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Abstract   The depletion of the global IPv4 address pool made 

the deployment of IPv6, the new version of the Internet 

Protocol, inevitable. In this paper, the transition mechanisms 

for the first phase of IPv6 deployment are surveyed and the 

DNS64 plus NAT64 solution is found appropriate. The most 

important free and open source DNS64 implementations are 

selected: BIND, TOTD, Unbound and PowerDNS. The test 

environment and the testing method are described. The first 

three of the selected DNS64 implementations are tested under 

Linux, OpenBSD and FreeBSD whereas PowerDNS is tested 

only under Linux. Their performance characteristics (response 

time, number of answered requests per second, CPU and 

memory consumption) are measured and compared. The effect 

of the hardware architecture of the test computer is also 

examined by using single-core, dual-core and quad-core test 

computers. The stability of all the tested DNS64 solutions are 

analyzed under overload conditions to test if they may be used 

in production environments with strong response time 

requirements. Our measurement results show significant 

differences in the performance of the tested DNS64 

implementations, e.g. Unbound served four times more 

requests per second than PowerDNS (when executed by a 

single-core CPU under Linux and load was generated by eight 

clients). However, no absolute order can be determined, 

because it is influenced by different factors such as the 

architecture of the hardware, especially the number of cores, 

because BIND and PowerDNS are multithreaded (therefore 

they can profit from the multiple cores) but TOTD and 

Unbound are not.  Also the operating system of the DNS64 

server has significant influence on the performance of the 

DNS64 implementations under certain conditions. All the 

details of our measurements are disclosed and all the results 

are presented in the paper. An easy-to-use implementation 

selection guide is also provided as a short summary of our 

high number of results. 
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1  Introduction 

In the following years the Internet service providers (ISPs) 

will not be able to provide public IPv4 addresses to their high 

number of new clients because of the depletion of the global 

IPv4 address pool. Either they use carrier grade NAT (CGN) 

or they provide IPv6 addresses. The latter one is better for the 

long run, but it results in the issue that the IPv6 only clients 

have to be enabled to communicate with IPv4 only servers 

which ones are in majority in the Internet today. The authors 

believe that from among the several solutions proposed for 

this problem, the combination of DNS64 [1] and NAT64 [2] is 

the best available method that enables an IPv6 only client to 

communicate with an IPv4 only server. 

Four free DNS64 implementations were found and selected 

for testing. The aim of our research was to compare the 

performance of the selected implementations running on 

different free operating systems (Linux, OpenBSD and 

FreeBSD) and to analyze their behavior under heavy load 

conditions. Our results are expected to give valuable informa-

tion to many network administrators when selecting the 

appropriate IPv6 transition solution for their networks. We 

also hope that the performance measurement methods we have 

developed may be useful for other researchers too. 

The performance analysis and comparison of some selected 

NAT64 implementations under Linux and OpenBSD was also 

a part of our research. Our preliminary results are available in 

[3] and [4]. We plan to test further NAT64 implementations 

too. 

The remainder of this paper is organized as follows. In 

section II some possible techniques are mentioned for the 

communication of an IPv6 only client with an IPv4 only 

server, then the operation of the DNS64+NAT64 solution is 

introduced and a short survey of the results of the most current 

publications is given. In section III the selection of the DNS64 

implementations is discussed. The test environment and the 

performance measurement method are described in sections 

IV and V, respectively. In section VI the presentation method 

of the results is given. The DNS64 performance results 

produced by the single, dual and quad core test computers are 

presented and discussed in sections VII, VIII and IX, 

respectively. An easy-to-use implementation selection guide 

and our future plans are disclosed in sections X and XI, 

respectively. Section XII concludes our work. 

Performance analysis and comparison of four DNS64 implementations 

under different free operating systems 
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2  IPv6 Transition Mechanisms for the First 

Phase of IPv6 Deployment 

2.1 Most Important Solutions 

The authors believe that the deployment of IPv6 will take 

place over a long period of time and the two versions will 

have to coexist for the foreseeable future and in the first phase 

of the IPv6 transition, the main issue will be the 

communication of an IPv6 only client with an IPv4 only 

server (because the new clients can get only IPv6 addresses 

due to the depletion of the public IPv4 address pool and a high 

number of servers will still use only IPv4 in the upcoming 

years). Several transition mechanisms can be used for this 

task, of which the most notable ones are: 

1. NAT-PT/NAPT-PT [5] started its life as a proposed 
standard in 2000 but due to several issues it was put to 
historic status in 2007 [6]. 

2. The use of an Application Level Gateway [7] is an 
operable alternative, however, it is rather expensive as 
ALGs have to be both developed and operated for all 
the different applications. 

3. The most general and flexible solution is the use of a 
DNS64 [1] server and a NAT64 [2] gateway. 

Our position can also be justified by [8]. They state: “The 

mainstream of translation techniques is network translation. 

Among the network translation mechanisms, IVI is a feasible 

stateless translation mechanism, and NAT64 is a feasible 

stateful translation mechanism.” They do not mention any 

other feasible stateful methods and the applicability of the 

stateless one is apparently very limited because of the 

depletion of the public IPv4 address pool. 

Reference [9] gives an up to date survey of the IPv4 address 

sharing methods, and concludes that: “The only actual address 

sharing mechanism that really pushes forward the transition to 

IPv6 is Stateful NAT64 (Class 4). All other (classes of) 

mechanisms are more tolerant to IPv4.” 

2.2 Operation of DNS64+NAT64 

We demonstrate the operation of the DNS64 + NAT64 IPv6 

transition solution using the example of an IPv6 only client 

and an IPv4 only web server taken from [10]. In this example, 

the DNS64 server uses the 64:ff9b::/96 NAT64 Well-Known 

Prefix [11] for generating IPv4-embedded IPv6 addresses 

[11]. In a real-life solution, usually a network specific prefix 

from the network of the ISP of the client is used instead of 

64:ff9b::/96. 

There are two prerequisites for the proper operation: 

1. A DNS64 server should be set as the DNS server of 

the IPv6 only client. 

2. Packets towards the 64:ff9b::/96 network (or towards 

the selected network specific prefix) should be 

routed to a NAT64 gateway (routing must be 

configured that way). 

Now let us follow the steps of the communication (taken 

verbatim from our conference paper [10]): 

1. The client asks its DNS server (which one is actually 

a DNS64 server) about the IPv6 address of the 

www.hit.bme.hu web server. 

2. The DNS64 server asks the DNS system about the 

IPv6 address of www.hit.bme.hu. 

3. No IPv6 address is returned. 

4. The DNS64 server then asks the DNS system for the 

IPv4 address of www.hit.bme.hu. 

5. The 152.66.148.44 IPv4 address is returned. 

6. The DNS64 server synthesizes an IPv4-embedded 

IPv6 address by placing the 32 bits of the received 

152.66.148.44 IPv4 address after the 64:ff9b::/96 

prefix and sends the result back to the client. 

7. The IPv6 only client sends a TCP SYN segment 

using the received 64:ff9b::9842:f82c IPv6 address 

and it arrives to the IPv6 interface of the NAT64 

gateway (since the route towards the 64ff9b::/96 

network is set so in all the routers along the path). 

8. The NAT64 gateway constructs an IPv4 packet using 

the last 32 bits (0x9842f82c) of the destination IPv6 

address as the destination IPv4 address (this is 

exactly 152.66.248.44), its own public IPv4 address 

(198.51.100.10) as the source IPv4 address and some 

other fields from the IPv6 packet plus the payload of 

the IPv6 packet. It also registers the connection into 

its connection tracking table (and replaces the source 
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Fig. 1  The operation of the DNS64+NAT64 solution: an IPv6 only client communicates with and IPv4 only server [10] 
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port number by a unique one if necessary). Finally it 

sends out the IPv4 packet to the IPv4 only server. 

9. The server receives the TCP SYN segment and sends 

a SYN ACK reply back to the public IPv4 address of 

the NAT64 gateway. 

10. The NAT64 gateway receives the IPv4 reply packet. 

It constructs an appropriate IPv6 packet using the 

necessary information from its state table. It sends 

the IPv6 packet back to the IPv6 only client. 

For a more detailed but still easy to follow introduction, see 

[12] and for the most accurate and detailed information, see 

the relating RFCs: [1] and [2]. 

We note that Section 7 of [1] describes three different 

scenarios concerning where the DNS64 server is deployed. In 

this paper, we consider the one described in subsection 7.1 

that is “an IPv6 network to the IPv4 Internet” setup with 

DNS64 in DNS server mode, where the DNS64 server is 

placed in client side and it is used in DNS server mode (not in 

stub resolver mode). 

2.3  Survey of the Current Research Results 

Several papers were published in the topic of the 

performance of DNS64 and NAT64 since 2012. The 

performance of the TAYGA NAT64 implementation (and 

implicitly of the TOTD DNS64 implementation) is compared 

to the performance of NAT44 in [13]. The performance of the 

Ecdysis NAT64 implementation (that has its own DNS64 

implementation) is compared to the performance of the 

authors’ own HTTP ALG in [14]. The performance of the 

Ecdysis NAT64 implementation (and implicitly the perfor-

mance of its DNS64 implementation) is compared to the 

performance of both the NAT-PT and an HTTP ALG in [15]. 

