

Acta
Technica
Jaurinensis

Vol. 9, No. 2, pp. 158-170, 2016
DOI: 10.14513/actatechjaur.v9.n2.408

Available online at acta.sze.hu

158

Advanced Modelling of Virtualized Servers

Á. Kovács1, G. Lencse2

1,2Széchenyi István University, Egyetem tér 1. H-9026 Győr, Hungary
Phone: +36 96 613 646

e-mail: 1kovacs.akos@sze.hu, 2lencse@sze.hu

Abstract: In the recent years, server virtualization is one of the most important
directions of IT infrastructure development. Simulating virtualized
infrastructures are unavoidable for designing cloud systems that are
customized perfectly for a company. In this paper, we used Opennebula,
Haizea and some other tools under public licenses to experiment with. We
executed several experiments to examine measurement and simulation
capabilities of Haizea and we also tested some typical cluster compilations
from the point of view of usability and power consumption. We also tested
an open source high availability web server that used virtual machines as
computing resource.

Keywords: simulation, Opennebula, Haizea, Cloud Computing, consumption

1. Introduction

This paper is an extended version of our former conference paper [1]

Virtualized infrastructures are spreading around the world. They can optimize the
performance resulting in lower TCO (Total Cost of Ownership) and greatly increased
manageability of IT systems. The next evolution jump was the cloud computing systems.
In this solution, the IT engineer only maintains the hardware, and the end users only rent
the infrastructure. The most accepted definition of cloud computing was published by
NIST [2] which defines the five essential characteristics of the cloud computing systems.

Modelling these system are one of the most researched topics. Many companies hosts
virtual machines to sell them as a service. Predicting how many virtual machines can be
operated using a given hardware infrastructure, or how much time it consumes to create
a given number of virtual machines is very important to them. Opennebula [3] is a virtual
infrastructure engine, which can deploy, monitor and control virtual machines across
many physical nodes. Haizea [3] was developed by the University of Chicago. It is an
open source lease management architecture which can be used by Opennebula as a regular
scheduler. Using these two tools, one can manage physical nodes to automate the
generation of virtual machines defined by templates. Haizea can also work as a virtual
infrastructure simulator, which can predict (based on a model) how many virtual
machines can be safely run in an infrastructure.

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

159

We simulated and analysed a system built using a Bladecenter and Haizea in simulation
mode as well as Opennebula mode to do experiments and compare them to each other.
The remainder of this paper organized as follows. In section 2, a brief introduction is
given about the system, what kind of hardware was used for the experiments. In section
3, the modelling with Haizea is illustrated. In sections 4, our experiments are described
and results are presented. In section 5, our results are discussed. Finally, our conclusions
are given.

2. Test Environment

An IBM Bladecenter was used as the test environment and VMware virtual machine
was used as the cloud engine. The specifications were the following:

• Cloud engine: VMware ESXi Virtual Machine (VM version 7) 2 CPUs, 2GB
RAM 1x20GB Disks (iSCSI), 1x100GB (NFS), Debian 6.0.4 OS;

• Cloud nodes: HS21 Blade server 2x L5240 Dual-core Xeon, 8GB DDRII ECC
RAM, 73GB SAS Disk, 2x1Gb NIC, Debian 6.0.4 OS.

The topology of the test system is shown in Fig. 1. After the installation, we set up
Opennebula on the cloud engine virtual machine. It’s hardware requirements were
minimal, it only consumed several MBs of disk space.

Opennebula supports a bunch of virtualization solutions, including VMware, Xen, and
KVM[4].

We used KVM virtualization on the cloud nodes, with access to two networks. One
for management and one for Internet access.

Figure 1. Test system structure

Opennebula uses remote command execution trough SSH tunnel, and for that we had

to set up key based authentication between the cloud engine and the cloud nodes. For
being able to manage the cloud nodes, we also had to set up the proper drivers for the
virtualization solution we have chosen. These were the following:

• im_kvm (Information Manager): this driver gathers information about the cloud
nodes e.g. numbers of running virtual machine and available memory;

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

160

• vmm_kvm (Virtual Machine Manager): this driver monitors the virtual
machines on the cloud nodes;

• tm_nfs (Transfer Manager) this driver transfers the virtual machine images
which are defined by the virtual machine template.

For the proper operation, we have to declare a virtual network in Opennebula with pairs
of MAC addresses and IP addresses. With this, we are able to add a DHCP server with
host directives to manage the Virtual Machines to get the right IP addresses. Opennebula
provides shared storage to the cloud nodes, which we implemented by an NFS server on
the cloud engine.

