

Abstract—In this paper, we investigate three potential issues

of the benchmarking measurement procedures defined in RFC

2544 and also used in RFC 5180 and RFC 8219. One of them is

the lack of proper timeout usage. We use a Linux box, which

can selectively delay a specified ratio of the packets. Using

carefully selected parameters based on our preliminary

measurements, we demonstrate that the experienced speed of

the HTTP download is much less, than what could have been

expected on the basis of the throughput results of the RFC 2544

tests. The other critical issue is the strict, absolutely zero loss

criterion. We use a Linux box, which drops a specified small

ratio of the packets. Whereas the RFC 2544 throughput results

tend to be zero, the experienced speed of the HTTP download is

quite good. The third problem is the lack of requirement for

statistically relevant number of tests in the RFC 2544

benchmarking procedures. We demonstrate its severity with

the latency benchmarking procedure defined in RFC 2544 and

kept unchanged in RFC 5180 but redefined in RFC 8219.

Keywords—benchmarking, frame loss rate, latency, number

of tests, RFC 2554, throughput, timeout.

I. INTRODUCTION

According to our understanding, the aim of benchmarking is

to “accurately measure some standardized performance

characteristics in order to obtain reasonable and comparable

results” [1]. RFC 2544 [2] has been successfully serving this

purpose from 1999 by defining a comprehensive

benchmarking methodology for network interconnect

devices. Its basic measurement procedure is the throughput

measurement. In the simplest case, the measurement setup

consists of two devices, the Tester and the DUT (Device

Under Test). During the throughput measurement, the Tester

sends frames through the DUT at a constant rate for at least

60 seconds, and counts the number of received frames. The

tester keeps receiving for 2 more seconds after finishing the

sending of the frames. If the number of the received frames

is equal with the number of the sent frames, then the frame

rate is increased, and the test is rerun. If the number of the

received frames is less than the number of the sent frames,

then the frame rate is decreased, and the test is rerun. The

Manuscript received February 12, 2020, revised June 3, 2020.

G. Lencse is with the Department of Telecommunications, Széchenyi

István University, Egyetem tér 1, Győr, H-9026, Hungary (phone: +36 96

613-665; fax: +36 96 613-646; e-mail: lencse@sze.hu).

Á. Kovács is with the Dept. of Telecommunications, Széchenyi István

University, Egyetem tér 1, Győr, H-9026, Hungary (akos.kovacs@sze.hu).

K. Shima is with IIJ Innovation Institute Inc., Iidabashi Grand Bloom, 2-

10-2 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan (keiichi@iijlab.net)

throughput is the highest rate, at which the number of the

received frames was equal with the number of the sent

frames. (In practice, a binary search is used, where its initial

upper limit is the maximum frame rate for the media, and its

initial lower limit is zero.) Of course, the measured

throughput value depends on the frame size used, thus RFC

2544 defines some standard frame sizes to be used for

testing.

RFC 5180 [3] was published in 2008, and it addressed

some IPv6 specificities and also defined some further

maximum frames rates for the contemporary media types,

but it kept the throughput benchmarking procedure

unchanged. RFC 5180 has declared IPv6 transition

technologies out of its scope. RFC 8219 [4] defined a

benchmarking methodology for IPv6 transition technologies

in 2017. It has also kept the throughput benchmarking

procedure unchanged.

In our most current research [5], we have performed

benchmarking measurements of different SIIT [6] (also

called stateless NAT64) implementations according to RFC

8219. We have pointed out three problems with the

throughput measurement procedure.

1. As no per frame timeout was defined, some frames

may arrive with several seconds delay and they are

still accepted. (E.g. some frames from the first

second may arrive with 61 seconds delay.) These

frames are very likely handled as lost ones by TCP

implementations and also by real-time UDP

applications. Thus, the measured throughput result

may be very far from the one experienced by the

users.

2. If the DUT has a non-zero but low frame loss rate,

then communication is possible with significant

throughput, but the absolute zero frame loss

requirement of RFC 2544 results in a near zero

throughput measurement result.

3. Having no requirement for multiple (statistically

relevant number of) tests, the measurement results

may be very different and thus unreliable.

Our current effort aims to investigate and deliberately

demonstrate them. As for the first two problems, we

examine, how much the RFC 2544 throughput results may

differ from the throughput experienced in real-life situation.

As for the third one, we cannot avoid dealing with it during

the throughput measurements, and in addition to that, we

demonstrate its seriousness with RFC 2544 latency

measurements.

