
 

 

Abstract—In this paper, we investigate three potential issues 

of the benchmarking measurement procedures defined in RFC 

2544 and also used in RFC 5180 and RFC 8219. One of them is 

the lack of proper timeout usage. We use a Linux box, which 

can selectively delay a specified ratio of the packets. Using 

carefully selected parameters based on our preliminary 

measurements, we demonstrate that the experienced speed of 

the HTTP download is much less, than what could have been 

expected on the basis of the throughput results of the RFC 2544 

tests. The other critical issue is the strict, absolutely zero loss 

criterion. We use a Linux box, which drops a specified small 

ratio of the packets. Whereas the RFC 2544 throughput results 

tend to be zero, the experienced speed of the HTTP download is 

quite good. The third problem is the lack of requirement for 

statistically relevant number of tests in the RFC 2544 

benchmarking procedures. We demonstrate its severity with 

the latency benchmarking procedure defined in RFC 2544 and 

kept unchanged in RFC 5180 but redefined in RFC 8219. 
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I. INTRODUCTION 

According to our understanding, the aim of benchmarking is 

to “accurately measure some standardized performance 

characteristics in order to obtain reasonable and comparable 

results” [1]. RFC 2544 [2] has been successfully serving this 

purpose from 1999 by defining a comprehensive 

benchmarking methodology for network interconnect 

devices. Its basic measurement procedure is the throughput 

measurement. In the simplest case, the measurement setup 

consists of two devices, the Tester and the DUT (Device 

Under Test). During the throughput measurement, the Tester 

sends frames through the DUT at a constant rate for at least 

60 seconds, and counts the number of received frames. The 

tester keeps receiving for 2 more seconds after finishing the 

sending of the frames. If the number of the received frames 

is equal with the number of the sent frames, then the frame 

rate is increased, and the test is rerun. If the number of the 

received frames is less than the number of the sent frames, 

then the frame rate is decreased, and the test is rerun. The 
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throughput is the highest rate, at which the number of the 

received frames was equal with the number of the sent 

frames. (In practice, a binary search is used, where its initial 

upper limit is the maximum frame rate for the media, and its 

initial lower limit is zero.) Of course, the measured 

throughput value depends on the frame size used, thus RFC 

2544 defines some standard frame sizes to be used for 

testing. 

RFC 5180 [3] was published in 2008, and it addressed 

some IPv6 specificities and also defined some further 

maximum frames rates for the contemporary media types, 

but it kept the throughput benchmarking procedure 

unchanged. RFC 5180 has declared IPv6 transition 

technologies out of its scope. RFC 8219 [4] defined a 

benchmarking methodology for IPv6 transition technologies 

in 2017. It has also kept the throughput benchmarking 

procedure unchanged.  

In our most current research [5], we have performed 

benchmarking measurements of different SIIT [6] (also 

called stateless NAT64) implementations according to RFC 

8219. We have pointed out three problems with the 

throughput measurement procedure. 

1. As no per frame timeout was defined, some frames 

may arrive with several seconds delay and they are 

still accepted. (E.g. some frames from the first 

second may arrive with 61 seconds delay.) These 

frames are very likely handled as lost ones by TCP 

implementations and also by real-time UDP 

applications. Thus, the measured throughput result 

may be very far from the one experienced by the 

users. 

2. If the DUT has a non-zero but low frame loss rate, 

then communication is possible with significant 

throughput, but the absolute zero frame loss 

requirement of RFC 2544 results in a near zero 

throughput measurement result. 

3. Having no requirement for multiple (statistically 

relevant number of) tests, the measurement results 

may be very different and thus unreliable. 

Our current effort aims to investigate and deliberately 

demonstrate them. As for the first two problems, we 

examine, how much the RFC 2544 throughput results may 

differ from the throughput experienced in real-life situation. 

As for the third one, we cannot avoid dealing with it during 

the throughput measurements, and in addition to that, we 

demonstrate its seriousness with RFC 2544 latency 

measurements. 
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The remainder of this paper is organized as follows. In 

Section II, we clarify benchmarking methodology and 

terminology. In Section III, we examine how delaying all the 

packets influences the result of the RFC 2544 throughput 

test and the file download time using the HTTP protocol. In 

Section IV, we study how frame loss affects the results of 

the before mentioned two tests. In Section V, we investigate 

the effect of the selective delay to the real-life 

measurements. In section VI, we (further) demonstrate the 

need for statistically relevant number of experiments by 

latency tests and we also expose the fact that using average 

alone as the summarizing function of multiple experiments 

can be an oversimplification. In section VII, we discuss our 

findings and disclose our recommendations as well as our 

plans for further research. Section VIII concludes our paper. 

