,total -d --unix --output load.csv

Under the BSD operating systems, the command line was:

vmstat -w 1 >load.txt

5.4.2 Automatic execution

The execution of the measurements was automated for both

achieving higher accuracy and sparing human work time. The

netcat [34] utility was selected for this purpose. Netcat can

start the measurement program, when a packet is received on a

given port. The packet can be TCP, UDP and UDP broadcast,

too. The broadcast method was used for the synchronized start

of all of the clients. The experiments with 1, 2, 4 and 8 parallel

clients were executed 8, 4, 2 and 1 times, respectively. All the

times the load was provided by different set of clients, to make

the results more precise. The time of all of the computers were

synchronized by NTP (Network Time Protocol) [35] for the

accurate time measurement.

6 Method of the Presentation of our Results

Our measurements produced a huge number of results. The

result space can be explored along different axes:

 The type of the DNS64 implementations (BIND,

TOTD, Unbound, PowerDNS)

 The type of operating systems (Linux, OpenBSD,

FreeBSD)

 The mode of operation (recursor, forwarder)

 The number of clients (1, 2, 4, 8)

 The CPU architecture of the test computers (Pentium

III, Atom, Opteron).

However, not all the combinations are valid:

 TOTD can act only as a forwarder

 Unbound can do DNS64 only in the case if it is used

as a recursor

 PowerDNS was tested only under Linux.

Our analysis will be done in the following order. First, we

analyze the DNS64 implementations by themselves. That is,

we take an implementation and analyze its stability (examine

its behavior under overload) and then examine how it behaves

under different operating systems. Second, we compare the

implementations to each other. For this reason, we perform the

one by one analysis of the DNS64 implementations in two

separate groups: the forwarders (BIND, TOTD, PowerDNS)

and the recursors (BIND, Unbound, PowerDNS). Third, we

examine the possible effect of the CPU architecture of the test

computer. For this reason, we perform the above analysis

using the results of the Pentium III CPU first, and deal with

their performance results produced by the Atom and Opteron

CPUs later on.

We use tables (and not graphs) as the measured quantities

are of different types which could not be plotted together.

Therefore, we find tables more space effective than graphs.

All the tables follow the same format thus we give a detailed

explanation for the first one only; the others are to be

interpreted in the same way.

The three tables of each groups (forwarders or recursors)

using the same CPU architecture are put on the same page for

the synoptic view and easy comparison of the results.

7. Results of the Measurements on Pentium III

7.1 Performance Results of BIND, Forwarder

The performance results of the DNS64 server realized by

BIND used as a forwarder and executed by the Pentium III test

computer were summarized in Table 1. The first row of the

table specifies the operating system of the test computer. The

second row of the table shows the number of clients. (The

offered load of the DNS64 server was proportional to this

parameter.) The third, fourth and fifth rows show the average,

the standard deviation and the maximum value of the

Revised version for the Springer Telecommunication Systems journal

8

execution time of the execution of 256 host commands (this is

called one experiment), respectively.

Rows number six and seven show the average value and the

standard deviation of the CPU utilization, respectively.

Row number eight shows the estimated memory

consumption of DNS64. (This parameter can be measured

with high uncertainty, because other processes than DNS64

may also influence the size of free/used memory of the test

computer.)

The N number of DNS64 requests per second, served by the

test computer, was calculated according to (1) using the

number of clients (in row 2) and the average execution time

values (in row 3) and it is displayed in the last row of the

table.

cmdshostoftimeexecAverage

clientsofNumber
N

__256____

__*256
 (1)

Now we discuss the results separately for Linux, OpenBSD

and FreeBSD.

7.1.1 Linux

As for the results, BIND shows stability in all measured

values. Execution time results show very little (relative)

deviation and the maximum values are always close the

average at any number of clients. The increase of the load

does not cause performance degradation and the system does

not at all tend to collapse due to overload. Even when the CPU

utilization is about 100% the response time increases a little

bit less than linearly with the load (that is, with the number of

clients): the average execution time is 2.69 and 5.31 seconds

for 4 and 8 clients respectively whereas the maximum values

are 2.78 and 5.41 (which is less than the double of 2.78). The

number of requests served per second shows a small increase

from 380 to 386 in this serious overload situation. Therefore,

we can state that the behavior of the DNS64 system realized

by BIND as a forwarder running under Linux complies with

the so called graceful degradation [36] principle; if there are

not enough resources for serving the requests then the

response time of the system increases only linearly with the

load.

Also the memory consumption of BIND is visibly moderate

(less than 58MB) even for very high loads.

These two observations make BIND running under Linux a

good candidate for DNS64 server solution in a production

network with strong response time requirements.

7.1.2 OpenBSD

By observing the results, we can state that BIND under

OpenBSD shows similar stability than under Linux and gives

somewhat better performance (at eight clients, it served 422

requests per second instead of 386).

7.1.3 FreeBSD

Even though some fluctuations can be observed in the

request served in a second (306, 302, 307 for 2, 4, 8 clients,

respectively), we can still state that BIND under FreeBSD also

complies with the graceful degradation principle.

7.1.4 BIND as a forwarder under different operating

systems

As for the stability of BIND, it may be used in production

Table 3 DNS64 Performance: PowerDNS, Forwarder, Pentium III

1 Operating System Linux

2 Number of clients 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 1.42 1.91 3.31 6.65

4 std. deviation 0.02 0.05 0.06 0.12
5 maximum 1.48 2.05 3.48 6.92

6 CPU utiliza-

tion (%)

average 57.32 85.66 99.33 99.67
7 std. deviation 7.18 9.49 7.97 5.59

8 Memory consumption (MB) 22.277 59.117 54.359 59.203

9 Number of requests served in

a second (request/s) 180 268 309 308

Table 1 DNS64 Performance: BIND, Forwarder, Pentium III

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 1.25 1.38 2.69 5.31 1.19 1.28 2.44 4.85 1.41 1.68 3.39 6.68

4 std. deviation 0.01 0.02 0.04 0.07 0.01 0.02 0.03 0.09 0.02 0.02 0.04 0.05

5 maximum 1.32 1.47 2.78 5.41 1.28 1.43 2.52 4.98 1.49 1.81 3.50 6.78

6 CPU utiliza-

tion (%)

average 51.03 93.26 99.17 99.60 48.34 89.93 99.42 99.59 58.18 98.65 99.41 99.67

7 std. deviation 6.94 12.07 8.82 6.17 3.32 4.10 7.39 6.34 3.63 2.45 7.57 5.53

8 Memory consumption (MB) 37.238 57.254 57.289 57.262 30.695 51.855 52.605 51.047 40.496 55.004 56.508 58.688

9 Number of requests served in a

second (request/s) 204 371 380 386 215 401 420 422 182 306 302 307

Table 2 DNS64 Performance: TOTD, Forwarder, Pentium III

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 0.85 0.89 1.06 2.03 0.87 0.95 1.37 2.54 0.86 0.89 1.10 1.98

