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Abstract  In this paper, we demonstrate the feasibility of building a virtual network with several virtual Linux hosts for 

testing the security issues of the DNS64 IPv6 transition technology. This virtual testbed has so low hardware requirements that 

it can be operated under Windows 7 on an aging notebook having only 4GB of RAM and 2 CPU cores. We demonstrate the 

viability of the approach by testing different DNS64 implementations for the susceptibility to Transaction ID prediction attacks. 

The examined DNS64 implementations are BIND, TOTD, mtd64-ng and PowerDNS. A simple visual method is used for 

Transaction ID predictability testing. Besides the demonstration, further application possibilities of the testbed are also 

proposed. 
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1. Introduction 

Building an appropriate testbed for the analysis of network 

protocols may involve significant costs (both regarding hardware 

purchase and human labor), which can be reduced by virtualization. 

Although we would rather recommend the application of real 

hardware in certain cases, e.g. for benchmarking measurements, 

virtual environments may be satisfactory in several cases, including 

security analysis. 

Since the Internet became a part of our everyday life, network 

security became a crucial issue. The ongoing transition to IPv6, the 

new standard version of the Internet Protocol [1], requires the 

application of several IPv6 transition technologies [2], which 

involve further security vulnerabilities. We have surveyed 26 IPv6 

transition technologies, and prioritized them in order to be able to 

analyze the security vulnerabilities of the most important ones first 

[2]. We have also developed a methodology for the identification of 

potential security issues of different IPv6 transition technologies 

and demonstrated its viability on the example of DNS64 and 

NAT64 [3]. We have also pointed out the importance of DNS64 as 

well as the need for the individual vulnerability analysis of its most 

important implementations [3]. 

Our next step is to build a testbed for vulnerability testing of 

different implementations of the selected IPv6 transition 

technologies.  We had different options, such as building a testbed 

from several single board computers [4], but we have finally 

chosen to use virtual environment. Our decision was driven by the 

cost and labor efficiency of the solution as well as our positive 

experience with the application of virtual testbeds in education. 

In this paper, we build a virtual network with several Linux hosts 

for testing the security issues of the DNS64 IPv6 transition 

technology. We demonstrate its feasibility with a network of three 

virtual Linux boxes executed under Windows on an aging notebook 

having only 4GB of RAM and 2 CPU cores. 

The remainder of this paper is organized as follows. In section 2, 

we discuss the need for a testbed for the security analysis of IPv6 

transition technologies. In Section 3, we introduce the design and 

implementation of our virtual testbed. In Section 4, we demonstrate 

the usability of the virtual testbed by applying it for the testing of 

several DNS64 implementations whether they are susceptible to 

Transaction ID prediction attacks. Section 5 contains a short 

discussion and some of our future plans are also mentioned. 

Section 6 concludes our work. 

2. Testbed for Security Analysis 

On the one hand, IPv6 transition technologies are important 

solutions for several different problems, which arise from the 

incompatibility of IPv4 and IPv6: they can enable communication 

in various different scenarios [2]. However, on the other hand, they 

also involve a high number of security issues [5]. Their security 

analysis may be done in various ways, e.g. Ref. [5] recommends 

the application of the STRIDE approach, which is a general 



  

software security solution and it uses the DFD (Data Flow 

Diagram) model of the systems to facilitate the discovery of 

various threats. We have found this approach useful and amended 

the method in [3], where we have also shown that it is necessary to 

examine the most important implementations of the given IPv6 

transition technologies, whether they are susceptible to the various 

threats that were discovered by using the STRIDE approach. For 

example, if we pointed out that DNS64 [6] is theoretically 

susceptible to cache poisoning [7], then the important practical 

question is, whether a given implementation, e.g. BIND [8] is 

actually susceptible to it or not. In our survey of IPv6 transition 

technologies [2], we have prioritized them to be able to analyze the 

security vulnerabilities of the most important ones first. In our 

before mentioned paper [3], we have developed a methodology for 

the identification of potential security issues of different IPv6 

transition technologies and performed the theoretical analysis of 

DNS64 [6] and stateful NAT64 [9]. Our next step will be the 

individual vulnerability analysis of their most important 

implementations. For this analysis, we need a testbed, that is an 

isolated environment, where we can check whether the examined 

implementations indeed have the presumed vulnerabilities. The 

vulnerabilities can be proven by their successful exploitations. Of 

course, it is not permitted to perform these attack in live systems, 

but only in special isolated environments, which were specifically 

built for this purpose. 