All of these papers deal with the performance of a given 

DNS64 implementation with a given NAT64 implementation. 

On the one hand this is natural, as both services are necessary 

for the operation, on the other hand this is a kind of “tie-in 

sale” that may hide the real performance of a given DNS64 or 

NAT64 implementation by itself. Even though both services 

are necessary for the complete operation, in a large network 

they are usually provided by separate, independent devices; 

DNS64 is provided by a name server and NAT64 is performed 

by a router. Thus the best implementation for the two services 

can be – and therefore should be – selected independently. 

The performance of the BIND DNS64 implementation and 

that of the TAYGA NAT64 implementation are analyzed 

separately and also their stability is tested in [16]. However, 

only one implementation was considered for each service, so 

even if they were proved to be stable and fast enough, more 

research was needed for the comparison of the performance 

(and also the stability) of multiple DNS64 and NAT64 

implementations. 

A good survey of the most recent DNS64 and NAT64 

research results is given in [17]. They also compared the CPU 

consumption of DNS64 to that of DNS as well as the CPU and 

memory requirements of NAT64 to that of NAT and they 

concluded that the DNS64+NAT64 system is an affordable 

solution for an Internet service provider. However, the 

stability of the different DNS64 and NAT64 implementations 

under heavy load conditions and the comparison of their 

performance were not addressed there. 

The results of our DNS64 tests concerning BIND and 

TOTD were published in [18]. TOTD was found to be faster 

than BIND. However, TOTD was not stable due to an 

implementation bug that was described and eliminated in [19]. 

Besides the correction, a significant security improvement was 

performed on TOTD. Our patch was included by its developer 

into the 1.5.3 version of TOTD which is available from [20]. 

This version is tested in our current experiments. As for 

further improvements over our conference paper [18] on 

which our current paper is based, two further DNS64 

implementations are tested (see the next section), different 

architecture test computers are used and the measurements are 

made more accurate by using automation now. 

This paper deals with DNS64 only. Our preliminary 

research results concerning two NAT64 implementations (the 

stateless TAYGA + iptables under Linux and the stateful PF 

of OpenBSD) were published in [3] and [4]. Some further 

experiments are still to be performed with these and also other 

NAT64 implementations. 

3  Selection of DNS64 Implementations 

Only free software [21] (also called open source [22]) 

implementations were considered. We had multiple reasons 

for this decision: 

 The licenses of certain vendors (e.g. [23] and [24]) do 

not allow the publication of benchmarking results. 

 Free software can be used by anyone for any 

purposes thus our results can be helpful for anyone. 

 Free software is free of charge for us, too. 

(This reasoning was first published in [25].) 

BIND [26] was a natural choice for our implementation, 

since it is the most widely used DNS implementation and it 

contains native DNS64 support from version 9.8. 

BIND is a large and complex software containing all the 

different DNS functionalities (authoritative, recursive, 

DNSSEC support, etc.). Our second choice was a lightweight 

one, namely TOTD, which was implemented by Feike W. 

Dillema as a part of the 6net project [27]. Its original version 

used sequential transaction IDs (the generation of them 

contained a trivial programming bug, which was discovered 

and corrected in [19]) in the DNS messages therefore it was 

vulnerable to cache poisoning using the transaction ID attack. 

“This vulnerability was patched by a very computation 

efficient solution using random permutations and alternating 

ranges. The performance price of the increased security was 

found to be practically invisible.” [19] This new version of 

TOTD was used in our experiments. 

Unbound [28] was our third choice. As its name suggests, it 

was designed to be an alternative to BIND providing both 

better performance and security [29]. Reference [30] states (on 

page 553) that Unbound is significantly faster than BIND. 

Note that the DNS64 patches for BIND and Unbound were 

developed in the same Ecdysis project [31]. 
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Fourth, we also selected PowerDNS [32] for testing. It is 

also free software under GPL but its developers offer 

commercial support, too. It was named the third most popular 

DNS server on the Internet in 2008 [33]. 

We found no more free DNS64 implementations. 

All four DNS64 implementations were intended to be tested 

under all the three free operating systems which are the most 

typical ones for this purpose, namely: Linux, OpenBSD and 

FreeBSD. 

4  Test Environment for DNS64 Performance 

Measurements 

4.1  Structure of the Test Network 

A test network was set up in the Infocommunications 

Laboratory of the Department of Telecommunications, Széc-

henyi István University. The topology of the network is shown 

in Fig. 2. The central element of the test network is the DNS64 

server. 

For the measurements, we needed a namespace that: 

 can be described systematically 

 can be resolved to IPv4 only 

 can be resolved without delay 

The 10-{0..10}-{0..255}-{0..255}.zonat.tilb.sze.hu name 

space was used for this purpose. This namespace was mapped 

to the 10.0.0.0 – 10.10.255.255 IPv4 addresses by the name 

server teacherb.tilb.sze.hu at 192.168.100.105. 

The DNS64 server mapped these IPv4 addresses to the IPv6 

address range 2001:738:2c01:8001:ffff:ffff:0a00:0000 – 

2001:738:2c01:8001:ffff:ffff:0a0a:ffff. 

The DELL IPv6 only workstations at the bottom of the 

figure played the role of the clients for the DNS64 

measurements. 

4.2  Configuration of the Computers 

Three test computers with special configuration were put 

together for the purpose of the DNS64 server. First, the CPU 

and memory parameters were chosen to be as little as possible 

from our available hardware base in order to be able to create 

an overload situation with a finite number of clients, and only 

the network cards were chosen to be fast enough. Later on 

dual- and quad-core computers were selected for testing to 

find out how the examined implementations can benefit from 

the multi-core CPUs, which are dominant today. 

Our first choice for the test computer was an old IBM 

eServer xSeries 200. Its old 9.1GB SCSI disk was replaced by 

a new SSD to be able to store the data during the 

measurements easily, and two identical gigabit Ethernet NICs 

were added. The configuration of the test computer was: 

 694X-686A motherboard 

 800MHz Intel Pentium III with 256 kB L2 cache and 

MMX technology CPU 

 128MB, 133MHz, 60ns ECC SDRAM 

 BestConnection PCI SATA Raid controller + SATA 

SSD converter (to connect the SSD) 

 KF1310MCJ14 32GB SSD 

 Two Intel® PRO/1000 GT Desktop Adapter Gigabit 

Ethernet NICs 

Note that the speed of the Gigabit Ethernet could not be 

fully utilized due to the limitations of the PCI bus of the 

motherboard, but the speed was still enough to overload the 

CPU. 

Our second choice for the test computer was an Intel Atom 

D525 based computer: 

 Intel D525MW motherboard with integrated 1.8GHz 

dual core Intel Atom D525 CPU with 1MB L2 cache 

 2x 2GB, 800MHz, non-ECC DDR3 SDRAM 

 KF1310MCJ14 32GB SSD 

 One integrated and one Mini PCIe Realtek 

RTL8111DL Gigabit Ethernet NICs 

Our third choice was a Sun Fire X4200 M2 server: 

 Sun Microsystems Sun Fire X4200 Server 

motherboard with four integrated Intel 82546EB 

Gigabit Ethernet Controllers 

 Two 2.2GHz Dual Core AMD Opteron 275 CPUs 

with 1MB L2 cache 

 4x 1GB 400MHz ECC DDR SDRAM 

 SATA SSD converter (to connect the SSD) 

 KF1310MCJ14 32GB SSD 

For all the other purposes (the 8 client computers and for 

the authoritative DNS server for the measurements with the 

first two test computers with the exception of the CPUs) 

8x Dell Precision 490 

192.168.100.101/24

2001:738:2c01:8001::1/64

2001:738:2c01:8001::101/64 2001:738:2c01:8001::108/64. . .

192.168.100.105/24

client computers 
for all the tests

TL-SG5426 Vlan 10

client1 client8

Lab network

Authoritative DNS server 

teacherb.tilb.sze.hu

TL-SG5426 Vlan 20

DNS64 
server

Dell Precision 490 

Pentium III
 or Atom

or Opteron

or SunFire X4150

 

Fig. 2  Topology of the DNS64 test network for the measurements 
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standard DELL Precision Workstation 490 computers were 

used with the following configuration: 

 DELL 0GU083 motherboard with Intel 5000X 

chipset  

 Two Intel Xeon 5140 2.3GHz dual core processors 

 4x 1GB 533MHz DDR2 SDRAM (accessed quad 

channel) 

 Broadcom NetXtreme BCM5752 Gigabit Ethernet 

controller (PCI Express) 

Note that the configuration of these computers was slightly 

changed since the measurements were done for [18]. 

A workstation of the same type but with somewhat faster 

CPUs was used as the authoritative DNS server for the 

measurements with the first two test computers. The CPUs 

were: 

 Two Intel Xeon 5160 3.0GHz dual core processors 

And a SunFire X4150 Sun Server was used as the 

authoritative DNS server for the measurements with the third 

test computer: 

 Sun Microsystems S92 motherboard 

 Two Quad Core Intel Xeon E5440 2.83GHz CPU 

 8GB DDR2 800MHz RAM 

 Two near-line SAS 160GB HDDs 

 Two Intel 82571EB Gigabit Ethernet NICs  

 Two Intel 80003ES2LAN Gigabit Ethernet NICs 

(one of them was used for the measurements) 

Debian Wheezy 7.6 GNU/Linux operating system was 

installed on all the computers, including the test computers 

when they were used under Linux, but excluding the 

authoritative DNS servers which had version 7.1. The version 

of the OpenBSD and FreeBSD operating systems installed on 

the test computers were 5.5 and 10.0, respectively. The 64-bit 

computers always had the 64-bit version of the given 

operating systems. 