Gaming with the Throughput and the Latency

Benchmarking Measurement Procedures

of RFC 2544

G. Lencse, Á. Kovács and K. Shima

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

10doi: 10.11601/ijates.v9i2.288

The remainder of this paper is organized as follows. In

Section II, we clarify benchmarking methodology and

terminology. In Section III, we examine how delaying all the

packets influences the result of the RFC 2544 throughput

test and the file download time using the HTTP protocol. In

Section IV, we study how frame loss affects the results of

the before mentioned two tests. In Section V, we investigate

the effect of the selective delay to the real-life

measurements. In section VI, we (further) demonstrate the

need for statistically relevant number of experiments by

latency tests and we also expose the fact that using average

alone as the summarizing function of multiple experiments

can be an oversimplification. In section VII, we discuss our

findings and disclose our recommendations as well as our

plans for further research. Section VIII concludes our paper.

II. METHODOLOGY AND TERMINOLOGY

As its title suggests, RFC 2544 defines a benchmarking

methodology for network interconnect devices, which can be

individual elements of a network, e.g. switches, routers, etc.

On the one hand, ISPs (Internet Service Providers) rely on

the results of RFC 2544 compliant tests, when they choose

the appropriate devices to build up their networks, however,

on the other hand, their ultimate concern is to achieve users’

satisfaction and cost effectivity at the same time. Service

level agreements between ISPs and their customers usually

contain QoS (Quality of Service) parameters, like

throughput, packet loss rate, transmission delay, etc. The

advantage of such parameters is that they can be easily

checked, but they do not describe the QoE (Quality of

Experience) of the users. RFC 6349 [7] aims to asses user

experience by defining a methodology for measuring end-to-

end TCP throughput.

Unfortunately, the terminology is not consistent. The term

goodput is in use for more than two decades. It is mentioned

already in 1998 as “real user level good throughput” [8], and

it is also called as “user seen throughput” in the same paper.

TCP goodput was also called as “useful throughput of TCP”

[9]. Gootput is also called as “effective throughput” [10].

Another definition for goodput is “TCP throughput at the

end nodes” [11]. It is also called as “application throughput”

[12]. However, IETF documents including RFC 6349

usually omit the term. In the rest of our paper, we simply call

it “user experience”.

RFC 2544 measurements should be performed in an

isolated environment containing only the Tester and the

DUT, whereas RFC 6349 measurements can be performed

only by using the entire communication system. (For

example, a web server, a client and the network between

them, which has load from other users, too.) Being aware of

this significant difference between the two, we contend that

RFC 2544 benchmarking results are useful for an ISP if they

give a kind of warranty that if there are no other bottlenecks

in the system, the given device will not deteriorate user

experience. Moreover, we aim to point out some possible

opportunities for amending RFC 2544 with further or

modified tests, the results of which are more in line with the

user experience.

In the rest of this paper, we demonstrate situations, when

the results of RFC 2544 benchmarking tests are not in line

with the user experience.

III. INVESTIGATION OF THE EFFECT OF DELAY

Delay really matters in real-life situation, but according to

our understanding of the RFC 2544 throughput1

benchmarking procedure, it is overly delay tolerant. To

check, if our interpretations is correct, first, we performed

throughput tests with a commercial RFC 2544 tester.

Then, we have examined, how the increase of delay,

which is completely invisible for the RFC 2544 tester, can

degrade the throughput of a communication system in real-

life situations.

As we mentioned before, RFC 2544 does not state how

many times the experiments have to be executed to achieve

reliable throughput results. It only mentions (in its Section

26.2) that the Latency measurements should be repeated at

least 20 times and the reported values should be the average

of the recorded values.

We believe that the necessary number of the repetitions

deserves a careful study for all benchmarking procedures,

and we also plan to do so. Currently, we have chosen to

execute all tests 20 times.

A. RFC 2544 Compliant Measurements

We used the measurement system shown in Fig. 1. Our

Tester was a commercially available, RFC 2544 compliant

Anritsu MP1590B Network Performance Tester. It had a

four port Anritsu MU210212A 10/100/1000M Ethernet

Module, and we used Port1 and Port2 of the module.

The DUT was a contemporary PC from the Info-

communications Laboratory of the Department of

Telecommunications, Széchenyi István University, Győr,

Hungary with the following parameters: Gigabyte H310M H

mother board, 6 core Intel Core i5-8400 2.80GHz CPU, two

Kingmax DDR4 2133GHz 8GB memory modules, two Intel

OEM Gigabit CT Desktop Adapters (for experimentation),

Kingston SA400S3 120GB SSD. Debian Linux 10.2

operating system with 4.19.0-6-amd64 kernel was installed.