A testbed for the security analysis of different IPv6 transition 

technologies should contain the fundamental basic blocks of the 

systems in which the given solutions are used. Practically it means 

that we need a few computers which are interconnected by IPv4 

and/or IPv6 network(s). We propose the structure of a simple 

testbed for the security analysis of the DNS64 and the stateful 

NAT64 IPv6 transition technologies in section 3.2. Similar testbeds 

can be built for the security analysis of other IPv6 transition 

technologies. 

3. Testbed Design and Implementation 

3.1. Choice of the Tools 

We have been using virtual Linux boxes (executed under 

Windows 7) for the practical education of DNS64 [6] and NAT64 

[9] IPv6 transition technologies at the Budapest University of 

Technology and Economics since 2015. As the existing virtual 

machine images were suitable for our current testing purposes, it 

was a convenient way to reuse them. The virtual machine images 

were prepared by a script called debian-vm1, written by Dániel 

Bakai [10]. They contain Debian 8 distributions, which were now 

updated to Debian version 8.9. They were executed by VMware 

Workstation 12 Player. 

3.2. Topology of the Test Network 

The testing of DNS64 [6] or NAT64 [9] requires a network of 

three hosts. As for DNS64, they are: client, DNS64 server and 

authoritative DNS server, where the DNS64 server should be 

interconnected with both the client and the authoritative DNS 

server. As for NAT64, only the roles are different: client, NAT64 

server, IPv4-only server; the topology is the same. Thus the same 

network can be used for the testing of the different implementations 

of both technologies, only some software components need to be 

changed. 

As for the attacker, two further hosts could have been added, one 

for tampering with each connections, but we eliminated them with 

a trick. First of all, we used a single shared medium to interconnect 

the three computers, see Fig. 1, thus only one extra device would 

have been enough. However, as in our current tests we used only 

wiretapping, it could be done at any of the three computers, thus no 

further computer was necessary. 

3.3. Implementation of the Test Network 

We have implemented the test network shown in Fig. 1 by three 

virtual machines, each of which had a single CPU core, 128MB of 

RAM, and (theoretically) 40GB of hard disks, but the starting size 

of the images were under 1GB. (They were growing during the 

experiments, but remained under 3GB.) Table 1 shows the Linux 

and WMware settings used for the virtual machines. 

We note that the IP version between the client, which is an 

IPv6-only client, and the DNS64 server must be 6. There is no 

restriction for the IP version between the DNS64 server and the 

DNS server, but when testing NAT64, IPv4 must be used between 

the NAT64 server and the IPv4-only server. Although, we used 

IPv4 between the DNS64 server and the authoritative DNS server 

during our DNS64 tests, we set also an IPv6 address at the 

authoritative DNS server to be able to reach it directly from the 

client for testing purposes. 

We also note that the eth1 interfaces were not necessary for the 

tests, we used them for providing Internet access to the virtual 

machines, which was sometimes necessary, e.g. for installing 

various packages under Debian Linux. We have separated this 

communication from the testing communication performed always 

through the eth0 interfaces of the virtual computers. 

3.4. Setup of a Basic DNS64 Testbed 

The purpose of this network was to check whether the testbed 

works properly. We have installed BIND9 [8] to both the dns64 

and the dns virtual machines. 

                                                   
1 The script can create a small, low memory usage, user-defined Debian 

virtual machine disk image, which can be used in various hypervisors 

including VMware and KVM. 

 

Fig. 1. Topology of the test network 



  

3.4.1. Setup of the DNS64 Server 

The /etc/bind/named.conf.options file was used to 

set up the DNS64 function. The relevant settings were: 

dns64 2001:db8:1::/96 { }; 

forwarders { 10.0.0.3;}; 

dnssec-validation no 

3.4.2. Setup of the Authoritative DNS Server 

The /etc/bind/named.conf.local file was used to set 

up the authoritative DNS server. The relevant settings were: 

zone "dns64.test" { 

type master; 

file "/etc/bind/db.dns64.test"; 

}; 

The content of the db.dns64.test file was: 

$ORIGIN dns64.test. 

$TTL 86400 

@  IN  SOA  localhost.  root.localhost.  ( 

             2017090702  ; Serial 

                 14400    ; Refresh 

                  7200    ; Retry 

                 72000    ; Expire 

                  3600  ) ; Negative Cache TTL 

; 

@       IN      NS      localhost. 

 

kanga   IN      A       192.0.2.1 

owl     IN      A       192.0.2.2 

piglet  IN      A       192.0.2.3 

rabbit  IN      A       192.0.2.4 

winnie  IN      A       192.0.2.5 

3.5. Functional Checking of the Test Network 

In this section, we demonstrate the correct operation of the test 

system, and also introduce the operation of DNS64 servers, which 

will be important later.  

We tested the operation of the testbed by issuing the following 

command on the client: 

host -t AAAA piglet.dns64.test dns64 

The host Linux command was used to ask for an IPv6 address 

(AAAA record) for the piglet.dns64.test domain name 

from the DNS64 server executed by the host named dns64.  