II. METHODOLOGY AND TERMINOLOGY 

As its title suggests, RFC 2544 defines a benchmarking 

methodology for network interconnect devices, which can be 

individual elements of a network, e.g. switches, routers, etc. 

On the one hand, ISPs (Internet Service Providers) rely on 

the results of RFC 2544 compliant tests, when they choose 

the appropriate devices to build up their networks, however, 

on the other hand, their ultimate concern is to achieve users’ 

satisfaction and cost effectivity at the same time. Service 

level agreements between ISPs and their customers usually 

contain QoS (Quality of Service) parameters, like 

throughput, packet loss rate, transmission delay, etc. The 

advantage of such parameters is that they can be easily 

checked, but they do not describe the QoE (Quality of 

Experience) of the users. RFC 6349 [7] aims to asses user 

experience by defining a methodology for measuring end-to-

end TCP throughput. 

Unfortunately, the terminology is not consistent. The term 

goodput is in use for more than two decades. It is mentioned 

already in 1998 as “real user level good throughput” [8], and 

it is also called as “user seen throughput” in the same paper. 

TCP goodput was also called as “useful throughput of TCP” 

[9]. Gootput is also called as “effective throughput” [10]. 

Another definition for goodput is “TCP throughput at the 

end nodes” [11]. It is also called as “application throughput” 

[12]. However, IETF documents including RFC 6349 

usually omit the term. In the rest of our paper, we simply call 

it “user experience”. 

RFC 2544 measurements should be performed in an 

isolated environment containing only the Tester and the 

DUT, whereas RFC 6349 measurements can be performed 

only by using the entire communication system. (For 

example, a web server, a client and the network between 

them, which has load from other users, too.) Being aware of 

this significant difference between the two, we contend that 

RFC 2544 benchmarking results are useful for an ISP if they 

give a kind of warranty that if there are no other bottlenecks 

in the system, the given device will not deteriorate user 

experience. Moreover, we aim to point out some possible 

opportunities for amending RFC 2544 with further or 

modified tests, the results of which are more in line with the 

user experience. 

In the rest of this paper, we demonstrate situations, when 

the results of RFC 2544 benchmarking tests are not in line 

with the user experience. 

III. INVESTIGATION OF THE EFFECT OF DELAY 

Delay really matters in real-life situation, but according to 

our understanding of the RFC 2544 throughput1 

benchmarking procedure, it is overly delay tolerant. To 

check, if our interpretations is correct, first, we performed 

throughput tests with a commercial RFC 2544 tester. 

Then, we have examined, how the increase of delay, 

which is completely invisible for the RFC 2544 tester, can 

degrade the throughput of a communication system in real-

life situations. 

As we mentioned before, RFC 2544 does not state how 

many times the experiments have to be executed to achieve 

reliable throughput results. It only mentions (in its Section 

26.2) that the Latency measurements should be repeated at 

least 20 times and the reported values should be the average 

of the recorded values. 

We believe that the necessary number of the repetitions 

deserves a careful study for all benchmarking procedures, 

and we also plan to do so. Currently, we have chosen to 

execute all tests 20 times. 

A. RFC 2544 Compliant Measurements 

We used the measurement system shown in Fig. 1. Our 

Tester was a commercially available, RFC 2544 compliant 

Anritsu MP1590B Network Performance Tester. It had a 

four port Anritsu MU210212A 10/100/1000M Ethernet 

Module, and we used Port1 and Port2 of the module. 

The DUT was a contemporary PC from the Info-

communications Laboratory of the Department of 

Telecommunications, Széchenyi István University, Győr, 

Hungary with the following parameters: Gigabyte H310M H 

mother board, 6 core Intel Core i5-8400 2.80GHz CPU, two 

Kingmax DDR4 2133GHz 8GB memory modules, two Intel 

OEM Gigabit CT Desktop Adapters (for experimentation), 

Kingston SA400S3 120GB SSD. Debian Linux 10.2 

operating system with 4.19.0-6-amd64 kernel was installed. 