4 std. deviation 0.01 0.02 0.02 0.06 0.01 0.02 0.08 0.42 0.01 0.02 0.04 0.10

5 maximum 0.89 0.94 1.14 2.09 0.95 1.11 1.53 6.35 0.90 1.07 1.24 2.09

6 CPU utiliza-

tion (%)

average 13.44 34.18 83.09 98.97 18.81 42.89 69.93 83.62 17.08 36.90 69.66 82.26
7 std. deviation 2.89 5.92 13.45 9.75 2.49 4.08 3.82 2.00 2.54 3.99 4.12 2.18

8 Memory consumption (MB) 1.516 1.016 1.734 1.563 2.469 3.438 2.723 1.258 2.500 2.434 2.746 0.949

9 Number of requests served in a

second (request/s) 301 578 967 1010 293 540 749 806 298 576 934 1034

Revised version for the Springer Telecommunication Systems journal

9

systems under all the three operating systems. It showed its

best performance under OpenBSD by serving 422 requests per

second for eight clients, but its performance under Linux was

close to it (386 requests/s). It produced its poorest

performance results under FreeBSD (307 requests/s). But this

performance sacrifice may be acceptable in some cases e.g. for

security, as FreeBSD is the only operating system from the

three ones that makes it possible to execute the server

programs in a jail environment [37].

7.2 Performance Results of TOTD, Forwarder

The performance results of the DNS64 server realized by

TOTD used as a forwarder were summarized in Table 2. The

eye catching low memory consumption is very likely caused

by the lack of caching. As our experiments were designed to

eliminate the effect of caching by using different IP addresses

in each query, thus the lack of caching caused no performance

penalty. However, in a real life system, the average

performance of TOTD might be worse than BIND which uses

caching. But the very low memory consumption of TOTD can

be an advantage in a small embedded system.

Note that memory consumption values of TOTD are to be

considered as order of magnitude estimations only (and thus

may be paraphrased as “a few megabytes”) because of the

before mentioned high uncertainty of the measurements.

7.2.1 Linux

TOTD is stable under Linux and it provides excellent

performance (1010 requests/s at 8 clients).

7.2.2 OpenBSD

As for the execution time of one experiment at eight clients,

the standard deviation (0.42s) is about 16.5% of the average

(2.54s) and the maximum value is 6.35s. Whereas they are not

unacceptable, we consider them as warnings about the

stability. The fact that the CPU utilization could not

approximate 100% while the number of requests served in a

second was 749 at four clients and it could grow to 806 only at

eight clients is considered another warning sign. Therefore, we

do not recommend OpenBSD for TOTD.

7.2.3 FreeBSD

Even though the CPU utilization values of TOTD under

FreeBSD are very similar to that of TOTD under OpenBSD,

the stability of TOTD under FreeBSD is unquestionable on the

basis of the execution time of one experiment: the standard

deviation (0.1s) is very low compared to the average (1.98s),

and the maximum value (2.09s) is very close to the average.

The performance of TOTD is outstanding: it can serve 1034

requests per second.

7.2.4 TOTD as a forwarder under different operating

systems

As for the stability and performance of TOTD, it may be

used in production systems under both Linux and FreeBSD. It

showed its best performance under FreeBSD by serving 1034

requests per second for eight clients, but its performance under

Linux was close to it (1010 requests/s). It produced its poorest

performance results under OpenBSD (806 requests/s) and also

its stability was not convincing.

Table 6 DNS64 Performance: PowerDNS, FreeBSD, Recursor, Pentium III

1 Number of clients 1 2 4 8

2 Exec. time of

256 host

commands (s)

average 1.44 1.96 3.43 6.90

3 std. deviation 0.02 0.05 0.06 0.13

4 maximum 1.50 2.11 3.63 7.17

5 CPU utiliza-

tion (%)

average 58.01 85.96 99.34 99.68

6 std. deviation 7.10 9.43 7.98 5.43

7 Memory consumption (MB) 22.574 37.105 54.777 59.457

8 Number of requests served in

a second (request/s) 177 262 298 297

Table 4 DNS64 Performance: BIND, Recursor, Pentium III

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 1.32 1.50 2.98 5.98 1.22 1.31 2.54 5.19 1.44 1.73 3.43 6.94

4 std. deviation 0.02 0.03 0.05 0.07 0.01 0.02 0.04 0.07 0.02 0.03 0.04 0.06

5 maximum 1.38 1.60 3.09 6.07 1.34 1.44 2.60 5.30 1.55 1.82 3.55 7.06

6 CPU utiliza-

tion (%)

average 54.04 95.27 99.33 99.67 49.27 91.54 99.32 99.62 58.97 97.98 99.41 99.69

7 std. deviation 6.79 11.36 8.03 5.72 3.45 4.72 8.12 6.14 3.46 5.48 7.58 5.44

8 Memory consumption (MB) 35.570 53.059 52.164 52.922 30.438 50.488 51.047 48.828 40.195 53.738 55.426 65.801

9 Number of requests served in a

second (request/s) 193 342 343 343 211 389 403 394 178 296 299 295

Table 5 DNS64 Performance: Unbound, Recursor, Pentium III

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 0.91 0.93 1.02 1.69 0.93 0.96 1.09 1.99 0.95 0.99 1.18 2.14
4 std. deviation 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02

5 maximum 0.94 0.99 1.10 1.74 0.98 1.05 1.22 2.03 1.02 1.16 1.27 2.21

6 CPU utiliza-

tion (%)

average 24.19 46.79 82.73 98.37 27.94 53.33 91.53 99.81 30.81 59.07 95.34 99.64

7 std. deviation 4.19 7.37 13.27 12.03 3.02 3.78 2.46 3.97 5.81 7.58 1.88 5.65

8 Memory consumption (MB) 14.586 15.039 14.512 14.879 21.270 20.402 22.859 20.594 20.039 20.367 18.648 18.668

9 Number of requests served in a

second (request/s) 282 551 999 1211 276 533 944 1032 269 518 866 959

Revised version for the Springer Telecommunication Systems journal

10

7.3 Performance Results of PowerDNS, Forwarder,

Linux

The performance results of the DNS64 server realized by

PowerDNS used as a forwarder were summarized in Table 3.

Considering both the standard deviation and the maximum

value of the execution time of one experiment, PowerDNS

proved to be stable and its memory consumption is also

bounded (less than 60MB), thus it can be used in production

systems, though its performance is moderate (308 requests/s at

8 clients).

