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The assembler performs two passes, checking the syntax of the 
assembler language instructions and constructing a symbol table 
on the first pass, and converting the instructions into object code 
on the second. All syntax or other coding errors are printed out 
and counted, causing termination of the assembler with an ap-
propriate message. The new package, while different from the 
previous one [1] in many details, is nevertheless fully compatible 
with it. Only the new assembler is necessary to expand the pro-
gramming capabilities of the former package from an 8008 to an 
8080-8008 based system. 

The programs are written in HP Basic for use on an HP 2100F 
time shared computer system. It is expected that the package will 
perform well with only slight modification on any Basic system 
which offers extended file management. 

CONCLUSION 

A system for programming an Intel 8080 microcomputer using 
a basic time shared system has been reported. The cross assem-
bler is fully compatible with previously reported software [1]. The 
final output may be loaded directly into RAM for program exe-
cution. Copies of the software package are available to interested 
readers upon request. 
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P(i,w)=P(i\w)-pw(w) 

t 

PN,w(> dw Σ P(i,w) · exp \j(u\i + u2w)] (1) 

where pw(w) is the density-function of the input, and Σ; Ρ (i\w) 
= 1. Assuming Ν = i, we define the following function of w as the 
channel profile P(i\w) = Pi(w). It is independent of the input 
distribution and can be estimated for an actual ADC (for example 
with relative-frequency measurements). 

A simpler—and often sufficient—estimation is the use of 
quasi-statistic model. We assume identical Pi(w) = PK{w — i) 
channel profile forms for all i, or with a new variable ζ = w — i 

PK(z) = Pitt + z). 
Define 

Φ κ Μ = § ΡΛζ) · exp (-juz) dz PK(z) 

1 Cœ 

ν = — J Φ Au) · exp (juz) du (2) 

furthermore, usingpw(w) Pw(u) = Ε [exp (juw)], from (1) we 
have 

PN,w(ui,U2) = Σ Pw,w(u\ + 2wck,u2) · φκ(ιΐχ + 2irk) 
k 

ZSÔLT PÂPAY 

INTRODUCTION 

In the above paper,1 some theorems are derived for the direct 
mean-estimation with time-interval quantization. These results 
are valid in a wider sense and at the same time—as we point out 
briefly—they are special cases of a more general description using 
the quasi-statistic model2 of the analog-to-digital converter 
(ADC). 

Quasi-Statistic Model of ADC 

The ADC, by means of sampling, quantizing, and coding, 
designates the interval (channel) in which its input lies. Consider 
globally uniform quantizing with resolution Ax (see Fig. 1) and 
use normalized variables W = X(Ax,n = Hq)Ax = Ν — W, where 
the input W = w is actually real and the output Ν = i integer. For 
a practical ADC only the probability of i, given W = w, Pr {ί | W 
= w) can be specified. So, in a one-dimensional case and if the 
operation is free of saturation, the conditional distribution of Ν 
is given by 

P(i\w) = lim Pr \i\w < W < w + e] = 

hence, for general description of the ADC, the joint distribution 
and characteristic function (CF) are 
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Ptt,w) = dui du2 pn,w(uiM2) 

• exp [-j(uii + u2w)] (3) 

k = 0,±1, · · ·. This is the fundamental equation for the quasi-
statistic model of ADC, where pw,w(vi,v2) = pw(v\ + v2) is the 
input CF and the ADC is a "black box" with specified (measur-
able, or computable by a mathematical model) PK(z). Now, using 
the well-known methods: the moment theorem and so on, the 
necessary statistics can be generated from (3). For example, the 
ADC output CF is: 

Pn(u) = pn,w(u,0) 

= pw(u) ' Φ κ Μ + Σ Pw(u + 2irk) · φκ (u + 2nk) (4) 

and clearly, in the "ç-limited" practical case (pw(q) ~ 0, if |ç| 
> 2π) we can use the additive model for the moment generation; 
the CF of the error of ADC is pn(u) = pn,w(u,-~W); etc. Note, for 
dimensional quantities, we obtain formulas with simple linear 
transformations (W Χ; Ν -+> Xq, η -* Hq). Assuming a spe-
cific PK(z), we have—as a special case—the generally used 
deterministic model3 of ADC. 