 
1 The same applies to the frame loss rate measurement procedure, too. 
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Fig. 1  Measurement setup for RFC 2544 throughput and latency tests 
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As otherwise the CPU clock frequency was varying, 

which could have caused unstable measurement results 

according to our earlier benchmarking experience [13], we 

have set it to fixed 2.8GHz by using the tlp Debian 

package. The /etc/default/tlp file contained the 

following lines: 
CPU_SCALING_MIN_FREQ_ON_AC=2800000 

CPU_SCALING_MAX_FREQ_ON_AC=2800000 

We note that the above frequency values are interpreted in 

kHz unit. 

Although RFC 2544 recommends using several standard 

frame sizes from 64 bytes to 1518 bytes, we decided to use 

only 1518 bytes, because our aim was not the complete 

performance analysis of a given router, but rather the 

investigation of certain special problems2, and the 1518 

bytes frame size was the natural choice for the file transfer 

applications we used for real-life testing. 

For delaying the IP datagrams, we used the tc command 

of the iproute2 Debian package. We used the following 

two command lines to delay all packets by 1s: 
tc qdisc add dev eth1 root netem \ 

  delay 1s limit 100000 

tc qdisc add dev eth2 root netem \ 

  delay 1s limit 100000 

Remarks: 

 The specified delay is applied only to the outgoing 

packets through the specified interface, this is why 

we used two commands.  

 We did not intend to limit the packet rate at all, but 

we had to set it to some appropriate value, because 

otherwise it was automatically set to 1000. (The 

used 100,000 value was chosen to be greater than 

81,274, the maximum frame rate for Gigabit 

Ethernet using 1518bytes long frames3.) 

As required by RFC 2544, we used bidirectional traffic 

and the duration of the tests was 60s. 

To be able to disclose all the details of the measurements, 

we must mention some properties of the Anritsu tester. 

Although throughput is usually specified in frames per 

second (fps), the user of the Anritsu tester has to specify 

the required frame rates in a certain proportion of the 

maximum frame rate for the media at the given frame size. 

 
2 In section III.A, we investigate, how the delay of the packets effects 

the RFC 2544 results, and in Section III.B, we examine, how it effects the 

real life user experience. In the upcoming sections, we study different 

problems, but we use the same measurement setup with some minor 

changes.  
3 Please refer to Appendix A.1 of RFC 5180 for the theoretical 

maximum frame rates for different media. 

The user can set the following values: 

 Initial Rate: frame rate for the very first test. If it 

is set to 100% and the test is passed, then no 

binary search is executed. 

  Maximum Rate: The initial upper bound for the 

binary search. 

 Minimum Rate: The initial lower bound for the 

binary search. 

 Resolution: The binary search is finished, if the 

difference between the upper bound and lower 

bound of the binary search is less than or equal 

with this value. 

 Loss Tolerance: The Tester allows the user to 

specify some tolerated loss rate. It must be set to 

0 to perform an RFC 2544 compliant test. (We 

always did so, unless we stated otherwise.) 

First, we performed the throughput test without delaying 

the test frames by the DUT. The initial frame rate was set to 

100% in the Tester and the tests were passed all 20 times. 

The reported frame rate was 162,548fps, which is exactly 

the double of the maximum frame rate of Gigabit Ethernet. 

(The Tester reports the number of all transmitted frames, not 

frames per direction.) 

Then the tests were repeated by applying the above 

mentioned tc commands to delay all the test frames in both 

directions. As expected, we have received the same results, 

162,548fps for all 20 times. 

B. Measurements in a Real-life Situation 

We used the measurement system shown in Fig. 2. All three 

computers had the same hardware as before, except that 

Client and File Server had only a single Intel OEM Gigabit 

CT Desktop Adapter for experimentation, each. (For 

controlling the experiments, the integrated NICs were used.) 

We wanted to experiment in a realistic environment and 

share the experience of an average user, thus we did not do 

any tuning on the TCP settings of the Linux kernel, but left 

them as they were. For the repeatability of our experiments, 

we have checked and document the most important settings 

as follows. The TCP congestion algorithm was set to 

CUBIC, SACK (Selective Acknowledgment) and window 

scaling were enabled on both the Client and the File Server. 