1 The same applies to the frame loss rate measurement procedure, too.

Linux router

DUT

Anritsu MP1590B

Port1: 198.18.0.2

eth1: 198.18.0.1 eth2: 198.19.0.1

Port2: 198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Tester

Fig. 1 Measurement setup for RFC 2544 throughput and latency tests

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

11

As otherwise the CPU clock frequency was varying,

which could have caused unstable measurement results

according to our earlier benchmarking experience [13], we

have set it to fixed 2.8GHz by using the tlp Debian

package. The /etc/default/tlp file contained the

following lines:
CPU_SCALING_MIN_FREQ_ON_AC=2800000

CPU_SCALING_MAX_FREQ_ON_AC=2800000

We note that the above frequency values are interpreted in

kHz unit.

Although RFC 2544 recommends using several standard

frame sizes from 64 bytes to 1518 bytes, we decided to use

only 1518 bytes, because our aim was not the complete

performance analysis of a given router, but rather the

investigation of certain special problems2, and the 1518

bytes frame size was the natural choice for the file transfer

applications we used for real-life testing.

For delaying the IP datagrams, we used the tc command

of the iproute2 Debian package. We used the following

two command lines to delay all packets by 1s:
tc qdisc add dev eth1 root netem \

 delay 1s limit 100000

tc qdisc add dev eth2 root netem \

 delay 1s limit 100000

Remarks:

 The specified delay is applied only to the outgoing

packets through the specified interface, this is why

we used two commands.

 We did not intend to limit the packet rate at all, but

we had to set it to some appropriate value, because

otherwise it was automatically set to 1000. (The

used 100,000 value was chosen to be greater than

81,274, the maximum frame rate for Gigabit

Ethernet using 1518bytes long frames3.)

As required by RFC 2544, we used bidirectional traffic

and the duration of the tests was 60s.

To be able to disclose all the details of the measurements,

we must mention some properties of the Anritsu tester.

Although throughput is usually specified in frames per

second (fps), the user of the Anritsu tester has to specify

the required frame rates in a certain proportion of the

maximum frame rate for the media at the given frame size.

2 In section III.A, we investigate, how the delay of the packets effects

the RFC 2544 results, and in Section III.B, we examine, how it effects the

real life user experience. In the upcoming sections, we study different

problems, but we use the same measurement setup with some minor

changes.
3 Please refer to Appendix A.1 of RFC 5180 for the theoretical

maximum frame rates for different media.

The user can set the following values:

 Initial Rate: frame rate for the very first test. If it

is set to 100% and the test is passed, then no

binary search is executed.

 Maximum Rate: The initial upper bound for the

binary search.

 Minimum Rate: The initial lower bound for the

binary search.

 Resolution: The binary search is finished, if the

difference between the upper bound and lower

bound of the binary search is less than or equal

with this value.

 Loss Tolerance: The Tester allows the user to

specify some tolerated loss rate. It must be set to

0 to perform an RFC 2544 compliant test. (We

always did so, unless we stated otherwise.)

First, we performed the throughput test without delaying

the test frames by the DUT. The initial frame rate was set to

100% in the Tester and the tests were passed all 20 times.

The reported frame rate was 162,548fps, which is exactly

the double of the maximum frame rate of Gigabit Ethernet.

(The Tester reports the number of all transmitted frames, not

frames per direction.)

Then the tests were repeated by applying the above

mentioned tc commands to delay all the test frames in both

directions. As expected, we have received the same results,

162,548fps for all 20 times.

B. Measurements in a Real-life Situation

We used the measurement system shown in Fig. 2. All three

computers had the same hardware as before, except that

Client and File Server had only a single Intel OEM Gigabit

CT Desktop Adapter for experimentation, each. (For

controlling the experiments, the integrated NICs were used.)

We wanted to experiment in a realistic environment and

share the experience of an average user, thus we did not do

any tuning on the TCP settings of the Linux kernel, but left

them as they were. For the repeatability of our experiments,

we have checked and document the most important settings

as follows. The TCP congestion algorithm was set to

CUBIC, SACK (Selective Acknowledgment) and window

scaling were enabled on both the Client and the File Server.