The DNS messages were captured by Wireshark on the 

VMnet1 interface using the port 53 capture filter. The six 

captured packets are shown in Fig. 2. Now we shall identify the six 

messages and observe their Transaction IDs, which are used to 

match the answer with the query. We will experiment with them 

later. 

1. Request for a AAAA record from the client to the DNS64 

server with Transaction ID 0x7c4a, generated by the host 

command. 

2. Request for a AAAA record from the DNS64 server to the 

authoritative DNS server with a different Transaction ID, 

0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by the 

authoritative DNS server to the DNS64 server, and its 

Transaction ID is the same as of the corresponding request. 

4. Request for an A record from the DNS64 server to the 

authoritative DNS server with a different Transaction ID, 

0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 

DNS server to the DNS64 server, and its Transaction ID is 

the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing the 

synthesized IPv4-embedded IPv6 address [11] with the 

same Transaction ID as message 1. 

We can lay down that the testbed worked fine, and it seems to be 

usable for testing. 

4. Testing Transaction ID Prediction Vulnerability 

The usage of predictable Transaction IDs is a serious security 

issue, because it gives an easy opportunity for cache poisoning 

attacks [7]. We demonstrated the viability of our simple virtual 

testbed by examining several DNS64 implementations whether 

they are susceptible to this threat. To achieve this goal, we extended 

the configuration of our testbed to be able to examine the 

Transaction IDs of a high number of messages even if the 

examined DNS64 implementations use caching. 

4.1. The Details of the Measurements 

4.1.1. Name Space and Configuration for Testing 

To be able to perform a high number of tests, we needed a name 

space which can be generated systematically. We have found that 

Table 1  Linux and VMware network settings for virtual machines 

virtual machine name client dns64 dns 

role IPv6-only client DNS64 server Authoritative DNS server 

eth0 Linux settings  IPv6 static: fd00::1/64 IPv6 static: fd00::2/64 

IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 

IPv4 static: 10.0.0.3/24 

eth1 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP 

eth0 VMware settings VMnet1 VMnet1 VMnet1 

eth1 VMware settings NAT NAT NAT 

 



  

the name space used in our earlier DNS64 tests [12] would be 

appropriate. It was the following name space: 

10-a-b-c.dns64perf.test, where a, b, c are integers from the [0, 

255] interval. 

We have used only the 10-0-{0..255}-{0..225} part of it. For 

generating the zone file, we used the modified version of the zone 

file generator script called gen-zonefile, which is shipped 

together with the dns64perf program (documented in [12] and 

available from [13]). 

4.1.2. The Examined DNS64 Implementations and their Setups 

We have tested the following DNS64 implementations: 

1. BIND 9.9.5-9+deb8u12-Debian [8] 

2. TOTD 1.5.2 (referred later as OLDTOTD) [14] 

3. TOTD 1.5.3 (referred later as NEWTOTD) [15] 

4. PowerDNS Recursor 3.6.2 [16] 

5. mtd64-ng 1.1.0 [17] 

We have already introduced the DNS64 configuration of BIND 

in Section 3.4.1. 

The configuration of both versions of TOTD was done in the 

/usr/local/etc/totd.conf file, the relevant settings were: 

forwarder 10.0.0.3 

prefix 2001:db8:404d:: 

The DNS64 configuration of PowerDNS was a bit more complex. 

In the /etc/powerdns/recursor.conf file, we made the 

following relevant settings: 

allow from=::/0 

forward-zones=dns64perf.test=10.0.0.3 

local-address=fd00::2 

lua-dns-script=/etc/powerdns/dns64.lua 

The content of the /etc/powerdns/dns64.lua file was: 

function nodata ( remoteip, domain, qtype, records ) 

    if qtype ~= pdns.AAAA then return pdns.PASS, {} end 

    setvariable() 

    return "getFakeAAAARecords", domain, "2001:db8::" 

end 

The configuration of mtd64-ng DNS proxy was done in the 

/etc/mtd64-ng.conf file, the relevant settings were: 

nameserver 10.0.0.3 

prefix 2001:db8::/96 

4.1.3. Execution of the Measurements 

The measurements were performed by the dns64perf [12] 

program, which used sequential Transaction IDs from 0 to 65535. 

The traffic was captured by the tshark program executed by 

the dns64 host, the memory size of which was raised to 256MB, 

because 128MB was not enough and the tshark program exited 

during the measurement. All the packets from the eth0 interface 

that matched the port 53 capture filter were saved to a file.  