7.4 Comparison of the Forwarders

The best candidate for a DNS64 implementation used as a

forwarder (on the Pentium III platform) is TOTD under

FreeBSD (1034 requests/s) and TOTD under Linux is quite

close to it (1010 request/s). The performance of BIND (422

request/s under OpenBSD, 386 request/s under Linux, 307

request/s under FreeBSD) and that of PowerDNS (308

request/s) are far from it, though they are also stable and may

be used if they are preferred for some reasons. But if

performance is important, TOTD is definitely the only choice.

FreeBSD or Linux is a matter of taste – unless FreeBSD must

be chosen for security reasons. (But we did not test the

performance of TOTD when running in jail.)

7.5 Performance Results of BIND, Recursor

The performance results of the DNS64 server realized by

BIND used as a recursor were summarized in Table 4.

7.5.1 Linux

Similarly to the case when it was a forwarder, BIND shows

stability in every measured values. Its recursor performance

(343 requests/s) is only 11% less than its forwarder

performance (386 requests/s) at eight clients.

7.5.2 OpenBSD

Even though its performance shows somewhat degradation

as the number of requests served in a second was 403 at four

clients and it was only 394 at eight clients, this is only a 2.2%

decrease and the maximum execution time of one experiment

(5.3s) is very close to the average (5.19s) having also a very

small standard deviation (0.07s). Therefore we consider it

stable. Its recursor performance (394 requests/s) is only 6.6%

less than its forwarder performance (422 requests/s) at eight

clients.

7.5.3 FreeBSD

Similarly to OpenBSD, a little (but smaller) decrease of the

performance can observed at eight clients, but it does not

garble the stability of BIND. The increase in the memory

consumption at eight clients (65.8MB) is also acceptable. Its

recursor performance (295 requests/s) is only 3.9% less than

its forwarder performance (307 requests/s) at eight clients.

7.5.4 BIND as a resursor under different operating

systems

The same can be said about BIND as a recursor as we stated

about it as a forwarder.

Table 7 DNS64 Performance: BIND, Forwarder, Atom

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 0.93 0.96 1.05 1.76 0.98 1.01 1.37 2.80 0.95 0.99 1.13 2.08
4 std. dev. 0.01 0.02 0.02 0.04 0.02 0.02 0.06 0.10 0.01 0.02 0.02 0.02

5 maximum 0.98 1.03 1.14 1.93 1.03 1.10 1.47 2.95 1.00 1.06 1.19 2.14

6 CPU utiliza-

tion (%)

average 22.73 43.86 77.63 91.40 17.46 33.83 51.18 50.75 26.34 51.55 88.16 95.87

7 std. dev. 1.33 1.50 1.60 3.74 1.75 2.13 2.36 4.36 3.17 3.99 2.33 1.23

8 Memory cons. (MB) 48.582 83.949 148.121 187.984 39.555 72.707 112.379 107.418 58.258 92.547 164.145 175.242

9 Number of requests ser-

ved in a second (req./s) 274 533 974 1164 262 506 750 730 268 517 903 987

Table 9..DNS64 Performance: PowerDNS, Linux, Forwarder, Atom

1 Number of clients 1 2 4 8

2 Exec. time of

256 host

commands (s)

average 0.93 0.95 1.12 1.53

3 std. dev. 0.01 0.02 0.03 0.04

4 maximum 0.97 1.01 1.23 1.63

5 CPU utiliza-

tion (%)

average 18.43 36.88 62.92 99.95

6 std. dev. 1.19 1.21 1.71 0.15

7 Memory cons. (MB) 32.938 56.430 88.277 150.133

8 Number of requests ser-

ved in a second (req./s) 276 537 914 1339

Table 8 DNS64 Performance: TOTD, Forwarder, Atom

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 0.84 0.84 0.96 1.81 0.84 0.84 0.89 1.52 0.84 0.84 0.88 1.37
4 std. dev. 0.01 0.01 0.02 0.09 0.01 0.02 0.02 0.29 0.01 0.01 0.02 0.08

5 maximum 0.89 0.88 1.04 1.92 0.88 0.89 0.96 5.58 0.89 0.89 0.95 1.53

6 CPU utiliza-

tion (%)

average 4.36 10.98 37.15 51.59 6.22 13.40 30.58 42.08 5.17 12.25 27.59 40.85

7 std. dev. 1.04 1.29 1.81 0.29 1.69 2.21 2.66 4.17 1.29 1.86 2.36 2.26

8 Memory cons. (MB) 1.188 1.082 1.270 1.875 2.207 2.328 2.484 3.734 3.773 3.453 2.984 3.883

9 Number of requests ser-

ved in a second (req./s) 306 606 1062 1128 305 606 1154 1348 306 609 1165 1492

Revised version for the Springer Telecommunication Systems journal

11

7.6 Performance Results of Unbound, Recursor

The performance results of the DNS64 server realized by

Unbound used as a recursor were summarized in Table 5. As

there are no stability issues with Unbound, we discuss its

results for the different operating systems together. Unbound

is stable under all three operating systems, and it requires

relatively small amount of memory under all of them. It gave

the best performance under Linux by serving 1211 requests

per second at eight clients. Its performance is somewhat lower

under OpenBSD (1032 requests/s) and FreeBSD (959

requests/s), but they are still excellent. Its memory

consumption is the least under Linux (about 15MB) and is a

bit higher under the BSD systems (about 20-23 MB).

7.7 Performance Results of PowerDNS, Recursor,

Linux

The performance results of the DNS64 server realized by

PowerDNS used as a recursor were summarized in Table 6.

There is no stability issue and the performance of PowerDNS

as a recursor (297 requests/s) was only 3.6% less than its

forwarder performance (308 requests/s) at eight clients.

7.8 Comparison of the Recursors

The best candidate for a DNS64 implementation used as a

recursor (on the Pentium III platform) is Unbound under

Linux (1211 requests/s) and Unbound showed good

performance under the BSD systems, too (1032 requests/s

under OpenBSD and 959 requests/s under FreeBSD). The

performance of BIND and PowerDNS are far from it (they can

serve only about 300-400 requests per second).

8 Results of the Measurements on Atom CPU

We present all the measurement results of the Intel Atom

test computer but in the discussion, we focus on the

differences between the two platforms only, as there are no

stability issues found (except TOTD under OpenBSD). The

memory consumption of the Atom system is usually higher

than that of the Pentium III system (as this computer contains

4GB RAM instead 128MB), and it is often growing with the

number of the clients, but when the number of the clients is

doubled, the growth of the memory consumption is always far

less from being doubled thus it is not an issue.

