Correspondence.

Comments on "The Modulo Time Plot: A Useful Data Acquisition Diagnostic Tool"

Zsolt Pápay

In this paper¹, the use of a reordered sample set is very useful for quick visual inspection of system performance. This artificial oversampling algorithm unrolls spectra as well [1]. However, the question is how to reorder the samples.

To answer that, one must recall the conditions for uniform permutation of samples [2], [3]: the sample set of a sine wave with a period T=1/f and sampling frequency $f_s=1/\Delta t$.

$$x[i] = \cos(\omega i \Delta t) = \cos(2\pi i f/f_s), \qquad i = 0, 1, \dots, N-1$$

is periodic only if the value of numerical (normalized) frequency

$$f/f_s = m/N, \qquad 1 \le m < (N/2)$$

where m is prime to N, and N is the numerical period: x[i] = x[i+N]. This is the case of *coherent sampling*; N unique samples from m periods of the signal, $N \cdot \Delta t = m \cdot T$. Such a raw sample set (m>1) can be reordered into a *single* period by an index transformation

$$j = (Ji) \mod N$$

where J is a unique integer and must be calculated from the relation

$$(mJ) \operatorname{mod} N = 1$$

i.e., J is multiplicative inverse of m.

Fig. 1 shows a simple but informative example of transposition, where m/N=7/32, so that J=23. Some short notes on the simulation:

- 1) use DFT if N is not a power-of-2;
- 2) n may be noninteger, and then it is the effective number of bits;
- 3) the common *sinc* interpolation formula [5] can be rearranged into a *finite sum* in case of *periodic* sample sets;
- 4) spectrum levels are in dB (voltage ratio);
- 5) with N=32, values of J for other possible frequencies

$$m = 3 5 9 11 13 15$$

 $J = 11 13 25 3 5 15$

6) since the numeric frequency is a ratio of small integers, there is a massive superposition of the aliased harmonics.

Manuscript received July 16, 1996.

The author is with the Department of Telecommunications, Technical University of Budapest, Budapest, Hungary.

Publisher Item Identifier S 0018-9456(96)08280-0.

¹F. H. Irons and D. M. Hummels, *IEEE Trans. Instrum. Meas.*, vol. 45, no. 3, pp. 734–738, June 1996.

DISTORTION due to DIGITIZING of SINUSOID

 $\tau := 10^{-6}, 0.1...N$

Mathcad

(zero-order-hold(ZOH) and "sinc"(lowpass filter) interpolation

M := last(c) k := 0...M

$$R(\tau) := \frac{\sin(R^{*}U)}{N} \sum_{i=0}^{N} (-1)^{i} ds_{i} \cot\left(\pi \frac{N-1}{N}\right)$$

$$ds: ZOH, R: "sinc"-filter$$

$$\frac{N}{m} + \frac{2^{N}}{m} + \frac{2$$

SPECTRUM
[without sin(x)/x spectral distortion]

 $dB_{\nu} := 20 \cdot \log \left(\sqrt{2} \cdot \left| c_{\nu} \right| + 10^{-6} \right)$

c := FFT(ds)

Harmonic(≈ h.m) and

Fig. 1. Mathead simulation: spurious components due to quantization.

Simulation parameters may be easily modified, i.e., in [1] m/N=1501/4096, so that J=2677, or, with reindexing from zero in [5, Fig. 2] the numeric frequency is m/N=4/19, so that J=5.

The technique of the uniform permutation can be used for other desirable waveform or spectrum modifications.

REFERENCES

- S. Renaud, "Algorithm unrolls spectra," EDN, pp. 246, 248, Oct. 13, 1988.
- [2] S. C. Kak and N. S. Jayant, "On speech encryption using waveform scrambling," *Bell System Tech. J.*, vol. 56, no. 5, pp. 781–808, 1977.
- [3] D. L. Duttweiler and D. G. Messerschmitt, "Analysis of digitally generated sinusoids with application to A/D and D/A converter testing," *IEEE Trans. Commun.*, vol. COM-26, no. 5, pp. 669–675, 1978.
 [4] R. J. Marks II, *Introduction to Shannon Sampling and Interpolation*
- [4] R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory. New York: Springer-Verlag, 1991, pp. 33, 89.
- [5] IEEE Std. 1057-1994, "Standard for digitizing waveform recorders," p. 29, June 14, 1994.
- [6] Mathead 5.0, Mathsoft Inc.