CHANNEL PROFILE AND COROLLARIES 

In the case dealt with in the above paper1 (Fig. 2), with w = 
d/T, h = xJT, we have 

1 D. J. Torrieri, IEEE Trans. Instrum. Meas., vol. IM-24, p. 96, June 
1975. 
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TABLE I 
Normally Distributed (m = z, o w ) Input 

Relative Error (in percents) 
for Approximation of var(JV) with 
Torrieri's (58) Additive Model 

[var(7V) ~ AWY/2/*] [ e = 0 ] 

N = i, if - 1 < ζ - < 0, 0 < Λ < 1 

and because the probabilities of equivalent events are equal 

PK(z) = Prjz <h < 1 + 4 

The channel profile (and so the effect of ADC) is strongly re-
lated to the start-error component h (we assume that h is sta-
tistically independent of z). To obtain PK(z), some kind of hy-
pothesis consistent with the practical case is necessary; for ex-
ample, h = constant (if clock and start are synchronized), or h 
is a random variable with known distribution. 

If specifically1 h is uniformly distributed on (0,1), then PK(z) 
has a triangle form (Figs. 2 and 3), and from (2) 

"sin (ΰ /2)"|2 _ 1 - cos (u) 

u/2 J u2 

(Note, we get the same result, for example, for a deterministic 
ADC with uniform dither.) 

Now, with E(w) = m and var (w) = aw

2, from (4) we easily 
conclude that the mean is bias-free: E(N) = m (see Theorem 1 
of Torrieri 1), and 

* 1 
var (Ν) = aw

2 + - - e 
6 

where 

2π2 FEÇO κ π 2 Ε Ti Re [piv(2xfc)] 

Re [ · ] denotes the real part (see also the Appendix). Let pw(u) 
the CF of the zero-mean variable: pw(u) = Pw(u) · exp (jum)\ 
if the distribution of w is symmetric on τη, that is pw(u) is real 
(and even), then 

- 3 . Σ pw(2irk) · cos (2π/2 · m) 

and this is periodic, because m = i + r, where 0 < r < 1 (see Tur-
rieri's 1 Theorems 3 and 4). For a normally distributed input 
pw(u) = exp (— aw

2u2/2) > 0, so var (N) is a minimum when r = 
0 and see Table I. 

For any other form of PK(z) one can proceed similarly. Gen-
erally, the mean-estimation is bias-free only if φκ(0) = 1, <t>K(2wk) 
= 0 ( ^ 0 ) , and 4>K(2ick) = 0. 

A P P E N D I X 

In the "q -limited" case € « 0, and generally: \> e> — % 2 · That 
is, we may write 

* = / Pw(u)) · g(w) dw, where g{w) = — Σ τζ cos (2ΤΓ& · it;). 

Let r = w — [w], where the square brackets denote the "greatest 
integer in," hence g(w) = g(r). Since 4 

Σ 
cos (kB) π 2 τθ , 0 2 

fc2 6 2 + 4 
0 < θ < 2w 

0.25 - 0 . 0 0 4 
0.3 - 0 . 0 5 6 
0.35 - 0 . 3 1 
0.40 - 0 . 9 9 1.3 
0.41 - 1 . 2 l . l 
0.42 - 1 . 4 0.91 
0.43 - 1 . 7 0.75 
0.44 - 1 . 9 0 .62 
0.45 - 2 . 2 0.51 
0.5 0.18 
0.55 0.055 
0.6 0 .016 
0.65 0 .004 

we obtain the above inequality. Alternatively, we can also make 
use of the fact that g(r) is the Fourier expansion of B2(r) = r2 -
r + y6 Bernoulli polynomial, 0 < r < l . 5 

Note: With r = rem (w), we obtain Theorem 2 Torrieri's cited 
paper 
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