Before the presentation of the results, we need to clear the

meaning of the CPU utilization values in the tables because

there are two equally good but different practices exist. One of

them takes the performance of a single core to 100% and thus

the performance of two cores is denoted as 200%. The other

one takes the performance of all the cores to 100% and thus

the performance of one core of a dual core system is denoted

as 50%. Our measurement programs used the second one and

thus we do so in the following tables.

8.1 Performance Results of BIND, Forwarder

The performance results of the DNS64 server realized by

BIND used as a forwarder were summarized in Table 7.

8.1.1 Linux

The CPU utilization values show that BIND under Linux

benefits from the dual core architecture. However, it cannot

fully utilize the computing power of both cores: the CPU

utilization is 77.63% and the average execution time of one

Table 10 DNS64 Performance: BIND, Recursor, Atom

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 0.95 0.98 1.10 1.94 1.00 1.03 1.43 2.92 0.96 1.00 1.16 2.14

4 std. dev. 0.01 0.02 0.02 0.05 0.02 0.03 0.07 0.09 0.01 0.02 0.02 0.03
5 maximum 0.99 1.09 1.18 2.12 1.05 1.13 1.57 3.05 1.02 1.07 1.23 2.21

6 CPU utiliza-

tion (%)

average 24.30 47.27 81.94 92.09 18.23 35.21 51.88 50.45 27.14 53.01 89.52 95.95
7 std. dev. 1.20 1.54 1.96 3.70 1.74 1.94 2.38 4.54 3.24 4.75 2.29 1.27

8 Memory cons. (MB) 49.211 84.668 151.891 175.527 41.500 72.781 108.363 103.207 58.078 91.816 159.398 175.715

9 Number of requests ser-

ved in a second (req./s) 269 521 929 1054 257 495 714 701 267 512 882 959

Table 12 DNS64 Performance: PowerDNS, Linux, Recursor, Atom

1 Number of clients 1 2 4 8

2 Exec. time of

256 host

commands (s)

average 0.94 0.96 1.15 1.60
3 std. dev. 0.01 0.02 0.03 0.04

4 maximum 0.97 1.04 1.28 1.69

5 CPU utiliza-

tion (%)

average 19.06 37.81 64.63 99.96

6 std. dev. 1.17 1.30 1.92 0.14

7 Memory cons. (MB) 33.074 56.422 89.012 150.254

8 Number of requests ser-

ved in a second (req./s) 273 531 887 1279

Table 11 DNS64 Performance: Unbound, Recursor, Atom

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 host

commands (s)

average 0.85 0.86 0.88 0.96 0.86 0.87 0.90 1.20 0.86 0.87 0.90 1.08

4 std. dev. 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.07 0.01 0.01 0.02 0.02
5 maximum 0.91 0.90 0.93 1.01 0.92 0.92 0.95 1.33 0.90 0.93 0.95 1.14

6 CPU utiliza-

tion (%)

average 8.01 15.94 30.43 50.21 9.91 19.20 36.78 53.92 8.77 18.23 34.83 54.23

7 std. dev. 1.11 1.18 1.15 0.66 1.88 2.31 2.37 4.10 1.58 1.84 2.23 1.56

8 Memory cons. (MB) 16.082 16.016 15.961 15.992 25.570 23.266 22.594 25.750 20.270 18.875 18.711 18.711

9 Number of requests ser-

ved in a second (req./s) 299 594 1161 2122 297 587 1139 1700 297 586 1135 1894

Revised version for the Springer Telecommunication Systems journal

12

experiment is 1.05 at four clients and when the number of

clients is doubled the CPU utilization grows only to 91.4%

and the execution time grows to 1.76s. BIND cannot fully

parallelize all its tasks to do. (There could be other reasons,

e.g. the performance could be limited by the I/O capacities,

but later we can see that PowerDNS can do more requests in a

second thus it is sure that the limitation is not caused by the

lack of other resources, but rather by the behavior of BIND.)

8.1.2 OpenBSD

The CPU utilization values show that BIND under

OpenBSD cannot much benefit from the dual core

architecture. Though the CPU utilization is somewhat higher

than 50% at four and eight clients, it is caused by other

processes that are scheduled for the other core. The single-

threaded nature of OpenBSD is liable for this situation2.

8.1.3 FreeBSD

The CPU utilization values show that BIND under Linux

benefits from the dual core architecture, but it cannot fully

utilize the computing power of both cores.

2 Though the OpenBSD kernel supports multithreading since version 5.2,

the OpenBSD port of BIND still does not support it.

8.1.4 BIND as a forwarder under different operating

systems

The Linux system produced the best results by answering

1164 requests per second and FreeBSD was the second one

with 987 requests/s. Because of the single-threaded nature of

OpenBSD it produced the poorest results (730 requests/s). If

one uses more than two cores then the disadvantage of

OpenBSD is growing further.

8.2 Performance Results of TOTD, Forwarder

The performance results of the DNS64 server realized by

TOTD used as a forwarder were summarized in Table 8.

Unfortunately, TOTD cannot benefit from the dual core

architecture under any of the three operating systems because

it was written single threaded.

This fact could be a comparative advantage for the

OpenBSD platform, but we have to issue a warning about the

stability of TOTD under OpenBSD, see the large maximum

(5.58s) and standard deviation (0.29s) values of the execution

time compared to the average (1.52s) at eight clients.

Therefore we recommend only the FreeBSD operating system

with 1492 requests per second, even though the performance

of OpenBSD is not much lower (1348 requests/s). If Linux is

preferred for some reason, it is also stable and its performance

is also good (1128 requests/s).

8.3 Performance Results of PowerDNS, Forwarder

The performance results of the DNS64 server realized by

PowerDNS used as a forwarder were summarized in Table 9.

The 99.95% CPU utilization value at eight clients shows that

PowerDNS can fully utilize the computing power of the two

cores. It can answer 1339 requests per second.

8.4 Comparison of the Forwarders

Considering only the bare numbers, the best candidate for a

Table 15 DNS64 Performance: PowerDNS, Linux, Forwarder, Opteron

1 Number of clients 1 2 4 8

2 Exec. time of

256 DNS

queries (s)

average 0.070 0.099 0.179 0.366

3 std. dev. 0.003 0.012 0.011 0.019

4 maximum 0.130 0.190 0.240 0.440

5 CPU utiliza-

tion (%)

average 42.47 60.20 96.90 97.59

6 std. dev. 0.59 2.69 0.53 0.37

7 Memory cons. (MB) 35.277 64.613 96.195 160.199

8 Number of requests ser-

ved in a second (req./s) 3670 5146 5723 5600

Table 13 DNS64 Performance: BIND, Forwarder, Opteron

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 DNS

queries (s)

average 0.067 0.098 0.213 0.409 0.094 0.188 0.382 0.783 0.082 0.121 0.239 0.479

4 std. dev. 0.005 0.007 0.017 0.018 0.006 0.005 0.007 0.015 0.010 0.005 0.008 0.012