5  DNS64 Performance Measurement Method 

5.1  IPv4 DNS Server Settings 

The authoritative DNS server teacherb.tilb.sze.hu 

used the 192.168.100.105 IP address. BIND was used for 

authoritative name server purposes in all the DNS64 

experiments. The version of BIND was 9.8.4 as this one can 

be found in the Debian Wheezy 7.1 distribution and there was 

no need for special functions (unlike in the case of the DNS64 

server). 

The 10.0.0.0/16-10.10.0.0/16 IP address range was 

registered into the zonat.tilb.sze.hu zone with the 

appropriate symbolic names. The zone file was generated by 

the following script: 

#!/bin/bash 
cat > db.zonat.tilb.sze.hu << EOF 
\$ORIGIN zonat.tilb.sze.hu. 
\$TTL    1 
@ IN SOA teacherb.tilb.sze.hu. kt.tilb.sze.hu. ( 
                     2012012201 ; Serial 
                          28800 ; Refresh 
                           7200 ; Retry 
                         604800 ; Expire 

                            2 ) ; Min TTL 
@   86400   IN    NS   teacherb.tilb.sze.hu. 
EOF 
for a in {0..10} 
do 
    for b in {0..255} 
    do 
        echo '$'GENERATE 0-255 10-$a-$b-$ IN A \ 
             10.$a.$b.$ >> db.zonat.tilb.sze.hu 
    done 
done 
echo "" >> db.zonat.tilb.sze.hu 

The first general line of the zone file (describing the 

symbolic name resolution) was the following one: 

$GENERATE 0-255 10-0-0-$ IN A 10.0.0.$ 

A line of this kind is equivalent to 256 traditional “IN A” 

lines; the $GENERATE directive was used for shorthand 

purposes. 

As it can be seen from the script above and as it has been 

mentioned earlier, these symbolic names have only “A” 

records (i.e. IPv4 addresses) and no “AAAA” records (i.e. 

IPv6 addresses), so the generation of the IPv6 addresses was 

the task of the DNS64 server. 

5.2  The operation mode of the DNS servers 

If a DNS (or DNS64) server receives a recursive query, it 

can act in two ways: it may resolve the query itself by 

performing a series of iterative queries or it may ask another 

name server to resolve the query. A name server that resolves 

the recursive queries is called recursor and a name server that 

asks another name server to resolve them is called forwarder. 

Both operation modes may be relevant in production 

systems. On the one hand, it is often desirable to work as a 

recursor in order to do the whole job without the help of 

another server. On the other hand security policy may require 

the DNS64 server to work as a forwarder and only the 

standard caching DNS server is given the right to query other 

name servers on the Internet. Thus we need to find the best 

solution in both operation modes. 

Whereas BIND and PowerDNS can be either of them, 

TOTD can act only as a forwarder and Unbound (at least the 

version we tested) can provide DNS64 functionality only in 

the case if it is started as a recursor. Therefore we measured 

the performance of the tested DNS64 implementations in all 

their possible operation modes. 

5.3  DNS64 Server Settings 

The first three of the selected DNS64 implementations were 

tested under Linux, OpenBSD and FreeBSD whereas 

PowerDNS was tested only under Linux. 

5.3.1  Preparation of the Linux test system 

The network interfaces of the freshly installed Debian 

Wheezy Linux operating system on the test computer were set 

according to Fig. 2. 

Netfilter (iptables) was not used during the measurements. 

To see the possible issues and their solutions using netfilter, 

see [18].  
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5.3.2  Preparation of the BSD test systems 

Similarly to the Linux test system, the network interfaces of 

the BSD systems were set up as shown in Fig. 2. 

PF was not installed on the FreeBSD system. 

On the OpenBSD system the state keeping was switched off 

by the following line in /etc/pf.conf: 

pass no state 

In this way, PF does not record the state of any requests and 

answers. 

5.3.3  Set up of the BIND DNS64 server 

The BIND 9.8.5-P2 was compiled from source under Linux 

and OpenBSD. FreeBSD version 10.0 already contained the 

9.8.7-P1 version of BIND. 

The 2001:738:2c01:8001:ffff:ffff::/96 (network specific) 

prefix was set to BIND for the DNS64 function using the 

dns64 option in the /etc/bind/named.conf.options 

file. Now, BIND was ready to operate as a recursor. BIND 

was also set as a forwarder by the following additional settings 

in the named.conf file: 

forwarders { 192.168.100.105; }; 
forward only; 

5.3.4  Set up of the TOTD DNS64 server 

TOTD 1.5.3. including our security enhancement patch was 

used. As TOTD is just a DNS forwarder and not a DNS 

recursor, it was set to forward the queries to the BIND running 

on the teacherb computer. The content of the 

/etc/totd.conf file was set as follows:  

forwarder 192.168.100.105 port 53 
prefix 2001:738:2c01:8001:ffff:ffff:: 
retry 300 

5.3.5  Set up of the Unbound DNS64 servers 

Unbound v1.4.20 with ecdysis patch was used. The server 

section of the unbound.conf configuration file contained: 

private-domain: “sze.hu” 
module-config: “dns64 validator iterator” 
dns64-prefix: 2001:738:2c01:8001:ffff:ffff::/96 

Unbound does not provide the DNS64 functionality when it 

is set up as a forwarder, thus it was tested only as a recursor. 

5.3.6 Set up of the PowerDNS DNS64 server 

PowerDNS Recursor v3.5.2 was used. It worked only under 

Linux. (As its performance was the lowest from among the 

four implementations during our preliminary tests executed by 

the Pentium III computer, we gave up compiling it under the 

BSD systems.) 

The settings in the recursor.conf file were: 

lua-dns-script=/etc/powerdns/dns64.lua 
dns64.lua: 
function nodata ( remoteip, domain, qtype, records ) 
    if qtype ~= pdns.AAAA then return -1, {} end  \ 
        --  only AAAA records 
    setvariable() 
    return "getFakeAAAARecords", domain, \ 
        "2001:738:2c01:8001:ffff:ffff::" 
end 
 

function endswith(s, send) 
    return #s >= #send and s:find(send, #s-#send+1, true) 
and true or false 
end 

5.3.7  Client Settings 

Debian Wheezy 7.6 was installed on the DELL computers 

used for client purposes. On these computers, the DNS64 

server was set as name server in the following way: 

echo "nameserver 2001:738:2c01:8001::1" > \ 
      /etc/resolv.conf 

5.4  DNS64 Performance Measurements 

5.4.1  Elementary measurement scripts 

The CPU and memory consumptions of the DNS64 server 

were measured in the function of the number of requests 

served. The measure of the load was set by starting test scripts 

on different number of client computers (1, 2, 4 and 8). In 

order to avoid the overlapping of the namespaces of the client 

requests (to eliminate the effect of the DNS caching), the 

requests from the number i client used target addresses from 

the 10.$i.0.0/16 network. In this way, every client could 

request 216 different address resolutions. For the appropriate 

measurement of the execution time, 256 experiments were 

done and in every single experiment, 256 address resolutions 

were performed using the standard host Linux command. The 

execution time of the experiments was measured by the GNU 

time command. (Note that this command is different from the 

time command of the bash shell.) 

The clients used the following script to execute the 256 

experiments: 

#!/bin/bash 
i=`cat /etc/hostname|grep -o .$` 
rm dns64-$i.txt 
for b in {0..255} 
do 
    /usr/bin/time -f "%E" -o dns64-$i.txt \ 
       –a ./dns-st-c.sh $i $b 
done 

The synchronized start of the client scripts was done by 

using broadcast, see the details later on. 

The dns-st-c.sh script (taking two parameters) was 

responsible for executing a single experiment with the resolu-

tion of 256 symbolic names: 

#!/bin/bash 
for c in {0..252..4} # that is 64 iterations 
do 
    host –t AAAA 10-$1-$2-$c.zonat.tilb.sze.hu & 
    host –t AAAA 10-$1-$2-$((c+1)).zonat.tilb.sze.hu & 
    host –t AAAA 10-$1-$2-$((c+2)).zonat.tilb.sze.hu & 
    host –t AAAA 10-$1-$2-$((c+3)).zonat.tilb.sze.hu 
done 

In every iteration of the for cycle, four host commands 

were started, from which the first three were started 

asynchronously (“in the background”) that is, the four 

commands were running in (quasi) parallel; and the core of the 

cycle was executed 64 times, so altogether 256 host 

commands were executed. (The client computers had two dual 

core CPUs that is why four commands were executed in 

parallel to generate higher load.) 
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Note that in [18] we did not use the -t AAAA option and 

thus then also the MX record was requested by the host 

command. But now we focused on the AAAA record only (as 

usually only this one is relevant, e.g. when browsing the web). 