For benchmarking, we downloaded a 10,000MiB size file 

using the HTTP protocol. The file size was chosen large 

enough so that its downloading through the Gigabit Ethernet 

link last more than one minute, and thus the initial transient 

(TCP connection establishment, and “slow start” phase of 

the congestion control protocol) may be amortized and the 

DUTClient

eth1: 
198.18.0.2

eth1: 
198.18.0.1

File Server

eth2: 
198.19.0.1

eth1: 
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

 
 

Fig. 2  Test network for our real-life investigations 

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

12



 

downloading process be dominated by the steady state 

behavior of the system. The wget Linux command was used 

for downloading, and its execution time was measured by 

the GNU time command. First, we used no delay to have a 

reference. Then 10ms, 100ms and 1000ms delay was set at 

the DUT, but only on its eth1 interface, which influenced 

only the outgoing packets of the interface. It was done so, 

because the message flow in the two directions were 

independent during the RFC 2544 test, but in the current test 

the frames carrying the data packets from the File Server to 

the Client and the frames carrying the acknowledgements 

from the Client to the File Server belong to the same TCP 

session and applying the delay also for the outgoing packets 

through the eth2 interface would have resulted in a double 

measure delay for the entire communication. For the easy 

replication of our experiments, we disclose our measurement 

script in Fig. 3. As it can be seen from the script, all 

experiments were executed 20 times. The results are shown 

in Table I. Whereas the 10ms delay caused only a hardly 

noticeable increase in the download time, the 100ms delay 

resulted in a more than 4 times increase and the 1s delay 

caused a more than 40 times increase of the download time. 

Therefore, we can lay down that whereas the RFC 2544 

throughput test failed to point out any difference between the 

two routers (the one without delay and the one with a 1s 

delay seemed to operate at full frame rate of the Gigabit 

Ethernet) the user of the two routers experiences a radical 

difference. 

IV. INVESTIGATION OF THE EFFECT OF FRAME LOSS 

Frames loss is present in our networks from the very 

beginning, and TCP can handle some low to moderate frame 

loss rates like 0.01% or even 0.1% quite well. The RFC 

2544 throughput benchmarking procedure tolerates no frame 

loss. Even if only a single frame is lost during the 60s 

measurement interval, the test is qualified as failed. 

Commercial RFC 2544 Testers usually have an option that 

allows the user to set some tolerated frame loss rate. 

A. RFC 2544 Compliant Measurements 

For experimenting with RFC 2544 compliant measurements, 

we used the test system shown in Fig. 1. The only deviation 

of the DUT settings from that of in Section III.A was that 

now we used the following two command lines to achieve 

0.01% frame loss in each directions: 
tc qdisc add dev eth1 root netem \ 

  loss 0.01% limit 100000 

tc qdisc add dev eth2 root netem \ 

  loss 0.01% limit 100000 

We have set the values of both the “Initial Rate” and the 

“Maximum Rate” parameters to 1%. It actually meant 

812.74fps, which was more than high enough considering 

that at this frame rate 48,764 frames can be transmitted 

during the required 60s testing time, and the 0.01% frame 

loss means that 1 frame is lost from every 10,000 frames on 

average, but of course, the dropping of the frames is pseudo 

random.  (It means that the first two steps of the binary 

search are expected to fail, and later steps should sometimes 

succeed sometimes fail due to the loss of a single frame from 

every 10,000 frames on average. It also means that the 

results are expected to be rather scattered.)  For “Minimum 

Rate” and “Resolution”, we set 0.01%, because it was the 

lowest possible value to be set. The “Loss Tolerance” 

parameter was set to 0, to achieve RFC 2544 compliant 

measurements. The tests were executed 20 times. The results 

reported by the Tester are shown in Table II. As expected, 

the results of the 20 measurements are very much scattered. 

The extreme values are “-” and 0.50. We have checked the 

meaning of “-”, the result of the 8-th test, in the 

measurement log. The Tester first executed a test with 1% 

throughput and it failed. Then it performed a test with 0.01% 

throughput (Minimum Rate) and it also failed, therefore it 

did not perform a binary search in the [Minimum Rate, 

Maximum Rate] interval. Thus “-” means “less than 0.01% 

throughput”. The other extreme value is 0.5% throughput, 

which has also happened only once. (We consider it a rare 

event, as 0.25% occurred also only once.) 

