

кq рәı!pヨ

hit every 15.5 symbols, which is very slightly better. patterns of period 31 with a maximum Hamming correlation of 2, that is, one sets of hopping patterns from $\mathcal{C}(31,3 ; 0)$ over $\mathrm{GF}(32)$ provide 1024 hopping the average, one hit every 14.64 symbols. In contrast, the Reed and Solomon obtained. The maximum Hamming correlation is 2102, so that there is, on $887,503,681$ hopping patterns of period $31 \cdot 993=30,783$ over $\mathrm{GF}(32)$ is and $M=\left(31^{3}-1\right) /(31-1)=993$. Let $K=4$. Then, a set of $31^{3.2}=$

As an example of this construction, let $q=32, N=31, t=2, r=3$

$H_{\max } \leq M N-(M-K)(N-t)=M t+K N-K t$.

 There are $N^{r(K-1)}$ such hopping patterns, and it follows from (8) that, asshown in [32], word in an $[M N,(k+1)(K+1),(M-K)(N-t)]$ cyclic code over GF (q). ($n_{1} n_{2}, k_{1} k_{2}, d_{1} d_{2}$) cyclic code [13], this hopping pattern is actually a code product of an (n_{1}, k_{1}, d_{1}) cyclic code with an (n_{2}, k_{2}, d_{2}) cyclic code is an pattern of length $M N$ whose i th symbol is $Q_{i \bmod N, i \bmod M}$. Since the cyclic and hence the entries in \mathbf{Q} can be read off in cyclic fashion to form a hopping creates an $N \times M$ matrix $\mathbf{Q}=Q_{i, j}$. Now, M and N are relatively prime, column vector of length N consisting of a code word of the first code. This $M N^{r}$-valued symbols in a code word of the second code is replaced by a of the direct product discussed in the previous subsection. Thus, each of the $M-K$. Vajda has proposed using the cyclic product of these codes instead the minimum distance between cyclic shifts of two code words is at least alphabet of size N^{r}, and since the code words belong to $\mathcal{C}(M, K+1 ; 0)$, M is a divisor of $N^{r}-1$. Thus, this code has $N^{r(K-1)}$ code words over an over $\operatorname{GF}\left(N^{r}\right)$ that is a subcode of $\mathcal{C}(M, K+1 ; 0)$ over $\mathrm{GF}\left(N^{r}\right)$. Note that nonlinear cyclic code is $N-t$. The other code is a coset of $\mathcal{C}(M, K-1 ; 2)$

 from this code. Let r denote the largest integer such that $N^{r-1} \leq q^{\text {. }}$. This described in Section 2.5, q^{t} hopping patterns of period N can be obtained code is obtained from $\mathcal{C}(N, t+1 ; 0)$ over $\operatorname{GF}(q)$, where N is a prime. As

 this construction can be found in [2] alleviates the burden on the error control system as well. Further details of
${ }^{3} \mathrm{~A}$ similar ph
sequences (cf. [23]).

are not directly related to Reed-Solomon codes except in certain special cases.

2.12 Other Constructions

transmitter can have values as large as $N-1$. ming cross-correlation between two hopping patterns assigned to the same assigned to a transmitter are not cyclically inequivalent. In fact, the Hamsynchronization in the receivers in such systems since the hopping patterns be two in some cases. There is also the question of the initial acquisition of transmitter can cause collisions, ${ }^{3}$ and thus the number of hits per period can and the front end of two possibly different hopping patterns from an interfering synchronous. If the transmitters are only dwell-synchronous, then the tail end per period can be guaranteed to be 1 only if the two transmitters are framerelative time delay between the two patterns. However, the number of hits Since all these sequed to different transmitters is at most 1 regardless of the
 $\cdot(g \cdot(d)$
assigned to j th transmitter are of the form in a cyclic equivalence class. Thus, $M=N=q-1$, and the hopping patterns Solomon code $\mathcal{C}(q-1,2 ; 0)$. Each transmitter is assigned all the code words The Einarsson design uses all the nonzero code words in the ReedThus, M different frequency synthesizers might be needed in each receiver. -рәи! however, that the receiver is now more complicated since it must track all M
 M-ary data symbol per N dwells by choosing and transmitting one of the for use in suchection of M hopping patterns of length N and transmits one [5] proposed such systems. In systems using this design, each transmitter is

 is limited to a few oner several hops, and it is necessary to use

 2.11 Einarsson's Construction