However, our client computers were not powerful enough to 

be able to overload the Sun test computer (having four cores) 

using the above dns-st-c.sh bash script. Thus we wrote a C 

program that sent 64 DNS queries and it was started in four 

instances (to utilize the 4 cores of the clients) in the 

measurements with the Sun computer by the following dns-

st-c-4.sh bash script: 

#!/bin/bash 
dns-st-c $1 $2 0 64 5 & 
dns-st-c $1 $2 64 64 5 & 
dns-st-c $1 $2 128 64 5 & 
dns-st-c $1 $2 192 64 5 

The C program took five parameters. It requested argv[4] 

number of AAAA records of symbolic names in the 

zonat.tilb.sze.hu zone starting the first label (hostname) 

from 10-argv[1]-argv[2]-argv[3] and using consecutive 

integers in the place of argv[3]. After sending a query, it 

always waited for the answer and continued after receiving it 

or the time out value given in argv[5] (measured in second). 

Its source code is not included because of its size, but it can be 

downloaded from: http://ipv6.tilb.sze.hu/STS-DNS64/ 

(capitalization matters). 

In the series of measurements, the number of clients was 

increased from one to eight (the used values were: 1, 2, 4 and 

8) and the time of the DNS resolution was measured. The 

CPU and memory utilization were also measured on the test 

computer running DNS64. As for measuring the CPU 

utilization, not the direct CPU usage of the DNS64 server 

process was measured, because that method would leave out 

the CPU usage of some work from the accounting that was 

done not directly by the server process rather by the kernel but 

served the interest of the DNS64 service, e.g. processing 

packet headers. In the same way, the memory consumption of 

the DNS64 server process was calculated as the largest 

decrease of the free memory during the measurements. We 

admit that our method may also include the CPU and memory 

usage of other tasks too, but we considered it a less critical 

problem. Thus we measured and upper bound for both CPU 

and memory utilization. 

Under Linux, the following command line was used: 

nice –n 10 dstat -T -t -c -m -p -i -I 44,45 -n -N \ 
    eth1,eth2,total -d --unix  --output load.csv 

Under the BSD operating systems, the command line was: 

vmstat -w 1 >load.txt 

5.4.2  Automatic execution 

The execution of the measurements was automated for both 

achieving higher accuracy and sparing human work time. The 

netcat [34] utility was selected for this purpose. Netcat can 

start the measurement program, when a packet is received on a 

given port. The packet can be TCP, UDP and UDP broadcast, 

too. The broadcast method was used for the synchronized start 

of all of the clients. The experiments with 1, 2, 4 and 8 parallel 

clients were executed 8, 4, 2 and 1 times, respectively. All the 

times the load was provided by different set of clients, to make 

the results more precise. The time of all of the computers were 

synchronized by NTP (Network Time Protocol) [35] for the 

accurate time measurement. 

6  Method of the Presentation of our Results 

Our measurements produced a huge number of results. The 

result space can be explored along different axes: 

 The type of the DNS64 implementations (BIND, 

TOTD, Unbound, PowerDNS) 

 The type of operating systems (Linux, OpenBSD, 

FreeBSD) 

 The mode of operation (recursor, forwarder) 

 The number of clients (1, 2, 4, 8) 

 The CPU architecture of the test computers (Pentium 

III, Atom, Opteron). 

However, not all the combinations are valid: 

 TOTD can act only as a forwarder 

 Unbound can do DNS64 only in the case if it is used 

as a recursor 

 PowerDNS was tested only under Linux. 

Our analysis will be done in the following order. First, we 

analyze the DNS64 implementations by themselves. That is, 

we take an implementation and analyze its stability (examine 

its behavior under overload) and then examine how it behaves 

under different operating systems. Second, we compare the 

implementations to each other. For this reason, we perform the 

one by one analysis of the DNS64 implementations in two 

separate groups: the forwarders (BIND, TOTD, PowerDNS) 

and the recursors (BIND, Unbound, PowerDNS). Third, we 

examine the possible effect of the CPU architecture of the test 

computer. For this reason, we perform the above analysis 

using the results of the Pentium III CPU first, and deal with 

their performance results produced by the Atom and Opteron 

CPUs later on. 

We use tables (and not graphs) as the measured quantities 

are of different types which could not be plotted together. 

Therefore, we find tables more space effective than graphs. 

All the tables follow the same format thus we give a detailed 

explanation for the first one only; the others are to be 

interpreted in the same way. 

The three tables of each groups (forwarders or recursors) 

using the same CPU architecture are put on the same page for 

the synoptic view and easy comparison of the results. 

7. Results of the Measurements on Pentium III 

7.1  Performance Results of BIND, Forwarder 

The performance results of the DNS64 server realized by 

BIND used as a forwarder and executed by the Pentium III test 

computer were summarized in Table 1. The first row of the 

table specifies the operating system of the test computer. The 

second row of the table shows the number of clients. (The 

offered load of the DNS64 server was proportional to this 

parameter.) The third, fourth and fifth rows show the average, 

the standard deviation and the maximum value of the 



Revised version for the Springer Telecommunication Systems journal 

 

8 

execution time of the execution of 256 host commands (this is 

called one experiment), respectively. 

Rows number six and seven show the average value and the 

standard deviation of the CPU utilization, respectively. 

Row number eight shows the estimated memory 

consumption of DNS64. (This parameter can be measured 

with high uncertainty, because other processes than DNS64 

may also influence the size of free/used memory of the test 

computer.) 

The N number of DNS64 requests per second, served by the 

test computer, was calculated according to (1) using the 

number of clients (in row 2) and the average execution time 

values (in row 3) and it is displayed in the last row of the 

table. 

cmdshostoftimeexecAverage

clientsofNumber
N

__256____

__*256
  (1) 

Now we discuss the results separately for Linux, OpenBSD 

and FreeBSD. 

7.1.1  Linux 

As for the results, BIND shows stability in all measured 

values. Execution time results show very little (relative) 

deviation and the maximum values are always close the 

average at any number of clients. The increase of the load 

does not cause performance degradation and the system does 

not at all tend to collapse due to overload. Even when the CPU 

utilization is about 100% the response time increases a little 

bit less than linearly with the load (that is, with the number of 

clients): the average execution time is 2.69 and 5.31 seconds 

for 4 and 8 clients respectively whereas the maximum values 

are 2.78 and 5.41 (which is less than the double of 2.78). The 

number of requests served per second shows a small increase 

from 380 to 386 in this serious overload situation. Therefore, 

we can state that the behavior of the DNS64 system realized 

by BIND as a forwarder running under Linux complies with 

the so called graceful degradation [36] principle; if there are 

not enough resources for serving the requests then the 

response time of the system increases only linearly with the 

load. 

Also the memory consumption of BIND is visibly moderate 

(less than 58MB) even for very high loads. 

These two observations make BIND running under Linux a 

good candidate for DNS64 server solution in a production 

network with strong response time requirements. 

7.1.2  OpenBSD 

By observing the results, we can state that BIND under 

OpenBSD shows similar stability than under Linux and gives 

somewhat better performance (at eight clients, it served 422 

requests per second instead of 386). 

7.1.3  FreeBSD 

Even though some fluctuations can be observed in the 

request served in a second (306, 302, 307 for 2, 4, 8 clients, 

respectively), we can still state that BIND under FreeBSD also 

complies with the graceful degradation principle. 

7.1.4 BIND as a forwarder under different operating 

systems 

As for the stability of BIND, it may be used in production 

Table 3  DNS64 Performance: PowerDNS, Forwarder, Pentium III 

1 Operating System Linux 

2 Number of clients 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  1.42 1.91 3.31 6.65 

4 std. deviation 0.02 0.05 0.06 0.12 
5 maximum 1.48 2.05 3.48 6.92 

6 CPU utiliza-

tion (%) 

average 57.32 85.66 99.33 99.67 
7 std. deviation 7.18 9.49 7.97 5.59 

8 Memory consumption (MB) 22.277 59.117 54.359 59.203 

9 Number of requests served in 

a second (request/s)  180 268 309 308 
 

Table 1  DNS64 Performance: BIND, Forwarder, Pentium III 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  1.25 1.38 2.69 5.31 1.19 1.28 2.44 4.85 1.41 1.68 3.39 6.68 

4 std. deviation 0.01 0.02 0.04 0.07 0.01 0.02 0.03 0.09 0.02 0.02 0.04 0.05 

5 maximum 1.32 1.47 2.78 5.41 1.28 1.43 2.52 4.98 1.49 1.81 3.50 6.78 

6 CPU utiliza-

tion (%) 

average 51.03 93.26 99.17 99.60 48.34 89.93 99.42 99.59 58.18 98.65 99.41 99.67 

7 std. deviation 6.94 12.07 8.82 6.17 3.32 4.10 7.39 6.34 3.63 2.45 7.57 5.53 

8 Memory consumption (MB) 37.238 57.254 57.289 57.262 30.695 51.855 52.605 51.047 40.496 55.004 56.508 58.688 

9 Number of requests served in a 

second (request/s)  204 371 380 386 215 401 420 422 182 306 302 307 
 

Table 2  DNS64 Performance: TOTD, Forwarder, Pentium III 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  0.85 0.89 1.06 2.03 0.87 0.95 1.37 2.54 0.86 0.89 1.10 1.98 

4 std. deviation 0.01 0.02 0.02 0.06 0.01 0.02 0.08 0.42 0.01 0.02 0.04 0.10 

5 maximum 0.89 0.94 1.14 2.09 0.95 1.11 1.53 6.35 0.90 1.07 1.24 2.09 

6 CPU utiliza-

tion (%) 

average 13.44 34.18 83.09 98.97 18.81 42.89 69.93 83.62 17.08 36.90 69.66 82.26 
7 std. deviation 2.89 5.92 13.45 9.75 2.49 4.08 3.82 2.00 2.54 3.99 4.12 2.18 

8 Memory consumption (MB) 1.516 1.016 1.734 1.563 2.469 3.438 2.723 1.258 2.500 2.434 2.746 0.949 

9 Number of requests served in a 

second (request/s)  301 578 967 1010 293 540 749 806 298 576 934 1034 
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systems under all the three operating systems. It showed its 

best performance under OpenBSD by serving 422 requests per 

second for eight clients, but its performance under Linux was 

close to it (386 requests/s). It produced its poorest 

performance results under FreeBSD (307 requests/s). But this 

performance sacrifice may be acceptable in some cases e.g. for 

security, as FreeBSD is the only operating system from the 

three ones that makes it possible to execute the server 

programs in a jail environment [37].  