5 maximum 0.140 0.170 0.290 0.530 0.180 0.260 0.440 0.860 0.490 0.160 0.290 0.540

6 CPU utiliza-

tion (%)

average 57.91 72.20 63.00 69.92 26.15 27.22 27.42 27.28 66.88 87.82 88.68 89.52

7 std. dev. 0.95 1.38 3.02 2.45 0.85 0.87 0.98 0.93 2.10 1.76 1.76 1.74

8 Memory cons. (MB) 49.992 80.691 147.262 277.242 38.324 67.652 123.117 233.848 62.609 94.406 169.414 303.613

9 Number of requests ser-

ved in a second (req./s) 3838 5208 4816 5003 2721 2724 2682 2615 3130 4215 4290 4272

Table 14 DNS64 Performance: TOTD, Forwarder, Opteron

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 DNS

queries (s)

average 0.081 0.169 0.357 0.775 0.063 0.129 0.271 0.572 0.058 0.117 0.240 0.509

4 std. dev. 0.029 0.052 0.095 0.102 0.012 0.021 0.035 0.052 0.009 0.021 0.067 0.058
5 maximum 0.190 0.310 1.070 1.230 0.360 0.200 0.370 0.690 0.080 0.160 1.040 0.740

6 CPU utiliza-

tion (%)

average 23.95 25.15 25.14 25.24 25.33 27.58 27.38 27.25 23.95 26.42 26.69 26.71

7 std. dev. 0.33 0.41 0.33 0.37 0.79 0.78 1.01 0.92 0.98 0.69 0.54 0.61

8 Memory cons. (MB) 1.582 1.734 2.035 1.461 2.609 2.598 2.633 2.246 5.793 5.902 3.980 4.996

9 Number of requests ser-

ved in a second (req./s) 3180 3025 2871 2642 4035 3978 3779 3582 4428 4366 4275 4025

Revised version for the Springer Telecommunication Systems journal

13

DNS64 implementation on the dual core Atom platform, used

as a forwarder is the TOTD under FreeBSD (1492 requests/s).

As we disqualified TOTD under OpenBSD (1348 requests/s)

for its stability warning, the second and third ones are

PowerDNS under Linux (1339 requests/s) and BIND under

Linux (1164 requests/s). However, as PowerDNS and BIND

are multi-threaded they will very likely overtake the single-

threaded TOTD when more than two cores will be used.

8.5 Performance Results of BIND, Recursor

The performance results of the DNS64 server realized by

BIND used as a recursor were summarized in Table 10. The

results are very similar to those when BIND was used as a

forwarder: Linux is the best one (1054 request/s), FreeBSD is

the second one (959 requests/s) and OpenBSD produced the

poorest performance (701 requests/s) due to being single

threaded.

8.6 Performance Results of Unbound, Recursor

The performance results of the DNS64 server realized by

Unbound used as a recursor were summarized in Table 11.

Unbound is single-threaded and yet very fast! It gave the best

performance under Linux by serving 2122 requests per second

at eight clients. Its performance is lower but still very good

under FreeBSD (1894 requests/s) and OpenBSD (1700

requests/s). It is interesting that Unbound under the OpenBSD

operating system (1032 requests/s) produced somewhat better

results than under FreeBSD (959 requests/s) when it was

executed by the Pentium III computer and the order is

opposite when it is executed by the Atom computer. As

Unbound is single threaded, this phenomenon is an important

warning sign that the architecture itself (and not only the

number of cores) may have a significant influence on the

performance of the different DNS64 implementations.

The memory consumption of Unbound is really low. It is

the least under Linux (about 16MB) and it is a bit higher under

FreeBSD (about 18-20 MB) and under OpenBSD (23-26MB).

8.7 Performance Results of PowerDNS, Recursor,

Linux

The performance results of the DNS64 server realized by

PowerDNS used as a recursor were summarized in Table 12.

PowerDNS can fully utilize the computing power of the two

cores. It can answer 1279 requests in a second.

8.8 Comparison of the Recursors

Even though Unbound is single threaded its performance is

far the best. It gave the best performance under Linux by

serving 2122 requests per second at eight clients. Its

performance is lower but still very good under FreeBSD (1894

requests/s) and OpenBSD (1700 requests/s). PowerDNS can

answer only 1279 requests in a second by fully utilizing both

cores. And the performance of BIND is somewhat lower.

However, PowerDNS and BIND have the potential to

outperform Unbound when executed by systems with higher

number of CPU cores.

9 Results of the Measurements with Opteron

CPUs

We present all the measurement results of the Sun test

computer with two dual core Opteron CPUs, but we focus on

Table 18 DNS64 Performance: PowerDNS, Linux, Recursor, Opteron

1 Number of clients 1 2 4 8

2 Exec. time of

256 DNS

queries (s)

average 0.071 0.101 0.184 0.378

3 std. dev. 0.011 0.015 0.012 0.019

4 maximum 0.360 0.310 0.360 0.460

5 CPU utiliza-

tion (%)

average 42.86 61.09 96.89 97.70

6 std. dev. 0.57 2.62 0.54 0.39

7 Memory cons. (MB) 35.438 64.016 96.453 159.035

8 Number of requests ser-

ved in a second (req./s) 3616 5065 5560 5425

Table 17 DNS64 Performance: Unbound, Recursor, Opteron

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 DNS

queries (s)

average 0.041 0.070 0.137 0.271 0.054 0.083 0.168 0.347 0.050 0.070 0.135 0.281

4 std. dev. 0.004 0.002 0.005 0.027 0.006 0.005 0.007 0.019 0.003 0.003 0.005 0.016

5 maximum 0.100 0.140 0.160 0.320 0.170 0.160 0.250 0.400 0.140 0.110 0.150 0.330

6 CPU utiliza-

tion (%)

average 21.09 24.92 25.15 25.50 21.46 28.32 28.20 28.40 20.59 27.08 27.61 27.43

7 std. dev. 0.65 0.40 0.35 0.75 1.63 0.85 1.05 0.97 1.28 0.78 0.65 0.62

8 Memory cons. (MB) 16.355 15.629 15.969 15.523 22.484 23.727 23.652 22.707 21.871 20.074 21.883 20.152

9 Number of requests ser-

ved in a second (req./s) 6259 7314 7493 7545 4725 6195 6087 5900 5101 7349 7610 7291

Table 16 DNS64 Performance: BIND, Recursor, Opteron

1 Operating System Linux OpenBSD FreeBSD

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8

3 Exec. time of

256 DNS

queries (s)

average 0.071 0.103 0.219 0.427 0.100 0.201 0.411 0.839 0.086 0.123 0.243 0.491

4 std. dev. 0.015 0.006 0.014 0.015 0.003 0.003 0.008 0.015 0.006 0.005 0.007 0.014

5 maximum 0.600 0.190 0.290 0.530 0.180 0.250 0.470 0.930 0.140 0.160 0.290 0.560

6 CPU utiliza-

tion (%)

average 58.79 75.46 70.10 76.03 26.24 27.30 27.20 27.15 67.26 88.74 89.23 90.10

7 std. dev. 2.09 1.49 2.44 2.40 0.82 0.85 0.80 0.97 2.40 1.76 1.85 1.88

8 Memory cons. (MB) 51.227 81.387 150.078 282.293 38.344 67.543 122.230 234.668 62.836 94.461 167.320 302.922

9 Number of requests ser-

ved in a second (req./s) 3623 4961 4682 4796 2555 2553 2491 2440 2994 4151 4208 4170

Revised version for the Springer Telecommunication Systems journal

14

how the presence of the four cores change the ranking of the

DNS64 implementations under the different operating

systems.