We contend that here it is inappropriate to calculate that 

the average of the 20 results is 0.12% of the maximum frame 

rate, because it oversimplifies the results. We believe that it 

is desirable to state the extreme values to reflect the rather 

#!/bin/bash 

for D in 0ms 10ms 100ms 1000ms 

do 

  ssh root@dut "tc qdisc add dev eth1 root netem limit 100000 delay $D" 

  for i in {1..20} 

  do 

    /usr/bin/time -f "%E" -o wget_$D -a wget 198.19.0.2/test.img \ 

      -o wget_log_${D}_$i.log -O /dev/null 

  done 

  ssh root@dut "tc qdisc del dev eth1 root netem limit 100000 delay $D" 

done 

Fig. 3  Measurement script for benchmarking with HTTP download 

 

TABLE I 

DOWNLOAD TIME OF A 10,000MIB SIZE FILE AS A FUNCTION OF THE 

DELAY AT THE DUT (LOWER IS BETTER) 

Delay at the DUT 0ms 10ms 100ms 1000ms 

median (s) 89.11 89.19 377.5 3708 

1st percentile (s) 89.10 89.18 376.9 3695 

99th percentile (s) 89.12 89.36 378.8 3710 
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scattered nature of the results. Anyway, the results are 

extremely low, we can state that the throughput is close to 

zero in the case of 0.01% frame loss. 

We have not performed more RFC 2544 compliant 

throughput test with higher loss rates (e.g. 0.1%, etc.) as it 

was deliberate that they would result in practically zero 

throughput, which we could not reliably measure due to the 

allowed lowest values of the “Minimum Rate” and 

“Resolution” parameters of the Tester. 

As we have mentioned before, commercial Testers allow 

the user to specify some tolerated loss rate. The Anritsu 

Tester calls it as “Loss Tolerance”. We have performed an 

experiment, when it was set to 0.011%. (It was chosen to be 

somewhat higher than 0.01%, the frame drop rate set at the 

DUT.) This time, the results were totally different: 100% 

throughput was reported all 20 times. Please note that this 

measurement did not comply with the requirements of RFC 

2544! 

B. Measurements in a Real-life Situation 

We used the test system shown in Fig. 2, and the 

measurement script was also very similar to the one in 

Fig. 3, just the keyword “delay” was replaced by “loss” and 

the following loss rates were used: 0%, 0.01%, 0.1%, 1%. 

As before, we applied the frame loss only for the outgoing 

traffic through the eth1 interface, that is, the packet flow 

from the client to the server was lossless.  

Results are shown in Table III. The distribution of the 

results of the measurements using 0.01% frame loss overlaps 

with the distribution of the results of the lossless 

measurements. The 0.33s increase of the median download 

time caused by the 0.1% frame loss is still unnoticeable for 

the user. And even though 1% frame loss has doubled the 

download time, communication is still possible with an 

acceptable speed (unlike in the case of 1s delay).  

Therefore, we can lay down that whereas the RFC 2544 

throughput tests showed nearly zero throughput even with 

0.01% frame drop rate, the users experience either no 

difference (with 0.01% or 0.1% frame drop rate) or an 

acceptable communication speed (with 1% frame drop rate) 

in real life. 

V. INVESTIGATION OF THE EFFECT OF SELECTIVE DELAY 

We found it an interesting question, what happens, when 

only a small fraction of the frames is delayed. In Section III, 

we have identified 100ms and 1000ms as relevant delay 

TABLE III 

DOWNLOAD TIME OF A 10,000MIB SIZE FILE AS A FUNCTION OF THE 

FRAME LOSS RATE AT THE DUT (LOWER IS BETTER) 

Frame loss rate  0% 0.01% 0.1% 1% 

median (s) 89.11 89.14 89.44 188.7 

1st percentile (s) 89.10 89.11 89.34 180.6 

99th percentile (s) 89.13 89.15 89.56 197.5 

 

TABLE II 

REPORTED RESULTS OF THE RFC 2544 COMPLIANT THROUGHPUT TEST, WHEN 0.01% OF THE FRAME WERE DROPPED BY THE DUT 

(THE VALUES ARE GIVEN AS PERCENTAGES OF THE MAXIMUM FRAME RATE FOR GIGABIT ETHERNET) 

Frame Size Average 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1,518 0.12 0.10 0.13 0.06 0.04 0.13 0.13 0.06 - 0.25 0.14 0.07 0.13 0.07 0.08 0.05 0.50 0.14 0.04 0.08 0.13 

 