3. Modelling in Haizea

Haizea can be used as a scheduler instead of Openebula’s best-effort leases [5]Hiba!
A hivatkozási forrás nem található. where a virtual resource is allocated as soon as it is
available, or the request is placed in a queue when it is necessary (as no resource is
available). Haizea leases contain various information which include the hardware and
software resources and the time or availability when these resources can be accessed.
Haizea commands are separated into three main blocks:

• request block: incoming requests, which can be added manually through CLI
(Command Line Interface) or can be read from a special formatted XML file;

• scheduler block: this block processes the requests which determine which virtual
machine starts or stops and when;

• working block: this block sends orders to the simulation (or in openebula mode
to the Opennebula) to manage Virtual resources.

To run Haizea instead of the default scheduler of the Opennebula, the lease must
contain the Haizea option in an Opennebula request. The simulation can be set up by
two files. The first file (see Fig. 2.) contains the performance of the infrastructure and the
second one contains the load of the system. The first file also has information about the
transfer parameters of the virtual machine images (image size and transmission channel
speed) which must be defined based on the real system [6].

In simulation mode, we have to define the resources for the Haizea. The most important
ones are CPU and memory parameters and the number of cloud nodes. Also some other
things have to be defined such as the clock is simulated or real time. We added four CPU
cores for each of the nodes, and 7700 MB memory, because the Operating system that
runs the KVM virtualization also uses some system memory from the available 8192MB.
After that, we created the XML file that describes the load of the system. The XML file
must contain various information for example the amount of virtual resources (CPU,
memory, and system image file), and the starting time of the lease. This file also describes
the duration of the lease as well. We added all the leases into one file. We defined
homogenous load for the simulation. All the virtual machines had 1 CPU core, 1 GB
memory and 1 NIC. All the machines working with the same vanilla Debian image we
created manually. The request of the virtual machines was sent at the 00:00:00 time. The
duration of the virtual machine lifecycle was generally 1 hour for all of them. And the
starting time was generated with Poisson distribution shown in Fig. 3. The request were

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

161

overlapping with each other so it forced Haizea to use best-effort algorithm.

[general]
loglevel: DEBUG

logfile: log/Haizea_sim_tilb_1.log

lease-failure-handling: exit-raise
mode: simulated

lease-preparation: imagetransfer
[scheduling]

policy-preemption: ar-preempts-everything
wakeup-interval: 10
suspension: none
migration: no
[simulation]

clock: simulated
starttime: 2013-04-04 11:03:15
resources: 3 CPU:400 Memory:7700
imagetransfer-bandwidth: 60
stop-when: all-leases-done
[tracefile]

tracefile: /srv/cloud/one/sims/sze_tilb_sim.lwf

Figure 2. HAIZEA configuration file

Figure 3. The POISSON distribution of the requests

4. Measurements

4.1. Testing the Virtual Machines

4.1.1. Testing the starting of the virtual machines

For the measuring mode, we generated the same jobs as for the simulation. We created
18 virtual machine description files with the same parameters as we defined in the
simulation, only the virtual machine names and the starting times were different in each

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

162

file. We used a simple bash script to run the measurement. It is important to notice that
whereas the simulation finished almost instantly, the execution of the bash script took 5
seconds in average. Because the whole measurement took about 6 hours this difference
was negligible. In measurement mode we used Haizea to schedule the virtual machines
and Opennebula for deploying them. Only a few changes had to be made in the
configuration file because the available resources were given by Opennebula and not
manually and of course we had to define the Opennebula host, which one, in our case,
was the same machine that executed Haizea. After we started the measurement, the
Opennebula was filled up with the requests, and at their starting time when it copied the
given virtual machine image file to a separate directory. After that it generated the virtual
machine definition file and finally the virtual machine booted with the given parameters.
After the experiments we used some Linux based text processing tools (sed, awk, grep)
to process the log files for producing the results. We did not deal with the stopping time
of the virtual machines, because we modified the shutdown script not to shut down but
delete the virtual machines for simplifying the experiments.