There are two minor changes in the tables from this point:

 Lines 2-4 show the execution time of 256 DNS queries

(and not host commands) because the C program was

used with the third test computer.

 There are 3 digits used after the decimal point in the

time values because the values are less than a second

due to the high computing power of third test computer.

9.1 Performance Results of BIND, Forwarder

The performance results of the DNS64 server realized by

BIND used as a forwarder were summarized in Table 13.

The CPU utilization values show that BIND under Linux

benefits from the four cores. However, it is far from fully

utilizing the computing power of all the four cores: the CPU

utilization is always below 75% (which is equivalent with the

computing power of 3 cores). BIND under OpenBSD can

benefit a little from the multiple cores e.g. it produced 27.42%

CPU utilization at four clients instead of the 25% (which is

equivalent with a single core) but the gain is insignificant.

BIND produced its highest CPU utilization value under

FreeBSD; it is 89.52% at eight clients, which is much better

than under Linux but it is still not 100%. However, as for the

number of requests served in a second, Linux performed the

best by processing about 5000 requests in a second.

9.2 Performance Results of TOTD, Forwarder

The performance results of the DNS64 server realized by

TOTD used as a forwarder were summarized in Table 14.

Whereas the CPU utilization was always less than 25.3%

under Linux, the system could benefit 2-3% of the multiple

cores under the BSD operating systems. TOTD showed it best

performance under FreeBSD by processing more than 4000

requests in a second. (Its performance showed continuous but

small degradation under all the three operating systems from

one client to eight clients.)

9.3 Performance Results of PowerDNS, Forwarder

The performance results of the DNS64 server realized by

PowerDNS used as a forwarder were summarized in Table 15.

The CPU utilization values show that PowerDNS under Linux

can nearly fully utilize the four cores (97.59% at eight clients).

PowerDNS processed 5600 requests in a second at eight

clients.

9.4 Comparison of the Forwarders

PowerDNS was the best performing one among the

forwarders due to being able to nearly fully utilize the

computing power of all the four cores. Note that this result

was achieved under serious overload and under normal high

load (at one or two clients) BIND showed similar results than

PowerDNS. TOTD was the third one, but if we consider the

FreeBSD operating system, its performance is practically the

same as that of BIND at 2, 4 and 8 clients (about 4000

requests in a second) and at one client, TOTD even seriously

outperformed BIND by answering 4428 requests per second

whereas BIND could do only 3130.

Our expectations were fulfilled that BIND and PowerDNS

outperformed TOTD under both multi-threaded operating

systems (Linux and FreeBSD).

9.5 Performance Results of BIND, Recursor

The performance results of the DNS64 server realized by

BIND used as a resursor were summarized in Table 16. The

trend of the values is similar to the one when BIND was used

as a forwarder. The performance results are somewhat less, as

expected.

9.6 Performance Results of Unbound, Recursor

The performance results of the DNS64 server realized by

Unbound used as a resursor were summarized in Table 17.

Whereas the CPU utilization never exceeds 25.5% under

Linux, the system can benefit 3-4% of the multiple cores

under the BSD systems. Unbound showed its best

performance under Linux by continuously increasing the

number of processed requests and reaching 7545 requests in a

second at eight clients, but its performance under FreeBSD

was very close to it. Even though FreeBSD has somewhat

overtaken Linux at four clients (7610 vs. 7493 requests per

second), we put FreeBSD to the second place because of the

other results and also because of the performance degradation

it showed at eight clients. As for the performance order of the

two BSDs, the earlier observed tendency continued: the

performance of the OpenBSD system (about 6000 requests per

seconds from two to eight clients) is now visibly lower than

that of FreeBSD.

9.7 Performance Results of PowerDNS, Recursor

The performance results of the DNS64 server realized by

PowerDNS used as a resursor and executed by the Sun test

computer were summarized in Table 18. The CPU utilization

values show that PowerDNS under Linux can nearly fully

utilize the four cores (97.7% at eight clients). PowerDNS

processed 5425 requests per second at eight clients.

Table 19 DNS64 Implementation Selection Guide: The best Performing

DNS64 Implementations with the Number of Forwarded Packets per Second

Opera-

tion

Mode

Operating

System

Intel

Pentium III

(single-core)

Intel Atom

(dual-core)

AMD

Opteron

(quad-core)

forwarder

Linux TOTD PowerDNS PowerDNS

1010 1339 5600

BSD TOTD TOTD BIND

1034/Free 1492/Free 4272/Free

recursor

Linux
Unbound Unbound Unbound

1211 2122 7545

BSD
Unbound Unbound Unbound

1032/Open,

959/Free

1894/Free 7291/Free

Revised version for the Springer Telecommunication Systems journal

15

9.8 Comparison of the Recursors

Unbound performed the best amoung the recursors with

significant vantage. At eight clients, Unbound served 7545

request in a second whereas PowerDNS could do only 5425

and BIND did 4796. On the basis of the two core results,

PowerDNS was expected to catch up with Unbound, but it did

not happen: Unbound significantly outperformed PowerDNS

despite of the fact that Unbound is single threaded and

PowerDNS could nearly fully utilize all the four cores.

10 Implementation Selection Guide

We provide an easy to use guide for those who would like

to choose a DNS64 implementation suitable for their purposes

quickly. The performance optimized choices are shown in

Table 19. We give the best choices for both operation modes

(forwarder and recursor), for all the tested CPUs and also for

Linux and BSD systems. We also specify the number of

forwarded packets per second for 8 clients, thus they can be a

key for the decision if one has no special preference between

Linux and BSD. Within the BSD platform, we denote

OpenBSD and FreeBSD by supplementing the performance

value of the DNS64 implementations with words “Free” and

“Open”, respectively. (Note the performance of certain

implementations was higher for lower number of clients, but

we always give the performance values measured with 8

clients.)