For benchmarking, we downloaded a 10,000MiB size file

using the HTTP protocol. The file size was chosen large

enough so that its downloading through the Gigabit Ethernet

link last more than one minute, and thus the initial transient

(TCP connection establishment, and “slow start” phase of

the congestion control protocol) may be amortized and the

DUTClient

eth1:
198.18.0.2

eth1:
198.18.0.1

File Server

eth2:
198.19.0.1

eth1:
198.19.0.2

1000Base-T
(direct cable)

1000Base-T
(direct cable)

Fig. 2 Test network for our real-life investigations

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

12

downloading process be dominated by the steady state

behavior of the system. The wget Linux command was used

for downloading, and its execution time was measured by

the GNU time command. First, we used no delay to have a

reference. Then 10ms, 100ms and 1000ms delay was set at

the DUT, but only on its eth1 interface, which influenced

only the outgoing packets of the interface. It was done so,

because the message flow in the two directions were

independent during the RFC 2544 test, but in the current test

the frames carrying the data packets from the File Server to

the Client and the frames carrying the acknowledgements

from the Client to the File Server belong to the same TCP

session and applying the delay also for the outgoing packets

through the eth2 interface would have resulted in a double

measure delay for the entire communication. For the easy

replication of our experiments, we disclose our measurement

script in Fig. 3. As it can be seen from the script, all

experiments were executed 20 times. The results are shown

in Table I. Whereas the 10ms delay caused only a hardly

noticeable increase in the download time, the 100ms delay

resulted in a more than 4 times increase and the 1s delay

caused a more than 40 times increase of the download time.

Therefore, we can lay down that whereas the RFC 2544

throughput test failed to point out any difference between the

two routers (the one without delay and the one with a 1s

delay seemed to operate at full frame rate of the Gigabit

Ethernet) the user of the two routers experiences a radical

difference.

IV. INVESTIGATION OF THE EFFECT OF FRAME LOSS

Frames loss is present in our networks from the very

beginning, and TCP can handle some low to moderate frame

loss rates like 0.01% or even 0.1% quite well. The RFC

2544 throughput benchmarking procedure tolerates no frame

loss. Even if only a single frame is lost during the 60s

measurement interval, the test is qualified as failed.

Commercial RFC 2544 Testers usually have an option that

allows the user to set some tolerated frame loss rate.

A. RFC 2544 Compliant Measurements

For experimenting with RFC 2544 compliant measurements,

we used the test system shown in Fig. 1. The only deviation

of the DUT settings from that of in Section III.A was that

now we used the following two command lines to achieve

0.01% frame loss in each directions:
tc qdisc add dev eth1 root netem \

 loss 0.01% limit 100000

tc qdisc add dev eth2 root netem \

 loss 0.01% limit 100000

We have set the values of both the “Initial Rate” and the

“Maximum Rate” parameters to 1%. It actually meant

812.74fps, which was more than high enough considering

that at this frame rate 48,764 frames can be transmitted

during the required 60s testing time, and the 0.01% frame

loss means that 1 frame is lost from every 10,000 frames on

average, but of course, the dropping of the frames is pseudo

random. (It means that the first two steps of the binary

search are expected to fail, and later steps should sometimes

succeed sometimes fail due to the loss of a single frame from

every 10,000 frames on average. It also means that the

results are expected to be rather scattered.) For “Minimum

Rate” and “Resolution”, we set 0.01%, because it was the

lowest possible value to be set. The “Loss Tolerance”

parameter was set to 0, to achieve RFC 2544 compliant

measurements. The tests were executed 20 times. The results

reported by the Tester are shown in Table II. As expected,

the results of the 20 measurements are very much scattered.

The extreme values are “-” and 0.50. We have checked the

meaning of “-”, the result of the 8-th test, in the

measurement log. The Tester first executed a test with 1%

throughput and it failed. Then it performed a test with 0.01%

throughput (Minimum Rate) and it also failed, therefore it

did not perform a binary search in the [Minimum Rate,

Maximum Rate] interval. Thus “-” means “less than 0.01%

throughput”. The other extreme value is 0.5% throughput,

which has also happened only once. (We consider it a rare

event, as 0.25% occurred also only once.)

We contend that here it is inappropriate to calculate that

the average of the 20 results is 0.12% of the maximum frame

rate, because it oversimplifies the results. We believe that it

is desirable to state the extreme values to reflect the rather

#!/bin/bash

for D in 0ms 10ms 100ms 1000ms

do

 ssh root@dut "tc qdisc add dev eth1 root netem limit 100000 delay $D"

 for i in {1..20}

 do

 /usr/bin/time -f "%E" -o wget_$D -a wget 198.19.0.2/test.img \

 -o wget_log_${D}_$i.log -O /dev/null

 done

 ssh root@dut "tc qdisc del dev eth1 root netem limit 100000 delay $D"

done

Fig. 3 Measurement script for benchmarking with HTTP download

TABLE I

DOWNLOAD TIME OF A 10,000MIB SIZE FILE AS A FUNCTION OF THE

DELAY AT THE DUT (LOWER IS BETTER)

Delay at the DUT 0ms 10ms 100ms 1000ms

median (s) 89.11 89.19 377.5 3708

1st percentile (s) 89.10 89.18 376.9 3695

99th percentile (s) 89.12 89.36 378.8 3710

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

13

scattered nature of the results. Anyway, the results are

extremely low, we can state that the throughput is close to

zero in the case of 0.01% frame loss.