Table 1. Difference Between simulation and measurement

HAIZEA OpenNebula Difference

(hh:mm:ss)
8:29:09 8:33:17 0:04:08

8:49:09 8:52:44 0:03:35

9:03:09 9:07:21 0:04:12

9:22:10 9:26:17 0:04:07

9:37:10 9:41:38 0:04:28

9:50:10 9:53:38 0:03:28

10:00:11 10:04:00 0:03:49

10:21:11 10:24:46 0:03:35

10:39:11 10:43:43 0:04:32

10:53:12 10:56:47 0:03:35

11:21:12 11:25:17 0:04:05

11:37:12 11:40:55 0:03:43

11:53:12 11:56:54 0:03:42

12:07:13 12:10:49 0:03:36

12:21:13 12:24:47 0:03:34

12:34:13 12:37:47 0:03:34

12:47:14 12:51:27 0:04:13

12:58:14 13:01:56 0:03:42

13:13:14 13:16:45 0:03:31

Average: 0:03:51

Std. deviation: 0:00:20

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

163

Figure 4. The static difference between the simulation and the measurement

As we can see in Table I there is a static difference between the simulation and the
measurement with an average of 3 minutes and 51 seconds. The generated image file size
was 4096 MB. It took averagely this time to clone an image file to the predefined place.

4.1.2. Examining the limits of the system

We examined the available recourses both in simulation mode and in measurement
mode. We generated a special Virtual machine with only a 40 MB system image, to
decrease the deploying load of the system and minimalize the static delay. Based on the
parameters we defined in the previous simulation it took about 3 seconds to deploy such
a tiny Virtual Machine. We defined a script that generated 24 requests with homogenous
1 GB memory allocations and 1 CPU. In the Linux system, a quad-core CPU is indicated
as 400% CPU, whereas in Haizea all the CPUs are specified in percentage but only scaled
up to 100%. To be sure that Haizea simulation and measurement uses only one core per
Virtual Machine we had to define one core as 25% of the maximum CPU available in one
host.

We got the same results in the simulation and in the measurement. The system could
not generate the 24th Virtual Machine because the lack of available memory. In the
simulation, we defined 7700MB memory per host total of 23.1 GB memory. It could
simulate only 23 Virtual Machines the same as the measurement result.

4.1.3. Limits with maximum load

To test the stability of the system, we repeated the experiment with adding high CPU
consuming script. To minimalize system image size, we used a simple script that copies
random numbers from /dev/urandom to /dev/null. This script generated high
CPU usage without charging the I/O subsystem.

The high load of the system did not cause significant difference in the starting times.
Whereas in the experiment without high CPU usage the deploying time was about 3

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

164

seconds, in the experiment with high CPU usage it took about 4 seconds per Virtual
Machine.

4.2. Analysis of Different Clusters

In this chapter, we compare two different clusters with different CPUs and we also
examine which other parameters must be kept in mind.

The two different clusters are made of:

CLUSTER_DUAL:

4pcs IBM HS21 blade modules, each of which containing:

 2x Intel Xeon E5160 (Dual Core 3GHz, 65nm, 80W TDP)

 8GB DDRII-667 ECC RAM

 73GB SAS HDD

CLUSTER_QUAD:

2pcs IBM HS21 blade modules, each of which containing:

 2x Intel Xeon E5320 (Quad Core 1,86 GHz, 65nm, 80W TDP)

 16GB DDRII-667 ECC RAM

 73GB SAS HDD

4.2.1. Performance comparison of the different clusters

First, we executed the tests of the previous chapters. Because of the lack of the
information about the host computers, Haizea created the virtual machines using round-
robin algorithm. It did not use the potential of the four core CPUs until all dual core CPUs
where fully utilized, as Haizea made no difference between dual core and four core CPUs.
This is the main reason that Haizea cannot be used to compare different clusters.

After that, we analyzed that how much it costs to execute the same tasks on the different
clusters. We used the sysbench software to fully utilize all the CPU cores available in the
clusters.

We wrote a simple BASH script to run the test 10 times.

#!/bin/bash

for i int `seq 1 10`
do
CPU=`cat /proc/cpuinfo | grep MHz | awk -F \: '{print $2}'`
MAC=`ifconfig |grep HW | awk '{print $5}' | tr ":" "_"`

sysbench --test=cpu --cpu-max-prime=10000 run | grep 'total time:' | awk
'{print $3}' | cut -c1-6 | tr "." "," >> /home/calc/”MACCPU”.csv
done

First, to have a reference, we executed this script native on the blades under Debian

Operating systems.

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

165

Table 2. The running time of the script in native environment

 DUAL_NAT QUAD_NAT

 16.829 24.986

 16.829 24.984

 16.829 24.983

 16.829 24.984

 16.829 24.983

 16.829 24.978

 16.829 24.982

 16.828 24.986

 16.830 24.983

 16.829 24.988

average: 16.830 24.984

std. deviation: 0.001 0.004

As we can see, the results are very stable with minimal std. deviation. The proportion

between the two cluster running time (16.830/24.984=0.6736) is nearly inversely
proportional to the clock rate ratio of the two processor types (1.86GHz/3GHz=~0.62).
The minimal (~5%) difference is because we used the same hardware for both CPU types,
so the memory and the disk speed were the same on both clusters.