11 Plans for Future Research

Our current results can serve as a starting point when

selecting the directions of future investigations. There should

be several modern CPUs tested including servers with 8 or 16

cores. It is a very interesting question how the multi-threaded

DNS64 implementations scale on different CPU architectures

having several cores. Some of these would require more

powerful and/or higher number of client computers for load

generation than those we used. For a well tunable and cost

effective solution, we consider building a 64 or 128 element

cluster of single board computers (SBCs) similar to the

Raspberry Pi cluster described in [38] but using more

powerful single board computers. (Some candidates are under

testing, see some of our SBC comparison results in [39].)

We have also rewritten the complete test program in C/C++

for achieving higher efficiency in load generation [40].

MTD64, the tiny Multi-Threaded DNS64 server we

proposed in [10] was not ready for testing at the time when

our measurements were performed, but we also plan to include

it into our furthers investigations.

The impact of caching is another very interesting topic, and

we plan to deal with it in a later paper.

12 Conclusion

We have found that the CPU architecture has a strong

influence on the performance ranking of the analyzed DNS64

implementations. Now, we give a brief summary of the

results, stating also the number of processed requests per

second with eight clients for each mentioned implementations.

On the single-core Pentium III platform, TOTD under

FreeBSD (1034 requests/s) or under Linux (1010 requests/s)

was found highly the best among the forwarders – it

outperformed about 2.5 times the second one, BIND under

OpenBSD (422 requests/s) whereas PowerDNS could process

only 308 requests/s. As for the recursors on Pentium III,

Unbound under Linux (1211 requests/s) was the very best one,

and it was also very good under OpenBSD (1032 request/s)

and FreeBSD (959 requests/s), too. The performance of BIND

under its best operating system, OpenBSD (394 requests/s)

and the results of PowerDNS (297 requests/s) lag far behind

Unbound.

The increasing of the number of cores could partially

reverse the performance ranking. Using four cores, the best

performing forwarder was PowerDNS (5600 request/s), the

second one was BIND under Linux (5003 requests/s). The

performance of TOTD under FreeBSD (4025 request/s) was

still notable because it was achieved using only a single core.

As for the recursors, the single threaded Unbound kept its first

place with a high vantage, its best performing operating

system was Linux (7545 requests/s), but FreeBSD (7291

requests/s) was close to it. PowerDNS (5425 requests/s) could

nearly fully utilize the computing power of the four cores

whereas BIND under Linux (4796 requests/s) could utilize the

computing power of about three of them.

The “race” is still open for eight or more cores and/or with

different CPU types.

Nearly all of the implementations were found stable. Only

TOTD under OpenBSD has got stability warning on the

Pentium III and Atom platforms.

We hope that our results can serve as useful guidelines for

network administrators and architects when selecting the best

suitable DNS64 implementations for their networks. We

believe that our work may contribute to the global deployment

of the IPv6 protocol.

References

[1] Bagnulo, M., Sullivan, A., Matthews, P., & Beijnum, I. (2011). DNS64:
DNS extensions for network address translation from IPv6 clients to
IPv4 servers, IETF RFC 6147.

[2] Bagnulo, M., Matthews, P., & Beijnum, I. (2011). Stateful NAT64:
Network address and protocol translation from IPv6 clients to IPv4
servers, IETF RFC 6146.

[3] Lencse, G., & Répás, S. (2013). Performance analysis and comparison
of the TAYGA and of the PF NAT64 implementations, in Proceedings
of the 36th International Conference on Telecommunications and Signal
Processing, Rome, Italy, doi: 10.1109/TSP.2013.6613894

[4] Répás, S., Farnadi, P. & Lencse, G. (2014). Performance and stability
analysis of free NAT64 implementations with different protocols, Acta
Technica Jaurinensis, 7(4), doi: 10.14513/actatechjaur.v7.n4.340

[5] Tsirtsis, G., & Srisuresh, P. (2000) Network Address Translation -
Protocol Translation (NAT-PT), IETF RFC 2766.

[6] Aoun, C. & Davies, E. (2007). Reasons to move the Network Address
Translator - Protocol Translator (NAT-PT) to historic status, IETF RFC
4966.

[7] Srisuresh, P., & Holdrege, M. (1999). IP Network Address Translator
(NAT) terminology and considerations”, IETF RFC 2663.

[8] Wu, P., Cui, Y., Wu, J., Liu, J. & Metz C. (2013). Transition from IPv4
to IPv6: A state-of-the-art survey” IEEE Communication Surveys &
Tutorials, 15 (3), doi: 10.1109/SURV.2012.110112.00200

Revised version for the Springer Telecommunication Systems journal

16

[9] Skoberne, N., Maennel, O., Phillips, I., Bush, R., Zorz, J., Ciglaric, M.
(2014). IPv4 address sharing mechanism classification and tradeoff
analysis, IEEE/ACM Transactions on Networking, 22 (2) doi:
10.1109/TNET.2013.2256147

[10] Lencse, G. & Soós, A. G. (2015). Design of a tiny multi-threaded
DNS64 server, in Proceedings of the 38th International Conference on
Telecommunications and Signal Processing, Prague, Czech Republic,
pp. 27–32. 10.1109/TSP.2015.7296218

[11] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., & Li, X. (2010).
IPv6 addressing of IPv4/IPv6 translators, IETF RFC 6052.

[12] Bagnulo, M., Garcia-Martinez, A., & Beijnum, I. V. (2012). The
NAT64/DNS64 tool suite for IPv6 transition, IEEE Communication
Magazine, 50(7), 177–183.

[13] Llanto, K. J. O., & Yu, W. E. S. (2012). Performance of NAT64 versus
NAT44 in the context of IPv6 migration, in Proceedings of the
International MultiConference of Engineers 2012, vol. I., pp. 638–645.

[14] Monte, C. P., Robles, M. I., Mercado, G., Taffernaberry, C., Orbiscay,
M., Tobar, S., Moralejo, R., Pérez, S. (2012). Implementation and
evaluation of protocols translating methods for IPv4 to IPv6 transition,
Journal of Computer Science & Technology, 12(2) 64–70.

[15] Yu, S., & Carpenter, B. E. (2012). Measuring IPv4 – IPv6 translation
techniques, Dept. of Computer Science, Univ. Auckland, Auckland,
New Zeeland, Technical Report 2012-001, Jan., 2012.
https://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-
TR.pdf Accessed 19 August 2015.

[16] Lencse G., & Takács, G. (2012). Performance analysis of DNS64 and
NAT64 solutions, Infocommunications Journal, 4(2) pp. 29–36.