7.2  Performance Results of TOTD, Forwarder 

The performance results of the DNS64 server realized by 

TOTD used as a forwarder were summarized in Table 2. The 

eye catching low memory consumption is very likely caused 

by the lack of caching. As our experiments were designed to 

eliminate the effect of caching by using different IP addresses 

in each query, thus the lack of caching caused no performance 

penalty. However, in a real life system, the average 

performance of TOTD might be worse than BIND which uses 

caching. But the very low memory consumption of TOTD can 

be an advantage in a small embedded system. 

Note that memory consumption values of TOTD are to be 

considered as order of magnitude estimations only (and thus 

may be paraphrased as “a few megabytes”) because of the 

before mentioned high uncertainty of the measurements. 

7.2.1  Linux 

TOTD is stable under Linux and it provides excellent 

performance (1010 requests/s at 8 clients). 

7.2.2  OpenBSD 

As for the execution time of one experiment at eight clients, 

the standard deviation (0.42s) is about 16.5% of the average 

(2.54s) and the maximum value is 6.35s. Whereas they are not 

unacceptable, we consider them as warnings about the 

stability.  The fact that the CPU utilization could not 

approximate 100% while the number of requests served in a 

second was 749 at four clients and it could grow to 806 only at 

eight clients is considered another warning sign. Therefore, we 

do not recommend OpenBSD for TOTD.  

7.2.3  FreeBSD 

Even though the CPU utilization values of TOTD under 

FreeBSD are very similar to that of TOTD under OpenBSD, 

the stability of TOTD under FreeBSD is unquestionable on the 

basis of the execution time of one experiment: the standard 

deviation (0.1s) is very low compared to the average (1.98s), 

and the maximum value (2.09s) is very close to the average. 

The performance of TOTD is outstanding: it can serve 1034 

requests per second. 

7.2.4 TOTD as a forwarder under different operating 

systems 

As for the stability and performance of TOTD, it may be 

used in production systems under both Linux and FreeBSD. It 

showed its best performance under FreeBSD by serving 1034 

requests per second for eight clients, but its performance under 

Linux was close to it (1010 requests/s). It produced its poorest 

performance results under OpenBSD (806 requests/s) and also 

its stability was not convincing. 

Table 6  DNS64 Performance: PowerDNS, FreeBSD, Recursor, Pentium III 

1 Number of clients 1 2 4 8 

2 Exec. time of 

256 host 

commands (s) 

average  1.44 1.96 3.43 6.90 

3 std. deviation 0.02 0.05 0.06 0.13 

4 maximum 1.50 2.11 3.63 7.17 

5 CPU utiliza-

tion (%) 

average 58.01 85.96 99.34 99.68 

6 std. deviation 7.10 9.43 7.98 5.43 

7 Memory consumption (MB) 22.574 37.105 54.777 59.457 

8 Number of requests served in 

a second (request/s)  177 262 298 297 

 

Table 4  DNS64 Performance: BIND, Recursor, Pentium III 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  1.32 1.50 2.98 5.98 1.22 1.31 2.54 5.19 1.44 1.73 3.43 6.94 

4 std. deviation 0.02 0.03 0.05 0.07 0.01 0.02 0.04 0.07 0.02 0.03 0.04 0.06 

5 maximum 1.38 1.60 3.09 6.07 1.34 1.44 2.60 5.30 1.55 1.82 3.55 7.06 

6 CPU utiliza-

tion (%) 

average 54.04 95.27 99.33 99.67 49.27 91.54 99.32 99.62 58.97 97.98 99.41 99.69 

7 std. deviation 6.79 11.36 8.03 5.72 3.45 4.72 8.12 6.14 3.46 5.48 7.58 5.44 

8 Memory consumption (MB) 35.570 53.059 52.164 52.922 30.438 50.488 51.047 48.828 40.195 53.738 55.426 65.801 

9 Number of requests served in a 

second (request/s)  193 342 343 343 211 389 403 394 178 296 299 295 
 

Table 5  DNS64 Performance: Unbound, Recursor, Pentium III 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  0.91 0.93 1.02 1.69 0.93 0.96 1.09 1.99 0.95 0.99 1.18 2.14 
4 std. deviation 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 

5 maximum 0.94 0.99 1.10 1.74 0.98 1.05 1.22 2.03 1.02 1.16 1.27 2.21 

6 CPU utiliza-

tion (%) 

average 24.19 46.79 82.73 98.37 27.94 53.33 91.53 99.81 30.81 59.07 95.34 99.64 

7 std. deviation 4.19 7.37 13.27 12.03 3.02 3.78 2.46 3.97 5.81 7.58 1.88 5.65 

8 Memory consumption (MB) 14.586 15.039 14.512 14.879 21.270 20.402 22.859 20.594 20.039 20.367 18.648 18.668 

9 Number of requests served in a 

second (request/s)  282 551 999 1211 276 533 944 1032 269 518 866 959 
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7.3  Performance Results of PowerDNS, Forwarder, 

Linux 

The performance results of the DNS64 server realized by 

PowerDNS used as a forwarder were summarized in Table 3. 

Considering both the standard deviation and the maximum 

value of the execution time of one experiment, PowerDNS 

proved to be stable and its memory consumption is also 

bounded (less than 60MB), thus it can be used in production 

systems, though its performance is moderate (308 requests/s at 

8 clients). 

7.4 Comparison of the Forwarders 

The best candidate for a DNS64 implementation used as a 

forwarder (on the Pentium III platform) is TOTD under 

FreeBSD (1034 requests/s) and TOTD under Linux is quite 

close to it (1010 request/s). The performance of BIND (422 

request/s under OpenBSD, 386 request/s under Linux, 307 

request/s under FreeBSD) and that of PowerDNS (308 

request/s) are far from it, though they are also stable and may 

be used if they are preferred for some reasons. But if 

performance is important, TOTD is definitely the only choice. 

FreeBSD or Linux is a matter of taste – unless FreeBSD must 

be chosen for security reasons. (But we did not test the 

performance of TOTD when running in jail.) 

7.5  Performance Results of BIND, Recursor 

The performance results of the DNS64 server realized by 

BIND used as a recursor were summarized in Table 4. 

7.5.1  Linux 

Similarly to the case when it was a forwarder, BIND shows 

stability in every measured values. Its recursor performance 

(343 requests/s) is only 11% less than its forwarder 

performance (386 requests/s) at eight clients. 

7.5.2  OpenBSD 

Even though its performance shows somewhat degradation 

as the number of requests served in a second was 403 at four 

clients and it was only 394 at eight clients, this is only a 2.2% 

decrease and the maximum execution time of one experiment 

(5.3s) is very close to the average (5.19s) having also a very 

small standard deviation (0.07s). Therefore we consider it 

stable. Its recursor performance (394 requests/s) is only 6.6% 

less than its forwarder performance (422 requests/s) at eight 

clients. 

7.5.3  FreeBSD 

Similarly to OpenBSD, a little (but smaller) decrease of the 

performance can observed at eight clients, but it does not 

garble the stability of BIND. The increase in the memory 

consumption at eight clients (65.8MB) is also acceptable. Its 

recursor performance (295 requests/s) is only 3.9% less than 

its forwarder performance (307 requests/s) at eight clients. 

7.5.4  BIND as a resursor under different operating 

systems 

The same can be said about BIND as a recursor as we stated 

about it as a forwarder. 