After that, we executed the same scripts, but we used virtual machines. To ensure that
the memory is not relevant, we tested the two clusters with virtual machines both with
512MB and 1024MB dedicated memory. The following table shows the execution times
of the tests.

Table 3. The execution time of the script in virtualized environment

 DUAL_NATIVE QUAD_NATIVE

 16.830s 24.984

 DUAL_1024MB DUAL_512MB QUAD_1024MB QUAD_512MB

Average: 24.581s 24.068s 36.201s 36.254s

std.
deviation

1.0759 0.5726 1.2952 1.0986

Proportion
DUAL_NATIVE/
DUAL_1024M

DUAL_1024M/

DUAL_512M

QUAD_NATIVE/
QUAD_1024M

QUAD_1024M/

QUAD_512M

 68% ~102% 69% ~100%

In this table we can see that the performance with 512MB memory and 1024 memory
is almost the same, so we can say that the only important parameter is the performance of
the CPU. We note that the performance of the virtual machine is only about 70% of the
native environment. This is the optimized performance of the KVM libvirt package.

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

166

We can also see the increased std. deviation, this is because when we create a virtual
machine it consumes some CPU time.

These tests had very stable results so we created twice as many virtual machines as
CPU cores we had to overload the system. The following table shows the execution times
of the tests.

Table 4. The running time of the script in virtualized environment (overload)

 DUAL_NATIVE QUAD_NATIVE

16.830s 24.984s

DUAL_1024M DUAL_HCPU QUAD_1024M QUAD_HCPU

average 24.581s 43.534s 36.254s 64.339s

std.
deviation

1.076 10.467 1.099 13.925

 100% 55% 100% 56%

The table shows us some of the previous result to make it easier to compare. As we can
see it has almost the half performance that we had before. The running time was greatly
increased as much as when the last virtual machine was created the first one is finished
with it’s job. So the overload was not the same during the measurement.

4.2.2. Examination of the power consumption data

During or tests we continuously logged the power consumption data, and the heat load
of the different systems. We used the built in diagnostics of the IBM Bladecenter. Because
the chassis of the Bladecenter also uses some energy (due to the power consumption of
the built in fans and switch modules) we used 3 different situations to measure these
parameters.

1. The consumption of the chassis with blades powered off

2. The consumption of the chassis with blades powered on, but with idle CPUs

3. The consumption of the chassis with blades powered on and fully utilized CPUs

Table 3. The running time of the script in virtualized environment

Dual cluster Quad cluster

off idle full off idle full

412W 847W 1290W 383W 639W 865W

∆P 435W 443W ∆P 256W 226W

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

167

As we can see the two Bladecenter chassis consumes almost the same energy when the
blades are powered off. After we powered on the blades, the Dual Core cluster used 200W
more energy in idle state. It is understandable, because we operated twice as many blades
in the DUAL cluster than in the QUAD cluster. After we fully utilized both clusters, the
difference increased about 200W more.

If we use applications on the cluster which do not utilize all the CPU performance then
we should use a cluster with fewer nodes with more CPU cores. It will decrease our costs.

4.3. Creating a high availability cluster using virtual machines

To demonstrate the usage of a realistic task, we created a high availability (HA) web
server. It contains the DUAL and the QUAD cluster and one of the most current open
source load balancer, HAproxy, which was running on a dedicated blade.

After the configuration, we created the virtualized server farm on each cluster. We
deployed 16 virtual machines with 1GB memory on each cluster and we installed the
“Joomla!” content management system on each virtual machine with default
configuration.

Figure 5. The running HAproxy with 16 nodes

To measure the performance of the HA webserver, we used the industry standard
apache benchmark tool. We developed a simple script to automatize the measurements in
which we had to change the number of the working nodes.

#!/bin/bash

for i in `seq 200 20 400`

do

ab -n $i -c 100 http://10.183.1.44/index.php >> $1

done

This script emulates 100 concurrent clients with request from 200 to 400 per seconds.

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

168

Figure 6. The running HAproxy with 16 nodes

As we can see from the diagram, the two cluster performed almost the same. There was
no big difference like it was before in other tests. The web server is not a CPU critical
application, so the same number of CPU cores performed very well despite their clock
speed was less than that of the dual core CPUs.

5. Discussion of the Results

Haizea can manage two cloning techniques. The first called image preparation which
means that we define the moment when the virtual machine must be reachable and usable.
In that case, Haizea uses the transfer bandwidth which is defined in the configuration file
to calculate how much time it takes to transfer image files depending on the size. The
second one called unmanaged when we only could define the moment when Opennebula
starts to clone the virtual machine image file. Unfortunately Haizea supports image
preparation only in simulation mode but not in Opennebula mode [7]. This the reason of
the static delay between simulation and the measurement results.