 

tc qdisc add dev eth1 handle 1: root htb 

tc class add dev eth1 parent 1: classid 1:11 htb rate 1000Mbps 

tc qdisc add dev eth1 parent 1:11 handle 11: netem delay 100ms # or 1000ms 

tc filter add dev eth1 parent 1:0 prio 1 protocol ip handle 11 fw flowid 1:11 

Fig. 4  DUT settings for delaying a certain proportion of the frames, which have been marked before (please see the iptables rule in Fig. 5) 

 

#!/bin/bash 

for N in 1000 100 

do 

  ssh root@dut "iptables -t mangle -A FORWARD -m statistic --mode nth --every $N \ 

    --packet 0 -j MARK --set-mark 11" 

  for i in {1..20} 

  do 

    /usr/bin/time -f "%E" -o wget_$N -a wget http:// 198.19.0.2/test.img \ 

      -o wget_log_${N}_$i.log -O /dev/null 

  done 

  ssh root@dut "iptables -t mangle -D FORWARD -m statistic --mode nth --every $N \ 

    --packet 0 -j MARK --set-mark 11" 

done 

Fig. 5  Measurement script for benchmarking with HTTP download 
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values, and we used them in this experiment. As for the 

proportion of the delayed frames, we used 0.1% and 1%, 

which were identified in Section IV as relevant frame loss 

values. We used their possible 2x2=4 combinations as 

parameters for the measurements with selectively delayed 

frames. 

To achieve the selective delaying of 0.1% or 1% of the 

frames, we used the combination of two tools. The statistics 

module of iptables was used to mark every 1000th or 

every 100th frames, and then 100ms or 1000ms delay was 

applied for the marked frames. The commands in Fig. 4 

were issued at the DUT. The bash shell script in Fig 5 was 

executed by the client computer.  

We note that this time we did not perform any RFC 2544 

compliant measurements, because we have already seen that 

delay makes no effect and the applied frame drop rates result 

in a practically zero throughput. 

We performed the previously used file download tests and 

the results are shown in Table IV. It is well visible that the 

measure of the delay (100ms or 1000ms) made no difference 

in the download time. Its explanation can be that TCP 

congestion control handled the late segments as lost ones. 

However, the late TCP segments could be even worse, 

than lost ones. Let us compare the last columns of Table III 

and Table IV. If 1% of the frames was really lost, then the 

median of the download time was 188.7s, whereas if 1% of 

the frames suffered 1s delay, then the median of the 

download time was 218s. Thus we can see that it is worse if 

1% of the frames arrives 1000ms late, than if they are 

completely lost. We surmise that those TCP segments that 

were first considered as lost and then arrived late could 

mislead the congestion control algorithm and thus the 

situation resulted in a higher increase of the download time 

than in the case, when the same amount of frames were 

dropped. 

VI. LATENCY MEASUREMENTS 

To demonstrate the need for a statistically relevant number 

of tests, we used a single directional test and applied 1s 

delay for every 10th frame using the script shown in Fig. 6. 

We have performed two RFC 2544 compliant Latency 

tests according to the test setup shown in Fig. 1. As it is 

required by RFC 2544, first, we determined the throughput 

by a 60s long measurement and then we performed the 120s 

long Latency tests. Of course, the throughput was found to 

be 100% in both cases. The only difference between the two 

tests was the number of repetitions: 20 and 50. RFC 2544 

states that the final result is the average of the measured 

latency results of the (at least 20) measurements. The final 

results of the two tests were: 0.000270863s and 

0.200289483s, which are very much different. Its reason is 

very simple. RFC 2544 Latency test measures only the 

latency of a single tagged4 frame sent after 60s. In the first 

test, none of the 20 tagged frames was delayed. In the 

second test, exactly 10 from the 50 tagged frames was 

delayed. (We have counted them in the measurement log 

file.) Of course, other measurements could give further 

different results. However, these two tests are enough to 

demonstrate the following three things: 

1. Statistically relevant number of tests are needed. 

2. The Latency measurement procedure of RFC 2544 is 

rather questionable. 

3. Using only the average as summarizing function of 

the results is a serious oversimplification. 

We note that whereas RFC 8219 has kept the Throughput 

and Frame Loss Rate measurement procedures, it redefined 

the Latency measurement procedure, which addresses all 

three problems. (Please see Section VII for the details) 

VII. DISCUSSION, RECOMMENDATIONS AND FUTURE WORK 

We believe that the results of the different benchmarking 

measurements procedures should be in agreement with the 

experience of the users. Let us consider, what can be done in 

this regard. 