Table 7  DNS64 Performance: BIND, Forwarder, Atom 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  0.93 0.96 1.05 1.76 0.98 1.01 1.37 2.80 0.95 0.99 1.13 2.08 
4 std. dev. 0.01 0.02 0.02 0.04 0.02 0.02 0.06 0.10 0.01 0.02 0.02 0.02 

5 maximum 0.98 1.03 1.14 1.93 1.03 1.10 1.47 2.95 1.00 1.06 1.19 2.14 

6 CPU utiliza-

tion (%) 

average 22.73 43.86 77.63 91.40 17.46 33.83 51.18 50.75 26.34 51.55 88.16 95.87 

7 std. dev. 1.33 1.50 1.60 3.74 1.75 2.13 2.36 4.36 3.17 3.99 2.33 1.23 

8 Memory cons. (MB) 48.582 83.949 148.121 187.984 39.555 72.707 112.379 107.418 58.258 92.547 164.145 175.242 

9 Number of requests ser-

ved in a second (req./s)  274 533 974 1164 262 506 750 730 268 517 903 987 
 

Table 9..DNS64 Performance: PowerDNS, Linux, Forwarder, Atom 

1 Number of clients 1 2 4 8 

2 Exec. time of 

256 host 

commands (s) 

average  0.93 0.95 1.12 1.53 

3 std. dev. 0.01 0.02 0.03 0.04 

4 maximum 0.97 1.01 1.23 1.63 

5 CPU utiliza-

tion (%) 

average 18.43 36.88 62.92 99.95 

6 std. dev. 1.19 1.21 1.71 0.15 

7 Memory cons. (MB) 32.938 56.430 88.277 150.133 

8 Number of requests ser-

ved in a second (req./s)  276 537 914 1339 

 

Table 8  DNS64 Performance: TOTD, Forwarder, Atom 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  0.84 0.84 0.96 1.81 0.84 0.84 0.89 1.52 0.84 0.84 0.88 1.37 
4 std. dev. 0.01 0.01 0.02 0.09 0.01 0.02 0.02 0.29 0.01 0.01 0.02 0.08 

5 maximum 0.89 0.88 1.04 1.92 0.88 0.89 0.96 5.58 0.89 0.89 0.95 1.53 

6 CPU utiliza-

tion (%) 

average 4.36 10.98 37.15 51.59 6.22 13.40 30.58 42.08 5.17 12.25 27.59 40.85 

7 std. dev. 1.04 1.29 1.81 0.29 1.69 2.21 2.66 4.17 1.29 1.86 2.36 2.26 

8 Memory cons. (MB) 1.188 1.082 1.270 1.875 2.207 2.328 2.484 3.734 3.773 3.453 2.984 3.883 

9 Number of requests ser-

ved in a second (req./s)  306 606 1062 1128 305 606 1154 1348 306 609 1165 1492 
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7.6  Performance Results of Unbound, Recursor 

The performance results of the DNS64 server realized by 

Unbound used as a recursor were summarized in Table 5. As 

there are no stability issues with Unbound, we discuss its 

results for the different operating systems together. Unbound 

is stable under all three operating systems, and it requires 

relatively small amount of memory under all of them. It gave 

the best performance under Linux by serving 1211 requests 

per second at eight clients. Its performance is somewhat lower 

under OpenBSD (1032 requests/s) and FreeBSD (959 

requests/s), but they are still excellent. Its memory 

consumption is the least under Linux (about 15MB) and is a 

bit higher under the BSD systems (about 20-23 MB). 

7.7 Performance Results of PowerDNS, Recursor, 

Linux 

The performance results of the DNS64 server realized by 

PowerDNS used as a recursor were summarized in Table 6. 

There is no stability issue and the performance of PowerDNS 

as a recursor (297 requests/s) was only 3.6% less than its 

forwarder performance (308 requests/s) at eight clients. 

7.8 Comparison of the Recursors 

The best candidate for a DNS64 implementation used as a 

recursor (on the Pentium III platform) is Unbound under 

Linux (1211 requests/s) and Unbound showed good 

performance under the BSD systems, too (1032 requests/s 

under OpenBSD and 959 requests/s under FreeBSD). The 

performance of BIND and PowerDNS are far from it (they can 

serve only about 300-400 requests per second). 

8  Results of the Measurements on Atom CPU 

We present all the measurement results of the Intel Atom 

test computer but in the discussion, we focus on the 

differences between the two platforms only, as there are no 

stability issues found (except TOTD under OpenBSD). The 

memory consumption of the Atom system is usually higher 

than that of the Pentium III system (as this computer contains 

4GB RAM instead 128MB), and it is often growing with the 

number of the clients, but when the number of the clients is 

doubled, the growth of the memory consumption is always far 

less from being doubled thus it is not an issue. 

Before the presentation of the results, we need to clear the 

meaning of the CPU utilization values in the tables because 

there are two equally good but different practices exist. One of 

them takes the performance of a single core to 100% and thus 

the performance of two cores is denoted as 200%. The other 

one takes the performance of all the cores to 100% and thus 

the performance of one core of a dual core system is denoted 

as 50%. Our measurement programs used the second one and 

thus we do so in the following tables. 

8.1  Performance Results of BIND, Forwarder 

The performance results of the DNS64 server realized by 

BIND used as a forwarder were summarized in Table 7. 

8.1.1  Linux 

The CPU utilization values show that BIND under Linux 

benefits from the dual core architecture. However, it cannot 

fully utilize the computing power of both cores: the CPU 

utilization is 77.63% and the average execution time of one 

Table 10  DNS64 Performance: BIND, Recursor, Atom 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  0.95 0.98 1.10 1.94 1.00 1.03 1.43 2.92 0.96 1.00 1.16 2.14 

4 std. dev. 0.01 0.02 0.02 0.05 0.02 0.03 0.07 0.09 0.01 0.02 0.02 0.03 
5 maximum 0.99 1.09 1.18 2.12 1.05 1.13 1.57 3.05 1.02 1.07 1.23 2.21 

6 CPU utiliza-

tion (%) 

average 24.30 47.27 81.94 92.09 18.23 35.21 51.88 50.45 27.14 53.01 89.52 95.95 
7 std. dev. 1.20 1.54 1.96 3.70 1.74 1.94 2.38 4.54 3.24 4.75 2.29 1.27 

8 Memory cons. (MB) 49.211 84.668 151.891 175.527 41.500 72.781 108.363 103.207 58.078 91.816 159.398 175.715 

9 Number of requests ser-

ved in a second (req./s)  269 521 929 1054 257 495 714 701 267 512 882 959 
 

Table 12  DNS64 Performance: PowerDNS, Linux, Recursor, Atom 

1 Number of clients 1 2 4 8 

2 Exec. time of 

256 host 

commands (s) 

average  0.94 0.96 1.15 1.60 
3 std. dev. 0.01 0.02 0.03 0.04 

4 maximum 0.97 1.04 1.28 1.69 

5 CPU utiliza-

tion (%) 

average 19.06 37.81 64.63 99.96 

6 std. dev. 1.17 1.30 1.92 0.14 

7 Memory cons. (MB) 33.074 56.422 89.012 150.254 

8 Number of requests ser-

ved in a second (req./s)  273 531 887 1279 

 

Table 11  DNS64 Performance: Unbound, Recursor, Atom 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 host 

commands (s) 

average  0.85 0.86 0.88 0.96 0.86 0.87 0.90 1.20 0.86 0.87 0.90 1.08 

4 std. dev. 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.07 0.01 0.01 0.02 0.02 
5 maximum 0.91 0.90 0.93 1.01 0.92 0.92 0.95 1.33 0.90 0.93 0.95 1.14 

6 CPU utiliza-

tion (%) 

average 8.01 15.94 30.43 50.21 9.91 19.20 36.78 53.92 8.77 18.23 34.83 54.23 

7 std. dev. 1.11 1.18 1.15 0.66 1.88 2.31 2.37 4.10 1.58 1.84 2.23 1.56 

8 Memory cons. (MB) 16.082 16.016 15.961 15.992 25.570 23.266 22.594 25.750 20.270 18.875 18.711 18.711 

9 Number of requests ser-

ved in a second (req./s)  299 594 1161 2122 297 587 1139 1700 297 586 1135 1894 
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experiment is 1.05 at four clients and when the number of 

clients is doubled the CPU utilization grows only to 91.4% 

and the execution time grows to 1.76s. BIND cannot fully 

parallelize all its tasks to do. (There could be other reasons, 

e.g. the performance could be limited by the I/O capacities, 

but later we can see that PowerDNS can do more requests in a 

second thus it is sure that the limitation is not caused by the 

lack of other resources, but rather by the behavior of BIND.) 

8.1.2 OpenBSD 

The CPU utilization values show that BIND under 

OpenBSD cannot much benefit from the dual core 

architecture. Though the CPU utilization is somewhat higher 

than 50% at four and eight clients, it is caused by other 

processes that are scheduled for the other core. The single-

threaded nature of OpenBSD is liable for this situation2. 

8.1.3 FreeBSD 

The CPU utilization values show that BIND under Linux 

benefits from the dual core architecture, but it cannot fully 

utilize the computing power of both cores. 

 
2 Though the OpenBSD kernel supports multithreading since version 5.2, 

the OpenBSD port of BIND still does not support it. 

8.1.4  BIND as a forwarder under different operating 

systems 

The Linux system produced the best results by answering 

1164 requests per second and FreeBSD was the second one 

with 987 requests/s. Because of the single-threaded nature of 

OpenBSD it produced the poorest results (730 requests/s). If 

one uses more than two cores then the disadvantage of 

OpenBSD is growing further. 

8.2  Performance Results of TOTD, Forwarder 

The performance results of the DNS64 server realized by 

TOTD used as a forwarder were summarized in Table 8. 

Unfortunately, TOTD cannot benefit from the dual core 

architecture under any of the three operating systems because 

it was written single threaded.  

This fact could be a comparative advantage for the 

OpenBSD platform, but we have to issue a warning about the 

stability of TOTD under OpenBSD, see the large maximum 

(5.58s) and standard deviation (0.29s) values of the execution 

time compared to the average (1.52s) at eight clients. 

