SAMPLING FORMULAS

We briefly review two alternative ways of understanding the basic sampling formulas which are at the heart of Shannon's theory. To simplify the argument, we use a normalized time scale with a sampling step T=1.

A. Sampling and Dirac Distributions

It is a common engineering practice to model the sampling process by a multiplication with a sampling sequence of Dirac impulses

$$\sum_{k \in \mathbb{Z}} \delta(x - k) \stackrel{\text{Fourier}}{\longleftrightarrow} 2\pi \sum_{m \in \mathbb{Z}} \delta(\omega + 2\pi m). \tag{A.1}$$

The corresponding sampled signal representation is

$$fs(x) = \sum_{k \in \mathbb{Z}} f(k)\delta(x - k).$$
 (A.2)

In the Fourier domain, multiplication corresponds to a convolution, which yields

$$\hat{f}_{\delta}(\omega) = \hat{f}(\omega) * \sum_{m \in Z} \delta(\omega + 2\pi m) = \sum_{m \in Z} \hat{f}(\omega + 2\pi m)$$
(A.3)

where the underlying Fourier transforms are to be taken in the sense of distributions. Thus, the sampling process results in a periodization of the Fourier transform of f, as illustrated

in Fig. 1(b). The reconstruction is achieved by convolving the sampled signal $f_{\delta}(x)$ with the reconstruction function φ

$$f_{rec}(x) = (f_{\delta} * \varphi)(x) = \sum_{k \in \mathbb{Z}} f(k)\varphi(x - k).$$
 (A.4)

In the Fourier transform domain, this gives

$$\hat{f}_{rec}(\omega) = \hat{\varphi}(\omega) \cdot \sum_{m \in Z} \hat{f}(\omega + 2\pi m).$$
 (A.5)

Thus, as illustrated in Fig. 1(c), we see that a perfect reconstruction is possible if $\hat{\varphi}(\omega)$ is an ideal low-pass filter [e.g., $\varphi(x) = \mathrm{sinc}(x)$] and $\hat{f}(\omega) = 0$ for $|\omega| > \pi$ (Nyquist criterion).

If, on the other hand, f is not bandlimited, then the periodization of its Fourier transform in (A.5) results in spectral overlap that remains after postfiltering with $\hat{\varphi}(\omega)$. This distortion, which is generally nonrecoverable, is called *aliasing*.

Theorem 1 [Shannon]: If a function f(x) contains no frequencies higher than ω_{\max} (in radians per second), it is completely determined by giving its ordinates at a series of points spaced $T=\pi/\omega_{\max}$ seconds apart.

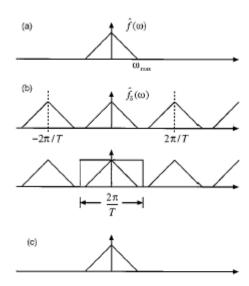


Fig. 1. Frequency interpretation of the sampling theorem: (a) Fourier transform of the analog input signal f(x), (b) the sampling process results in a periodization of the Fourier transform, and (c) the analog signal is reconstructed by ideal low-pass filtering; a perfect recovery is possible provided that $\omega_{max} \leq \pi/T$.

The reconstruction formula that complements the sampling theorem is

$$f(x) = \sum_{k \in \mathbb{Z}} f(kT) \operatorname{sinc}(x/T - k)$$
 (1)

in which the equidistant samples of f(x) may be interpreted as coefficients of some basis functions obtained by appropriate shifting and rescaling of the sinc-function: $\mathrm{sinc}(x) = \sin(\pi x)/(\pi x)$. Formula (1) is exact if f(x) is bandlimited to $\omega_{\max} \leq \pi/T$; this upper limit is the Nyquist frequency, a term that was coined by Shannon in recognition of Nyquist's important contributions in communication theory [88].

B. Sampling and Poisson's Summation Formula

The standard form of Poisson's summation formula is (see [117])

$$\sum_{k \in Z} g(k) = \sum_{m \in Z} \hat{g}(2\pi m)$$
 (A.6)

where $\hat{g}(\omega)$ denotes the Fourier transform of the continuous time function $g(x) \in L_1$. The reader is referred to [13], [16], or [65] for a rigorous mathematical treatment.

Considering the function $g(x) = f(x)e^{-\omega_0 x}$, the Fourier transform of which is $\hat{g}(\omega) = \hat{f}(\omega + \omega_0)$ (modulation property), we get

$$\sum_{k \in \mathbb{Z}} f(k) e^{-j\omega_0 k} = \sum_{m \in \mathbb{Z}} \hat{f}(\omega_0 + 2\pi m) = F(e^{j\omega_0}). \quad (A.7)$$

This is precisely the discrete-time Fourier transform of the sequence $\{f(k)\}$ with ω_0 as the frequency variable. The central term of (A.7) is identical to (A.3), which means that the 2π -periodic functions $F(e^{j\omega})$ and $\hat{f}_{\delta}(\omega)$ are in fact equivalent, even though they have very different interpretations—the former is a discrete-time Fourier transform, while the latter is a continuous-time one.

The last step in this formulation is to derive the Fourier transform of the reconstructed signal

$$\hat{f}_{rec}(\omega) = \int_{-\infty}^{+\infty} \left(\sum_{k \in \mathbb{Z}} f(k) \varphi(x - k) \right) e^{-j\omega x} dx.$$

Exchanging the order of integration and making the change of variable y = x - k, we get

$$\hat{f}_{rec}(\omega) = \sum_{k \in \mathbb{Z}} f(k) e^{-j\omega k} \int_{-\infty}^{+\infty} \varphi(y) e^{-j\omega y} dy$$

= $F(e^{j\omega}) \cdot \hat{\varphi}(\omega)$. (A.8)

Together with (A.7), (A.8) is equivalent to (A.5).

Sampling—50 Years After Shannon