We have not performed more RFC 2544 compliant

throughput test with higher loss rates (e.g. 0.1%, etc.) as it

was deliberate that they would result in practically zero

throughput, which we could not reliably measure due to the

allowed lowest values of the “Minimum Rate” and

“Resolution” parameters of the Tester.

As we have mentioned before, commercial Testers allow

the user to specify some tolerated loss rate. The Anritsu

Tester calls it as “Loss Tolerance”. We have performed an

experiment, when it was set to 0.011%. (It was chosen to be

somewhat higher than 0.01%, the frame drop rate set at the

DUT.) This time, the results were totally different: 100%

throughput was reported all 20 times. Please note that this

measurement did not comply with the requirements of RFC

2544!

B. Measurements in a Real-life Situation

We used the test system shown in Fig. 2, and the

measurement script was also very similar to the one in

Fig. 3, just the keyword “delay” was replaced by “loss” and

the following loss rates were used: 0%, 0.01%, 0.1%, 1%.

As before, we applied the frame loss only for the outgoing

traffic through the eth1 interface, that is, the packet flow

from the client to the server was lossless.

Results are shown in Table III. The distribution of the

results of the measurements using 0.01% frame loss overlaps

with the distribution of the results of the lossless

measurements. The 0.33s increase of the median download

time caused by the 0.1% frame loss is still unnoticeable for

the user. And even though 1% frame loss has doubled the

download time, communication is still possible with an

acceptable speed (unlike in the case of 1s delay).

Therefore, we can lay down that whereas the RFC 2544

throughput tests showed nearly zero throughput even with

0.01% frame drop rate, the users experience either no

difference (with 0.01% or 0.1% frame drop rate) or an

acceptable communication speed (with 1% frame drop rate)

in real life.

V. INVESTIGATION OF THE EFFECT OF SELECTIVE DELAY

We found it an interesting question, what happens, when

only a small fraction of the frames is delayed. In Section III,

we have identified 100ms and 1000ms as relevant delay

TABLE III

DOWNLOAD TIME OF A 10,000MIB SIZE FILE AS A FUNCTION OF THE

FRAME LOSS RATE AT THE DUT (LOWER IS BETTER)

Frame loss rate 0% 0.01% 0.1% 1%

median (s) 89.11 89.14 89.44 188.7

1st percentile (s) 89.10 89.11 89.34 180.6

99th percentile (s) 89.13 89.15 89.56 197.5

TABLE II

REPORTED RESULTS OF THE RFC 2544 COMPLIANT THROUGHPUT TEST, WHEN 0.01% OF THE FRAME WERE DROPPED BY THE DUT

(THE VALUES ARE GIVEN AS PERCENTAGES OF THE MAXIMUM FRAME RATE FOR GIGABIT ETHERNET)

Frame Size Average 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1,518 0.12 0.10 0.13 0.06 0.04 0.13 0.13 0.06 - 0.25 0.14 0.07 0.13 0.07 0.08 0.05 0.50 0.14 0.04 0.08 0.13

tc qdisc add dev eth1 handle 1: root htb

tc class add dev eth1 parent 1: classid 1:11 htb rate 1000Mbps

tc qdisc add dev eth1 parent 1:11 handle 11: netem delay 100ms # or 1000ms

tc filter add dev eth1 parent 1:0 prio 1 protocol ip handle 11 fw flowid 1:11

Fig. 4 DUT settings for delaying a certain proportion of the frames, which have been marked before (please see the iptables rule in Fig. 5)

#!/bin/bash

for N in 1000 100

do

 ssh root@dut "iptables -t mangle -A FORWARD -m statistic --mode nth --every $N \

 --packet 0 -j MARK --set-mark 11"

 for i in {1..20}

 do

 /usr/bin/time -f "%E" -o wget_$N -a wget http:// 198.19.0.2/test.img \

 -o wget_log_${N}_$i.log -O /dev/null

 done

 ssh root@dut "iptables -t mangle -D FORWARD -m statistic --mode nth --every $N \

 --packet 0 -j MARK --set-mark 11"

done

Fig. 5 Measurement script for benchmarking with HTTP download

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

14

values, and we used them in this experiment. As for the

proportion of the delayed frames, we used 0.1% and 1%,

which were identified in Section IV as relevant frame loss

values. We used their possible 2x2=4 combinations as

parameters for the measurements with selectively delayed

frames.