Therefore we recommend only the FreeBSD operating system 

with 1492 requests per second, even though the performance 

of OpenBSD is not much lower (1348 requests/s). If Linux is 

preferred for some reason, it is also stable and its performance 

is also good (1128 requests/s). 

8.3  Performance Results of PowerDNS, Forwarder 

The performance results of the DNS64 server realized by 

PowerDNS used as a forwarder were summarized in Table 9. 

The 99.95% CPU utilization value at eight clients shows that 

PowerDNS can fully utilize the computing power of the two 

cores. It can answer 1339 requests per second. 

8.4  Comparison of the Forwarders 

Considering only the bare numbers, the best candidate for a 

Table 15  DNS64 Performance: PowerDNS, Linux, Forwarder, Opteron 

1 Number of clients 1 2 4 8 

2 Exec. time of 

256 DNS 

queries (s) 

average  0.070 0.099 0.179 0.366 

3 std. dev. 0.003 0.012 0.011 0.019 

4 maximum 0.130 0.190 0.240 0.440 

5 CPU utiliza-

tion (%) 

average 42.47 60.20 96.90 97.59 

6 std. dev. 0.59 2.69 0.53 0.37 

7 Memory cons. (MB) 35.277 64.613 96.195 160.199 

8 Number of requests ser-

ved in a second (req./s)  3670 5146 5723 5600 

 

Table 13  DNS64 Performance: BIND, Forwarder, Opteron 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 DNS 

queries (s) 

average  0.067 0.098 0.213 0.409 0.094 0.188 0.382 0.783 0.082 0.121 0.239 0.479 

4 std. dev. 0.005 0.007 0.017 0.018 0.006 0.005 0.007 0.015 0.010 0.005 0.008 0.012 

5 maximum 0.140 0.170 0.290 0.530 0.180 0.260 0.440 0.860 0.490 0.160 0.290 0.540 

6 CPU utiliza-

tion (%) 

average 57.91 72.20 63.00 69.92 26.15 27.22 27.42 27.28 66.88 87.82 88.68 89.52 

7 std. dev. 0.95 1.38 3.02 2.45 0.85 0.87 0.98 0.93 2.10 1.76 1.76 1.74 

8 Memory cons. (MB) 49.992 80.691 147.262 277.242 38.324 67.652 123.117 233.848 62.609 94.406 169.414 303.613 

9 Number of requests ser-

ved in a second (req./s)  3838 5208 4816 5003 2721 2724 2682 2615 3130 4215 4290 4272 
 

Table 14  DNS64 Performance: TOTD, Forwarder, Opteron 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 DNS 

queries (s) 

average  0.081 0.169 0.357 0.775 0.063 0.129 0.271 0.572 0.058 0.117 0.240 0.509 

4 std. dev. 0.029 0.052 0.095 0.102 0.012 0.021 0.035 0.052 0.009 0.021 0.067 0.058 
5 maximum 0.190 0.310 1.070 1.230 0.360 0.200 0.370 0.690 0.080 0.160 1.040 0.740 

6 CPU utiliza-

tion (%) 

average 23.95 25.15 25.14 25.24 25.33 27.58 27.38 27.25 23.95 26.42 26.69 26.71 

7 std. dev. 0.33 0.41 0.33 0.37 0.79 0.78 1.01 0.92 0.98 0.69 0.54 0.61 

8 Memory cons. (MB) 1.582 1.734 2.035 1.461 2.609 2.598 2.633 2.246 5.793 5.902 3.980 4.996 

9 Number of requests ser-

ved in a second (req./s)  3180 3025 2871 2642 4035 3978 3779 3582 4428 4366 4275 4025 
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DNS64 implementation on the dual core Atom platform, used 

as a forwarder is the TOTD under FreeBSD (1492 requests/s). 

As we disqualified TOTD under OpenBSD (1348 requests/s) 

for its stability warning, the second and third ones are 

PowerDNS under Linux (1339 requests/s) and BIND under 

Linux (1164 requests/s). However, as PowerDNS and BIND 

are multi-threaded they will very likely overtake the single-

threaded TOTD when more than two cores will be used. 

8.5  Performance Results of BIND, Recursor 

The performance results of the DNS64 server realized by 

BIND used as a recursor were summarized in Table 10. The 

results are very similar to those when BIND was used as a 

forwarder: Linux is the best one (1054 request/s), FreeBSD is 

the second one (959 requests/s) and OpenBSD produced the 

poorest performance (701 requests/s) due to being single 

threaded. 

8.6  Performance Results of Unbound, Recursor 

The performance results of the DNS64 server realized by 

Unbound used as a recursor were summarized in Table 11. 

Unbound is single-threaded and yet very fast! It gave the best 

performance under Linux by serving 2122 requests per second 

at eight clients. Its performance is lower but still very good 

under FreeBSD (1894 requests/s) and OpenBSD (1700 

requests/s). It is interesting that Unbound under the OpenBSD 

operating system (1032 requests/s) produced somewhat better 

results than under FreeBSD (959 requests/s) when it was 

executed by the Pentium III computer and the order is 

opposite when it is executed by the Atom computer. As 

Unbound is single threaded, this phenomenon is an important 

warning sign that the architecture itself (and not only the 

number of cores) may have a significant influence on the 

performance of the different DNS64 implementations. 

The memory consumption of Unbound is really low. It is 

the least under Linux (about 16MB) and it is a bit higher under 

FreeBSD (about 18-20 MB) and under OpenBSD (23-26MB). 

8.7  Performance Results of PowerDNS, Recursor, 

Linux 

The performance results of the DNS64 server realized by 

PowerDNS used as a recursor were summarized in Table 12. 

PowerDNS can fully utilize the computing power of the two 

cores. It can answer 1279 requests in a second. 

8.8  Comparison of the Recursors 

Even though Unbound is single threaded its performance is 

far the best. It gave the best performance under Linux by 

serving 2122 requests per second at eight clients. Its 

performance is lower but still very good under FreeBSD (1894 

requests/s) and OpenBSD (1700 requests/s). PowerDNS can 

answer only 1279 requests in a second by fully utilizing both 

cores. And the performance of BIND is somewhat lower. 

However, PowerDNS and BIND have the potential to 

outperform Unbound when executed by systems with higher 

number of CPU cores. 

9  Results of the Measurements with Opteron 

CPUs 

We present all the measurement results of the Sun test 

computer with two dual core Opteron CPUs, but we focus on 

Table 18  DNS64 Performance: PowerDNS, Linux, Recursor, Opteron 

1 Number of clients 1 2 4 8 

2 Exec. time of 

256 DNS 

queries (s) 

average  0.071 0.101 0.184 0.378 

3 std. dev. 0.011 0.015 0.012 0.019 

4 maximum 0.360 0.310 0.360 0.460 

5 CPU utiliza-

tion (%) 

average 42.86 61.09 96.89 97.70 

6 std. dev. 0.57 2.62 0.54 0.39 

7 Memory cons. (MB) 35.438 64.016 96.453 159.035 

8 Number of requests ser-

ved in a second (req./s)  3616 5065 5560 5425 

 

Table 17  DNS64 Performance: Unbound, Recursor, Opteron 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 DNS 

queries (s) 

average  0.041 0.070 0.137 0.271 0.054 0.083 0.168 0.347 0.050 0.070 0.135 0.281 

4 std. dev. 0.004 0.002 0.005 0.027 0.006 0.005 0.007 0.019 0.003 0.003 0.005 0.016 

5 maximum 0.100 0.140 0.160 0.320 0.170 0.160 0.250 0.400 0.140 0.110 0.150 0.330 

6 CPU utiliza-

tion (%) 

average 21.09 24.92 25.15 25.50 21.46 28.32 28.20 28.40 20.59 27.08 27.61 27.43 

7 std. dev. 0.65 0.40 0.35 0.75 1.63 0.85 1.05 0.97 1.28 0.78 0.65 0.62 

8 Memory cons. (MB) 16.355 15.629 15.969 15.523 22.484 23.727 23.652 22.707 21.871 20.074 21.883 20.152 

9 Number of requests ser-

ved in a second (req./s)  6259 7314 7493 7545 4725 6195 6087 5900 5101 7349 7610 7291 

 

Table 16  DNS64 Performance: BIND, Recursor, Opteron 

1 Operating System Linux OpenBSD FreeBSD 

2 Number of clients 1 2 4 8 1 2 4 8 1 2 4 8 

3 Exec. time of 

256 DNS 

queries (s) 

average  0.071 0.103 0.219 0.427 0.100 0.201 0.411 0.839 0.086 0.123 0.243 0.491 

4 std. dev. 0.015 0.006 0.014 0.015 0.003 0.003 0.008 0.015 0.006 0.005 0.007 0.014 

5 maximum 0.600 0.190 0.290 0.530 0.180 0.250 0.470 0.930 0.140 0.160 0.290 0.560 

6 CPU utiliza-

tion (%) 

average 58.79 75.46 70.10 76.03 26.24 27.30 27.20 27.15 67.26 88.74 89.23 90.10 

7 std. dev. 2.09 1.49 2.44 2.40 0.82 0.85 0.80 0.97 2.40 1.76 1.85 1.88 

8 Memory cons. (MB) 51.227 81.387 150.078 282.293 38.344 67.543 122.230 234.668 62.836 94.461 167.320 302.922 

9 Number of requests ser-

ved in a second (req./s)  3623 4961 4682 4796 2555 2553 2491 2440 2994 4151 4208 4170 
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how the presence of the four cores change the ranking of the 

DNS64 implementations under the different operating 

systems. 