As Fig. 4 shows, we could compensate the Virtual machine lifetime in measurement
mode, to manage the exact 1 hour lifetime. However the knowledge of the time necessary
for the image transfer is a prerequisite for this kind of compensation.

In some cases it is not a problem that a virtual machine deployment is delayed a few
minutes. For example, when a virtual machine will be a productive unit of a system and
we do not want to delete it in the near future. But in some special cases it is necessary to
deploy Virtual Machines in time. For example, a lesson must be started exactly at a
predefined time in a school. It is unacceptable to delay it because of the IT infrastructure.

Intel launched the CPUs we tested in 2009 [8]. The DUAL core CPU costed 851 USD
and the QUAD core CPU costed 690 USD. Based on our measurements, we recommend
to buy less hardware with more CPU cores. It is not much slower, in some test it performs
almost the same, but TCO is lower. We recommend the DUAL core CPU with higher

0,0

1000,0

2000,0

3000,0

4000,0

5000,0

6000,0

7000,0

8000,0

1 2 4 8 16

R
e

q
u

e
st

 /
 s

Number of the virtual machines

Apache2 cluster test

Dual Core

Quad Core

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

169

clock speed only for CPU critical application, but in normal usage for daily tasks, the
CPUs with more core and less clock speed are a better choice.

5.1. Recommendation of the Development of HAIZEA

We miss some parameters from Haizea which should be implemented in a future
version. First, the image preparation feature in Opennebula mode for better usage.
Second, in simulation mode we can’t define standard deviation for the deployment of the
images. It is unequivocal that when we copy a system image with the size of 4 GB about
30-40 times its copying time will not take exactly the same time.

6. Conclusion

We have demonstrated that the deployment of the images causes a static difference
between the starting times of the simulation and the Opennebula mode results.

We have shown that one can minimize the image deployment time for example with
tiny images and using a remote file system to store non system files therefore the
difference between the simulation and the Opennebula mode can be efficiently reduced.

We have shown that the high CPU load caused no significant difference in the starting
time of the Virtual Machines.

We also tested some different clusters with different configurations. We have pointed
out that the virtualization layer decreases the performance in some cases about 30%. We
also have showed that using same infrastructure with different hardware configuration is
essential to get the best performance/power consumption ratio for some tasks. For
example, a high availability web server cluster does not depend only on the CPU
computing performance. The same CPU core number with lower clock speed from fewer
hosts can perform almost the same but with lower power consumption.

References

[1] Kovács Á, Lencse G: Modelling of virtualized servers, Proc. 38th International
Conference on Telecommunications and Signal Processing (TSP 2015), Prague,
Czech Republic, July 9-11, 2015, Brno University of Technology, pp. 241-245.
DOI: 10.1109/TSP.2015.7296260

[2] Mell P, Grance T: SP 800-145. The NIST Definition of Cloud Computing, National
Institute of Standards & Technology, Gaithersburg, MD, 2011

[3] Sotomayor B, Montero RS, Llorente IM, Foster I: Virtual Infrastructure Manage-
ment in Private and Hybrid Clouds, IEEE Internet Computing, Vol. 13, No. 5, pp.
14-22, 2009 DOI: 10.1109/MIC.2009.119

[4] Rafael Moreno-Vozmediano, Rubén S. Montero, Ignacio M. Llorente: IaaS Cloud
Architecture: From Virtualized Data Centers to Federated Cloud Infrastructures,
Computer, vol.45, no. 12, pp. 65-72, Dec. 2012

[5] Sotomayor B, Montero RS, Llorente IM, Foster I: Capacity Leasing in Cloud Sys-
tems using the OpenNebula Engine, in Workshop on Cloud Computing and its Ap-
plications 2008 (CCA08), Chicago, Illinois, USA, October 22-23, 2008

[6] Haizea, [Online] http://haizea.cs.uchicago.edu

Á. Kovács and G. Lencse. – Acta Technica Jaurinensis, Vol. 9, No. 2, pp. 158-170, 2016

170

[7] Sotomayor B: [Haizea] image transfer not working in Haizea 1.0 + Opennebula 1.4,
[Online] https://mailman.cs.uchicago.edu/pipermail /haizea/2011-
April/000307.html

[8] List of Intel Xeon microprocessors, wikipedia.org [Online] http://en.wikipe-
dia.org/wiki/List_of_Intel_Xeon_microprocessors