To achieve the selective delaying of 0.1% or 1% of the

frames, we used the combination of two tools. The statistics

module of iptables was used to mark every 1000th or

every 100th frames, and then 100ms or 1000ms delay was

applied for the marked frames. The commands in Fig. 4

were issued at the DUT. The bash shell script in Fig 5 was

executed by the client computer.

We note that this time we did not perform any RFC 2544

compliant measurements, because we have already seen that

delay makes no effect and the applied frame drop rates result

in a practically zero throughput.

We performed the previously used file download tests and

the results are shown in Table IV. It is well visible that the

measure of the delay (100ms or 1000ms) made no difference

in the download time. Its explanation can be that TCP

congestion control handled the late segments as lost ones.

However, the late TCP segments could be even worse,

than lost ones. Let us compare the last columns of Table III

and Table IV. If 1% of the frames was really lost, then the

median of the download time was 188.7s, whereas if 1% of

the frames suffered 1s delay, then the median of the

download time was 218s. Thus we can see that it is worse if

1% of the frames arrives 1000ms late, than if they are

completely lost. We surmise that those TCP segments that

were first considered as lost and then arrived late could

mislead the congestion control algorithm and thus the

situation resulted in a higher increase of the download time

than in the case, when the same amount of frames were

dropped.

VI. LATENCY MEASUREMENTS

To demonstrate the need for a statistically relevant number

of tests, we used a single directional test and applied 1s

delay for every 10th frame using the script shown in Fig. 6.

We have performed two RFC 2544 compliant Latency

tests according to the test setup shown in Fig. 1. As it is

required by RFC 2544, first, we determined the throughput

by a 60s long measurement and then we performed the 120s

long Latency tests. Of course, the throughput was found to

be 100% in both cases. The only difference between the two

tests was the number of repetitions: 20 and 50. RFC 2544

states that the final result is the average of the measured

latency results of the (at least 20) measurements. The final

results of the two tests were: 0.000270863s and

0.200289483s, which are very much different. Its reason is

very simple. RFC 2544 Latency test measures only the

latency of a single tagged4 frame sent after 60s. In the first

test, none of the 20 tagged frames was delayed. In the

second test, exactly 10 from the 50 tagged frames was

delayed. (We have counted them in the measurement log

file.) Of course, other measurements could give further

different results. However, these two tests are enough to

demonstrate the following three things:

1. Statistically relevant number of tests are needed.

2. The Latency measurement procedure of RFC 2544 is

rather questionable.

3. Using only the average as summarizing function of

the results is a serious oversimplification.

We note that whereas RFC 8219 has kept the Throughput

and Frame Loss Rate measurement procedures, it redefined

the Latency measurement procedure, which addresses all

three problems. (Please see Section VII for the details)

VII. DISCUSSION, RECOMMENDATIONS AND FUTURE WORK

We believe that the results of the different benchmarking

measurements procedures should be in agreement with the

experience of the users. Let us consider, what can be done in

this regard.

As for updating the throughput measurement procedure,

we have already recommended the usage of frame timeout in

[5], but then we did not have an appropriate tester yet. Since

then we have implemented siitperf, an RFC 8219

compliant SIIT (also called stateless NAT64) tester, which

was released as a free software under the GPLv3 license, and

it is available from GitHub [14]. Although its primary

purpose is the benchmarking of SIIT gateways, it may also

be used for benchmarking IPv4 or IPv6 routers. It has a part

called siitperf-pdv, which implements packet delay

variation measurements. It numbers every single test frame,

records their sending and receiving times, and then

calculates their delays. This program accepts an optional

parameter called frame timeout. If this parameter is present

and its value is positive, then the program reclassifies all

frames having higher latency than frame timeout as lost,

when it reports the number of received frames [15]. Thus, it

is now feasible to carry out throughput benchmarking

measurements by checking the timeout for every single

frame individually. As for the proposed value for timeout,

we have seen in Section V of the current paper that frames

with 100ms latency were considered as lost, thus we propose

that the required frame timeout value should be in the order

of a few milliseconds. Of course, its actual value is still

subject of research.

As for the absolutely zero frame loss rate criterion, we

think that it has been already long relieved in benchmarking

practice. For example, Kevin Tolly mentioned 0.001% as his

“zero loss criterion” in 2001. And we have seen that the

Anritsu tester also allowed the user to specify his own “Loss

Tolerance” rate. What we consider important, is that the

applied loss tolerance rate must be well visibly disclosed

4 A frame is marked by an implementation dependent way so that the

Tester may recognize it, when it arrives back through the DUT.