[17] Hodzic, E., & Mrdovic, S. (2012). IPv4/IPv6 transition using
DNS64/NAT64: Deployment issues, in Proceedings of the 2012 IX
International Symposium on Telecommunications, Sarajevo, Bosnia and
Herzegovina, doi: 10.1109/BIHTEL.2012.6412066

[18] Lencse G., & Répás, S. (2013). Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and FreeBSD, in
Proceedings of the IEEE 27th International Conference on Advanced
Information Networking and Applications, Barcelona, Spain, doi:
10.1109/AINA.2013.80

[19] Lencse, G., & Répás, S. (2014). Improving the performance and security
of the TOTD DNS64 implementation, Journal of Computer Science &
Technology, 14(1), pp. 9–15.

[20] Dillema. F. W. (2014). TOTD 1.5.3 source code,
https://github.com/fwdillema/totd Accessed 19 August 2015.

[21] Free Software Foundation, The free software definition,
http://www.gnu.org/philosophy/free-sw.en.html Accessed 19 August
2015.

[22] Open Source Initiative, The open source definition,
http://opensource.org/docs/osd Accessed 19 August 2015.

[23] Cisco, End user license agreement,
http://www.cisco.com/en/US/docs/general/warranty/English/EU1KEN_.
html Accessed 19 August 2015.

[24] Juniper Networks, End user license agreement,
http://www.juniper.net/support/eula.html Accessed 19 August 2015.

[25] Lencse, G., & Répás, S. (2013). Performance analysis and comparison
of 6to4 relay implementations, International Journal of Advanced
Computer Science and Applications, 4(9) doi:
10.14569/IJACSA.2013.040903

[26] Internet Systems Consortium, Berkeley Internet Name Daemon (BIND),
https://www.isc.org/software/bind Accessed 19 August 2015.

[27] Dunmore, M. (Ed.) (2015). An IPv6 Deployment Guide, The 6NET
Consortium, https://www.6net.org/book/deployment-guide.pdf Accessed
19 August 2015.

[28] NLnet Labs, Unbound, http://unbound.net Accessed 19 August 2015.

[29] Marsan, C. D. (2008). New open source DNS server released,
http://www.infoworld.com/t/applications/new-open-source-dns-server-
released-599 Accessed 19 August 2015.

[30] Nemeth, E., Snyder, G., Hein, T. R., & Whaley, B. (2011). Unix and
Linux System Administration Handbook, 4th ed., Michigan, Pearson
Education, Inc., http://books.google.hu/books?isbn=0132117363
Accessed 19 August 2015.

[31] Perreault, S., Dionne, J.-P., & Blanchet, M. (2010). Ecdysis: Open-
source DNS64 and NAT64”, AsiaBSDCon, Tokyo, Japan,
https://2010.asiabsdcon.org/papers/abc2010-P4B-paper.pdf Accessed 19
August 2015.

[32] Powerdns.com BV, “PowerDNS”, http://www.powerdns.com Accessed
19 August 2015.

[33] Klein, A. (2008). PowerDNS recursor DNS cache poisoning, Trusteer,
http://www.trusteer.com/docs/powerdns_recursor_dns_cache_poisoning.
pdf Accessed 19 August 2015.

[34] Kanclirz, J., Jr. (Ed.), (2008). Netcat Power Tools, Syngress Publishing,
http://dl.acm.org/citation.cfm?id=2155689 Accessed 19 August 2015.

[35] Mills, D., Martin, J., Burbank, J., Kasch, W. (2010). Network time
protocol version 4: Protocol and algorithms specification, IETF RFC
5905.

[36] NTIA ITS, “Definition of ‘graceful degradation’ ”
http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm Accessed 19
August 2015.

[37] The FreeBSD Documentation Project (1995-2015), FreeBSD Handbook
(Chapter 16. Jails), http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/jails.html Accessed 19 August 2015.

[38] Cox, S. J., Cox, J. T., Boardman, R. P., Johnston, S. J., Scott, M., &
O'Brien, N. S. (2014). Iridis-pi: a low-cost, compact demonstration
cluster, Cluster Computing, 17 (2) doi: 10.1007/s10586-013-0282-7

[39] Lencse, G. & Répás, S. (2015). Method for benchmarking single board
computers for building a mini supercomputer for simulation”, in
Proceedings of the 38th International Conference on
Telecommunications and Signal Processing, Prague, Czech Republic,
pp. 246–251. DOI: 10.1109/TSP.2015.7296261

[40] Lencse, G. (2015). Test program for the performance analysis of DNS64
servers”, International Journal of Advances in Telecommunications,
Electrotechnics, Signals and Systems, vol. 4. no. 3. pp 60–65. DOI:
10.11601/ijates.v4i3.121

Gábor Lencse received MSc and PhD in

computer science from the Budapest

University of Technology and Economics,

Budapest Hungary in 1994 and 2001,

respectively.

He works for the Department of Tele-

communications, Széchenyi István

University, Győr, Hungary since 1997.

Now, he is an Associate Professor. He is

also a part time Senior Research Fellow at the Department of

Networked Systems and Services, Budapest University of

Technology and Economics since 2005. His research interests

include the performance analysis of communication systems,

parallel discrete event simulation methodology and IPv6

transition methods.

Sándor Répás received his BA in

Business Administration and Management

from the Corvinus University of Budapest,

Budapest Hungary in 2009, BSc in

Electrical Engineering from the Óbuda

University in 2011 and MSc in Electrical

Engineering from the Széchenyi István

University in 2013.

He is a full time PhD student in

information technology at the Széchenyi István University,

Győr Hungary. The main field of his research is the IPv6

implementation technologies. His other favorite topics are

computer networking and information security. He has several

certificates from Microsoft, Cisco, ISACA and other vendors.

https://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-TR.pdf
https://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-TR.pdf
https://github.com/fwdillema/totd
http://www.gnu.org/philosophy/free-sw.en.html
http://opensource.org/docs/osd
http://www.cisco.com/en/US/docs/general/warranty/English/EU1KEN_.html
http://www.cisco.com/en/US/docs/general/warranty/English/EU1KEN_.html
http://www.juniper.net/support/eula.html
https://www.isc.org/software/bind
https://www.6net.org/book/deployment-guide.pdf
http://unbound.net/
http://www.infoworld.com/t/applications/new-open-source-dns-server-released-599
http://www.infoworld.com/t/applications/new-open-source-dns-server-released-599
http://books.google.hu/books?isbn=0132117363
https://2010.asiabsdcon.org/papers/abc2010-P4B-paper.pdf
http://www.powerdns.com/
http://www.trusteer.com/docs/powerdns_recursor_dns_cache_poisoning.pdf
http://www.trusteer.com/docs/powerdns_recursor_dns_cache_poisoning.pdf
http://dl.acm.org/citation.cfm?id=2155689
http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html