As for updating the throughput measurement procedure, 

we have already recommended the usage of frame timeout in 

[5], but then we did not have an appropriate tester yet. Since 

then we have implemented siitperf, an RFC 8219 

compliant SIIT (also called stateless NAT64) tester, which 

was released as a free software under the GPLv3 license, and 

it is available from GitHub [14]. Although its primary 

purpose is the benchmarking of SIIT gateways, it may also 

be used for benchmarking IPv4 or IPv6 routers. It has a part 

called siitperf-pdv, which implements packet delay 

variation measurements. It numbers every single test frame, 

records their sending and receiving times, and then 

calculates their delays. This program accepts an optional 

parameter called frame timeout. If this parameter is present 

and its value is positive, then the program reclassifies all 

frames having higher latency than frame timeout as lost, 

when it reports the number of received frames [15]. Thus, it 

is now feasible to carry out throughput benchmarking 

measurements by checking the timeout for every single 

frame individually. As for the proposed value for timeout, 

we have seen in Section V of the current paper that frames 

with 100ms latency were considered as lost, thus we propose 

that the required frame timeout value should be in the order 

of a few milliseconds. Of course, its actual value is still 

subject of research. 

As for the absolutely zero frame loss rate criterion, we 

think that it has been already long relieved in benchmarking 

practice. For example, Kevin Tolly mentioned 0.001% as his 

“zero loss criterion” in 2001. And we have seen that the 

Anritsu tester also allowed the user to specify his own “Loss 

Tolerance” rate. What we consider important, is that the 

applied loss tolerance rate must be well visibly disclosed 

 
4 A frame is marked by an implementation dependent way so that the 

Tester may recognize it, when it arrives back through the DUT.  

TABLE IV 

DOWNLOAD TIME OF A 10,000MIB SIZE FILE AS A FUNCTION OF BOTH THE 

LATENCY AND THE PROPORTION OF THE LATE FRAMES (LOWER IS BETTER) 

Latency  100ms 1000ms 

Proportion  0.1% 1% 0.1% 1% 

median (s) 89.26 218.1 89.26 218.0 

1st percentile (s) 89.23 214.2 89.24 212.8 

99th percentile (s) 89.30 221.4 89.64 221.1 
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together with the results. 

As for the Latency measurement procedure of RFC 2544, 

it was redefined by RFC 8219. The new procedure requires 

to tag at least 500 frames for latency measurement, which 

addresses the first two problems we mentioned in Section 

VI. It also uses different summarizing functions instead of 

average: Typical Latency is the median of the measured 

latencies, and Worst Case Latency is the 99.9th percentile of 

the measured latencies. Thus, the issue of oversimplification 

is also addressed. The only problem is that the scope of RFC 

8219 is IPv6 transition technologies, and it does not update 

RFC 2544 for benchmarking network interconnect devices 

in general. 

According to our understanding, the worst problem is the 

lack of requirement for statistically relevant number of tests. 

Whereas we used Latency measurements for an easy 

demonstration of the problem, it still persists in the case of 

Throughput and Frame Loss Rate tests, which were kept 

unchanged in RFC 8219. As we have mentioned in [5], we 

plan to develop and algorithm which can decide during the 

measurements, if more repetitions are needed or not. 

We have published the “00” version of an Internet Draft 

[16], which recommends to update RFC 2544 as we 

described above. All Internet Drafts are to be referred to as 

“work in progress”, and our one should definitely be 

considered only as a thought provoking writing and it will 

require a lot of work to precisely define new or modified 

benchmarking procedures. 

VIII. CONCLUSION 

We have investigated and demonstrated three issues of the 

RFC 2544 benchmarking procedures. 

We have shown that the 2 seconds global timeout of the 

throughput measurement procedure is inappropriate, and 

recommended the usage of per frame timeout, which means 

the checking of the latency of every single frame. We have 

also shown that it is now possible to carry out using our free 

software tool siitperf-pdv. 

We have demonstrated that the absolutely zero loss 

criterion of RFC 2544 is too strict and it may lead to very 

different throughput results than experienced by the user in 

real life. We proposed to “canonize” the wide spread 

practice of using a non-zero loss criterion together with the 

mandatory indication of its value, when disclosing the 

results. 

We have also exposed the lack of requirement for 

statistically relevant number of tests. As a future solution, we 

plan to develop an algorithm, which can decide during the 

measurements, if more repetitions are needed or not. 
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