There are two minor changes in the tables from this point: 

 Lines 2-4 show the execution time of 256 DNS queries 

(and not host commands) because the C program was 

used with the third test computer. 

 There are 3 digits used after the decimal point in the 

time values because the values are less than a second 

due to the high computing power of third test computer. 

9.1  Performance Results of BIND, Forwarder 

The performance results of the DNS64 server realized by 

BIND used as a forwarder were summarized in Table 13. 

The CPU utilization values show that BIND under Linux 

benefits from the four cores. However, it is far from fully 

utilizing the computing power of all the four cores: the CPU 

utilization is always below 75% (which is equivalent with the 

computing power of 3 cores). BIND under OpenBSD can 

benefit a little from the multiple cores e.g. it produced 27.42% 

CPU utilization at four clients instead of the 25% (which is 

equivalent with a single core) but the gain is insignificant. 

BIND produced its highest CPU utilization value under 

FreeBSD; it is 89.52% at eight clients, which is much better 

than under Linux but it is still not 100%. However, as for the 

number of requests served in a second, Linux performed the 

best by processing about 5000 requests in a second. 

9.2  Performance Results of TOTD, Forwarder 

The performance results of the DNS64 server realized by 

TOTD used as a forwarder were summarized in Table 14. 

Whereas the CPU utilization was always less than 25.3% 

under Linux, the system could benefit 2-3% of the multiple 

cores under the BSD operating systems. TOTD showed it best 

performance under FreeBSD by processing more than 4000 

requests in a second. (Its performance showed continuous but 

small degradation under all the three operating systems from 

one client to eight clients.) 

9.3  Performance Results of PowerDNS, Forwarder 

The performance results of the DNS64 server realized by 

PowerDNS used as a forwarder were summarized in Table 15. 

The CPU utilization values show that PowerDNS under Linux 

can nearly fully utilize the four cores (97.59% at eight clients). 

PowerDNS processed 5600 requests in a second at eight 

clients. 

9.4  Comparison of the Forwarders 

PowerDNS was the best performing one among the 

forwarders due to being able to nearly fully utilize the 

computing power of all the four cores. Note that this result 

was achieved under serious overload and under normal high 

load (at one or two clients) BIND showed similar results than 

PowerDNS. TOTD was the third one, but if we consider the 

FreeBSD operating system, its performance is practically the 

same as that of BIND at 2, 4 and 8 clients (about 4000 

requests in a second) and at one client, TOTD even seriously 

outperformed BIND by answering 4428 requests per second 

whereas BIND could do only 3130. 

Our expectations were fulfilled that BIND and PowerDNS 

outperformed TOTD under both multi-threaded operating 

systems (Linux and FreeBSD). 

9.5  Performance Results of BIND, Recursor 

The performance results of the DNS64 server realized by 

BIND used as a resursor were summarized in Table 16. The 

trend of the values is similar to the one when BIND was used 

as a forwarder. The performance results are somewhat less, as 

expected. 

9.6  Performance Results of Unbound, Recursor 

The performance results of the DNS64 server realized by 

Unbound used as a resursor were summarized in Table 17. 

Whereas the CPU utilization never exceeds 25.5% under 

Linux, the system can benefit 3-4% of the multiple cores 

under the BSD systems. Unbound showed its best 

performance under Linux by continuously increasing the 

number of processed requests and reaching 7545 requests in a 

second at eight clients, but its performance under FreeBSD 

was very close to it. Even though FreeBSD has somewhat 

overtaken Linux at four clients (7610 vs. 7493 requests per 

second), we put FreeBSD to the second place because of the 

other results and also because of the performance degradation 

it showed at eight clients. As for the performance order of the 

two BSDs, the earlier observed tendency continued: the 

performance of the OpenBSD system (about 6000 requests per 

seconds from two to eight clients) is now visibly lower than 

that of FreeBSD. 

9.7  Performance Results of PowerDNS, Recursor 

The performance results of the DNS64 server realized by 

PowerDNS used as a resursor and executed by the Sun test 

computer were summarized in Table 18. The CPU utilization 

values show that PowerDNS under Linux can nearly fully 

utilize the four cores (97.7% at eight clients). PowerDNS 

processed 5425 requests per second at eight clients. 

Table 19  DNS64 Implementation Selection Guide: The best Performing 

DNS64 Implementations with the Number of Forwarded Packets per Second 

Opera-

tion 

Mode 

Operating 

System 

Intel 

Pentium III 

(single-core) 

Intel Atom  

(dual-core) 

AMD 

Opteron  

(quad-core) 

forwarder 

Linux TOTD PowerDNS PowerDNS 

1010 1339 5600 

BSD TOTD TOTD BIND 

1034/Free 1492/Free 4272/Free 

recursor 

Linux 
Unbound Unbound Unbound 

1211 2122 7545 

BSD 
Unbound Unbound Unbound 

1032/Open, 

959/Free 

1894/Free 7291/Free 
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9.8  Comparison of the Recursors 

Unbound performed the best amoung the recursors with 

significant vantage. At eight clients, Unbound served 7545 

request in a second whereas PowerDNS could do only 5425 

and BIND did 4796. On the basis of the two core results, 

PowerDNS was expected to catch up with Unbound, but it did 

not happen: Unbound significantly outperformed PowerDNS 

despite of the fact that Unbound is single threaded and 

PowerDNS could nearly fully utilize all the four cores. 

10  Implementation Selection Guide 

We provide an easy to use guide for those who would like 

to choose a DNS64 implementation suitable for their purposes 

quickly. The performance optimized choices are shown in 

Table 19. We give the best choices for both operation modes 

(forwarder and recursor), for all the tested CPUs and also for 

Linux and BSD systems. We also specify the number of 

forwarded packets per second for 8 clients, thus they can be a 

key for the decision if one has no special preference between 

Linux and BSD. Within the BSD platform, we denote 

OpenBSD and FreeBSD by supplementing the performance 

value of the DNS64 implementations with words “Free” and 

“Open”, respectively. (Note the performance of certain 

implementations was higher for lower number of clients, but 

we always give the performance values measured with 8 

clients.) 

11  Plans for Future Research 

Our current results can serve as a starting point when 

selecting the directions of future investigations. There should 

be several modern CPUs tested including servers with 8 or 16 

cores. It is a very interesting question how the multi-threaded 

DNS64 implementations scale on different CPU architectures 

having several cores. Some of these would require more 

powerful and/or higher number of client computers for load 

generation than those we used. For a well tunable and cost 

effective solution, we consider building a 64 or 128 element 

cluster of single board computers (SBCs) similar to the 

Raspberry Pi cluster described in [38] but using more 

powerful single board computers. (Some candidates are under 

testing, see some of our SBC comparison results in [39].) 

We have also rewritten the complete test program in C/C++ 

for achieving higher efficiency in load generation [40]. 

MTD64, the tiny Multi-Threaded DNS64 server we 

proposed in [10] was not ready for testing at the time when 

our measurements were performed, but we also plan to include 

it into our furthers investigations. 

The impact of caching is another very interesting topic, and 

we plan to deal with it in a later paper. 

12  Conclusion 

We have found that the CPU architecture has a strong 

influence on the performance ranking of the analyzed DNS64 

implementations. Now, we give a brief summary of the 

results, stating also the number of processed requests per 

second with eight clients for each mentioned implementations. 

On the single-core Pentium III platform, TOTD under 

FreeBSD (1034 requests/s) or under Linux (1010 requests/s) 

was found highly the best among the forwarders – it 

outperformed about 2.5 times the second one, BIND under 

OpenBSD (422 requests/s) whereas PowerDNS could process 

only 308 requests/s. As for the recursors on Pentium III, 

Unbound under Linux (1211 requests/s) was the very best one, 

and it was also very good under OpenBSD (1032 request/s) 

and FreeBSD (959 requests/s), too. The performance of BIND 

under its best operating system, OpenBSD (394 requests/s) 

and the results of PowerDNS (297 requests/s) lag far behind 

Unbound. 

The increasing of the number of cores could partially 

reverse the performance ranking. Using four cores, the best 

performing forwarder was PowerDNS (5600 request/s), the 

second one was BIND under Linux (5003 requests/s). The 

performance of TOTD under FreeBSD (4025 request/s) was 

still notable because it was achieved using only a single core. 

As for the recursors, the single threaded Unbound kept its first 

place with a high vantage, its best performing operating 

system was Linux (7545 requests/s), but FreeBSD (7291 

requests/s) was close to it. PowerDNS (5425 requests/s) could 

nearly fully utilize the computing power of the four cores 

whereas BIND under Linux (4796 requests/s) could utilize the 

computing power of about three of them. 

The “race” is still open for eight or more cores and/or with 

different CPU types. 

Nearly all of the implementations were found stable. Only 

TOTD under OpenBSD has got stability warning on the 

Pentium III and Atom platforms. 

We hope that our results can serve as useful guidelines for 

network administrators and architects when selecting the best 

suitable DNS64 implementations for their networks. We 

believe that our work may contribute to the global deployment 

of the IPv6 protocol. 
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