TABLE IV

DOWNLOAD TIME OF A 10,000MIB SIZE FILE AS A FUNCTION OF BOTH THE

LATENCY AND THE PROPORTION OF THE LATE FRAMES (LOWER IS BETTER)

Latency 100ms 1000ms

Proportion 0.1% 1% 0.1% 1%

median (s) 89.26 218.1 89.26 218.0

1st percentile (s) 89.23 214.2 89.24 212.8

99th percentile (s) 89.30 221.4 89.64 221.1

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

15

together with the results.

As for the Latency measurement procedure of RFC 2544,

it was redefined by RFC 8219. The new procedure requires

to tag at least 500 frames for latency measurement, which

addresses the first two problems we mentioned in Section

VI. It also uses different summarizing functions instead of

average: Typical Latency is the median of the measured

latencies, and Worst Case Latency is the 99.9th percentile of

the measured latencies. Thus, the issue of oversimplification

is also addressed. The only problem is that the scope of RFC

8219 is IPv6 transition technologies, and it does not update

RFC 2544 for benchmarking network interconnect devices

in general.

According to our understanding, the worst problem is the

lack of requirement for statistically relevant number of tests.

Whereas we used Latency measurements for an easy

demonstration of the problem, it still persists in the case of

Throughput and Frame Loss Rate tests, which were kept

unchanged in RFC 8219. As we have mentioned in [5], we

plan to develop and algorithm which can decide during the

measurements, if more repetitions are needed or not.

We have published the “00” version of an Internet Draft

[16], which recommends to update RFC 2544 as we

described above. All Internet Drafts are to be referred to as

“work in progress”, and our one should definitely be

considered only as a thought provoking writing and it will

require a lot of work to precisely define new or modified

benchmarking procedures.

VIII. CONCLUSION

We have investigated and demonstrated three issues of the

RFC 2544 benchmarking procedures.

We have shown that the 2 seconds global timeout of the

throughput measurement procedure is inappropriate, and

recommended the usage of per frame timeout, which means

the checking of the latency of every single frame. We have

also shown that it is now possible to carry out using our free

software tool siitperf-pdv.

We have demonstrated that the absolutely zero loss

criterion of RFC 2544 is too strict and it may lead to very

different throughput results than experienced by the user in

real life. We proposed to “canonize” the wide spread

practice of using a non-zero loss criterion together with the

mandatory indication of its value, when disclosing the

results.

We have also exposed the lack of requirement for

statistically relevant number of tests. As a future solution, we

plan to develop an algorithm, which can decide during the

measurements, if more repetitions are needed or not.

ACKNOWLEDGMENT

The authors thank the National Media and Info-

communications Authority (NMHH) of Hungary for landing

us the Anritsu MP1590B Network Performance Tester.

The authors thank István Pilisi, NMHH, for reading and

commenting the manuscript.

REFERENCES

[1] G. Lencse, “Benchmarking methodology for IPv6 transition

technologies”, IIJ Lab seminar, Tokyo, Oct. 10, 2017, [Online].

Available: https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-

seminar-20171010.pdf
[2] S. Bradner and J. McQuaid, “Benchmarking methodology for

network interconnect devices”, IETF RFC 2544, 1999. DOI:
10.17487/RFC2544

[3] C. Popoviciu, A. Hamza, G. Van de Velde, and D. Dugatkin, “IPv6
benchmarking methodology for network interconnect devices”, IETF
RFC 5180, 2008. DOI: 10.17487/RFC5180

[4] M. Georgescu, L. Pislaru L, and G. Lencse, “Benchmarking
methodology for IPv6 transition technologies, IETF RFC 8219, 2017.
DOI: 10.17487/RFC8219

[5] G. Lencse, K. Shima, “Performance analysis of SIIT implementations:
Testing and improving the methodology”, Computer
Communications, vol. 156, no. 1, pp. 54-67, April 15, 2020, DOI:
10.1016/j.comcom.2020.03.034

[6] C. Bao, X. Li, F. Baker, T. Anderson, and F. Gont, “IP/ICMP
translation algorithm”, IETF RFC 7915, 2016. DOI:
10.17487/RFC7915

[7] B. Constantine, G. Forget, R. Geib, R. Schrage, “Framework for TCP
Throughput Testing”, IETF RFC 6349, 2011. DOI:
10.17487/RFC6349

[8] P. Lettieri and M. B. Srivastava, “Adaptive frame length control for
improving wireless link throughput, range, and energy efficiency”
Proc. IEEE INFOCOM '98, San Francisco, CA, USA, 1998. DOI:
10.1109/INFCOM.1998.665076

