SAMPLING FORMULAS

We briefly review two alternative ways of understanding
the basic sampling formulas which are at the heart of
Shannon’s theory. To simplify the argument, we use a
normalized time scale with a sampling step 7" = 1.

A. Sampling and Dirac Distributions

It 1s a common engineering practice to model the sam-
pling process by a multiplication with a sampling sequence
of Dirac impulses
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The corresponding sampled signal representation is
fsla)= Z flk)ole = k). (A.2)
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In the Fourier domain, multiplication corresponds to a con-
volution, which yields
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where the underlying Fourier transforms are to be taken n
the sense of distriburions. Thus, the sampling process results
mn a periodization of the Fourier transform of f, as illustrated

i Fig. 1(b). The reconstruction is achieved by convolving
the sampled signal f; () with the reconstruction function ¢
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In the Fourier transform domain, this gives
freclw) = @lw) - Y flw+2mm). (A5)
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Thus, as illustrated m Fig. 1(c), we see that a perfect recon-
struction 1s possible if B(w) 1s an 1deal low-pass filter [e.g..
wlx) = sinc(x)] and flw) = 0 for |w| = 7 (Nyquist crite-
Ti01).

If. on the other hand, f is not bandlimited, then the peri-
odization of 1ts Fourter transform 1n (A 3) results in spectral
overlap that remains after postfiltering with & (w ). This dis-
tortion, which is generally nonrecoverable, 1s called aliasing.

Theorem I [Shannon]: Ifa function f{r) contains no fre-
gquencies higher than w,,,,. (in radians per second), it is com-
pletely determined by giving its ordinates at a series of points
spaced T = 7wy, seconds apart.
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Fig. 1. Frequency mterpretation of the samplmsz theerem: (2)
Feounier ransform of the analog mnput signal f{ =), (b) the sanpling
process results m a pmcdlzatmn of the Fourjar traJ:u..fmm and (c)
the analeg signal is reconstucted by ideal low-pass 1'L|.1JE:I'IJ.1.g_ a
parfact recovery 15 posstble provided uar Wne = & T.

The reconstruction formmula that complements the sam-
pling theorem is

flay = 5" (KT sine(x /T - k) ')
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in which the eguidistant samples of f(r) may be interpreted
as coefficients of some basis fonctions obtained by appro-
priate shifting and rescaling of the sinc-function: sinc{x} =
gin(me)/{wr). Formula (1) is exact if {2} is bandlimited to
Wiax = 7T this wpper limit is the Nyquist frequency, a
term that was coined by Shannon in recognition of Nyoguist’s
important contributions in communication theory [88].



B. Sampling and Poisson’s Summation Formula

The standard form of Poissen’s summation formula is (see

[117])
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where j(w ) denotes the Fourier transform of the continuous
time function g{x) € Ly The reader is referred to [13]. [16].
ot [65] for a rigorons mathematical treatment.

Considering the function g{x) = f(ux)e™"", the Fourier
transform of which is §{w) = flw + wo) (modulation prop-
erty), we get

Y U = 3T flwg+2mm) = F(e™0) (A7)
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This is precisely the diserete-time Fourier transform of the
sequence { f{k)} with wy as the frequency variable. The
central term of (A7) is identical to (A.3), which means
that the 27-periodic functions (e~} and f,{w) are in fact
equivalent, even though they have very different interpre-
tations—the former 1s a discrete-time Fourier transform.
while the latter i3 a continuons-time one.

The last step in this formmlation 13 fo derive the Fourter

transform of the reconstructed signal

- +-‘\- -
Jreclw) = [ (L fik)ela — h:‘) e dr,

= Nkex
Exchanging the order of integration and making the change
of variable 3y = o — &, we get
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Together with (A. 7). (A.8) 15 equivalent to (A.5).
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