[9] Y. Bai, A.T. Ogielski, G. Wu, “Interactions of TCP and radio link
ARQ protocol” Proc. IEEE VTS 50th Vehicular Technology
Conference, Amsterdam, The Netherlands, 1999. DOI:
10.1109/VETECF.1999.801596

[10] V. Tsaoussidis, H. Badr, X. Ge, K. Pentikousis, “Energy/throughput
tradeoffs of TCP error control strategies”, Proc. ISCC 2000, Antibes-
Juan Les Pins, France, 2000. DOI: 10.1109/ISCC.2000.860618

[11] N. Celandroni, F. Potorti, “Maximizing single connection TCP
goodput by trading bandwidth for BER”, International Journal of
Communication Systems, vol. 16, no. 1, pp. 63-79, February 18,
2003. DOI: 10.1002/dac.580

[12] Peng Zhang ; Hongbo Wang ; Shiduan Cheng, “Shrinking MTU to
Mitigate TCP Incast Throughput Collapse in Data Center Networks”,
Proc. 2011 Third International Conference on Communications and
Mobile Computing, Qingdao, China, 2011. DOI:
10.1109/CMC.2011.68

[13] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
implementations: Theory and practice”, Computer Communications,
vol. 127, no. 1, pp. 61-74, September 1, 2018. DOI:
10.1016/j.comcom.2018.05.005

[14] G. Lencse, “Siitperf: an RFC 8219 compliant SIIT (stateless
NAT64) tester written in C++ using DPDK”, source code, [Online].
Available: https://github.com/lencsegabor/siitperf

[15] G. Lencse, “Design and implementation of a software tester for
benchmarking stateless NAT64 gateways”, accepted for publication

tc qdisc add dev eth1 handle 1: root htb

tc class add dev eth1 parent 1: classid 1:11 htb rate 1000Mbps

tc qdisc add dev eth1 parent 1:11 handle 11: netem delay 1000ms limit 100000

tc filter add dev eth1 parent 1:0 prio 1 protocol ip handle 11 fw flowid 1:11

iptables -t mangle -A FORWARD -m statistic --mode nth --every 10 --packet 0 \

 -j MARK --set-mark 11

Fig. 6 DUT settings for delaying every 10th frame by 1s

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

16

https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-20171010.pdf
https://seminar-materials.iijlab.net/iijlab-seminar/iijlab-seminar-20171010.pdf
https://github.com/lencsegabor/siitperf

in IEICE Transactions on Communications, revised version is
available: http://www.hit.bme.hu/~lencse/publications/IEICE-2020-
siitperf-revised.pdf

[16] G. Lencse, K. Shima, “An upgrade to benchmarking methodology for
network interconnect devices”, individual Internet Draft, May 20,
2020. available: https://tools.ietf.org/html/draft-lencse-bmwg-
rfc2544-bis-00

Gábor Lencse received his MSc and PhD

in computer science from the Budapest

University of Technology and Economics,

Budapest, Hungary in 1994 and 2001,

respectively.

 He has been working full time for the

Department of Telecommunications,

Széchenyi István University, Győr,

Hungary since 1997. Now, he is a

Professor. He has been working part time

for the Department of Networked Systems

and Services, Budapest University of

Technology and Economics as a Senior

Research Fellow since 2005. His research

interests include the performance and security analysis of IPv6 transition

technologies.

Ákos Kovács received his BSc and MSc in

Electrical Engineering from the Széchenyi

István University, Győr, Hungary in 2008

and 2013, respectively.

 He has been working full time for the

Department of Telecommunications, Szé-

chenyi István University, Győr, Hungary

since 2008 as Laboratory Engineer. Now he

works as an Assistant Lecturer. He is also a

PhD student, and his research field includes

the Cloud infrastructure and performance

analysis of Multipath communication

techniques.

Keiichi Shima is a deputy director at the

Research Laboratory of IIJ Innovation

Institute, Inc.

 His research field is the Internet,

including designing and implementing

communication protocols, computer

networking technologies, computer network

security, AI-based anomaly detection, and

so forth. He also works as a board member

of the WIDE project operating a nation wide

research network in Japan.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 9, No. 2 (2020)

17

http://www.hit.bme.hu/~lencse/publications/IEICE-2020-siitperf-revised.pdf
http://www.hit.bme.hu/~lencse/publications/IEICE-2020-siitperf-revised.pdf
https://tools.ietf.org/html/draft-lencse-bmwg-rfc2544-bis-00
https://tools.ietf.org/html/draft-lencse-bmwg-rfc2544-bis-00