4.2. Evaluation Method 

Predictability of the Transaction IDs is a hard question. E.g. if 

pseudorandom numbers are used that were generated by a linear 

congruential generator (LCG), then they are predictable. There are 

a high number of methods described for testing randomness both in 

university lecture notes [18] and research papers [19]. 

Since the focus of our investigation is on the testbed itself, and 

the predictability of the Transaction IDs is used only for 

demonstration, we used a very simple method, which can reveal 

only very trivial problems, but it is still suitable for demonstration 

purposes.  

We have checked two kinds of correlations using visualization. 

Before introducing them, let us define some notations first. Let i 

denote the ordinal number of a message in the message sequence 

introduced in Section 3.5, where i is in [1, 6]. Let j denote the 

ordinal number of the AAAA record request sent by the 

dns64perf program, where j is in [0, 65535]. Let Tij denote the 

Transaction ID of the i-th message from the 6 messages used to 

resolve the j-th query of the dns64perf program. As the test 

program uses sequential Transaction IDs from 0, it is sure that: T1j 

= T6j = j. 

We use two graphs. An (x, y) plot of the (T1j, T2j) pairs may 

reveal correlation between the Transaction ID used by the 

dns64perf program and the first Transaction ID generated by the 

DNS64 program. An (x, y) plot of the (T2j, T4j) pairs may reveal 

correlation between the consecutive Transaction IDs generated by 

the DNS64 program. For simplicity, we will refer to the first one as 

input correlation, and the second one as autocorrelation. 

We used awk scripts to extract the appropriate transactions IDs 

from the text file output of the tshark program, and the graphs 

were prepared by gnuplot.  

4.3. Measurement Results 

Fig. 3 shows the input correlation and the autocorrelation of the 

Transaction IDs of BIND. They seem to be like noise, thus we can 

say that no predictability problems were revealed by our simple 

evaluation method. 

The left graph of Fig. 4 shows the input correlation of the 

Transaction IDs of OLDTOTD. The regular patterns indicate that 

there is a problem with the predictability of the Transaction IDs. 

Before giving the explanation, let us have a look at the 

autocorrelation of the Transaction IDs of OLDTOTD on the right 

side of Fig. 4. Now, the predictability is even more deliberate. Let 

 

Fig. 2. Wireshark capture taken during the functional checkig of the DNS64 testbed. 



  

us look into the CSV file containing the (T1j, T2j) pairs for input 

correlation checking: 

0, 55745 

1, 56257 

2, 56769 

3, 57281 

4, 57793 

Whereas the T1j Transaction IDs start from 0 and increase by 1, 

the T2j Transaction IDs start from a different number and increase 

by 512. The CSV file containing the (T2j, T4j) pairs for 

autocorrelation checking can give us further help: 

55745, 56001 

56257, 56513 

56769, 57025 

57281, 57537 

57793, 58049 

It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we disclosed 

it in [15], the old version of TOTD generated sequential numbers as 

Transaction IDs. The increase of 256 is the result of the facts that 

our notebook has an Intel CPU, which uses LSB byte order (least 

significant byte first), whereas the network byte order is MSB 

(most significant byte first). The programmer could have been used 

the standard htons() function for the conversion, but omitting it 

is not a bug in itself. For more information about the bug, which 

randomly caused an unresponsiveness of the old version of TOTD, 

and for its correction, please see [15]. We have also described the 

elimination of the vulnerability for Transaction ID prediction attack 

in [15]. 

Fig. 5 shows the input correlation and autocorrelation of the 

Transaction IDs of NEWTOTD. They seem to be like noise, which 

is exactly what we expected. 

Fig. 6 shows the input correlation and autocorrelation of the 

Transaction IDs of mtd64-ng. They are two completely identical 

graphs, as the two CSV files were found also completely identical. 

It is visibly the y=x function, because mtd64-ng reuses the 

Transaction ID of the received query and sends both of its own 

queries with the same Transaction ID, which is a serious 

vulnerability. 

We note that mtd64-ng is a result of an ongoing university 

project and it not yet ready to be used in production systems [17]. 

As for PowerDNS, we have also performed the tests and 

evaluated the results. Both of its plots looked like the plots of 

BIND or NEWTOTD, thus we can state that we found no signs of 

Transaction ID predictability. (We omit the two plots, because we 

see no point in including further two “random art” images.) 

5. Discussion and Future Work 

Our visual method for detecting the predictability of the 

Transaction IDs is not more than a simple way to demonstrate the 

problem. The significance of our results is that our simple virtual 

network testbed is proved to be suitable for the security analysis of 

DNS64. In the given case, more advanced methods may be used to 

identify Transaction ID predictability on the basis of the extracted 

Transaction IDs.  

We note that all the examined DNS64 implementations are free 

software [20] (also called open source [21]), thus their source code 

may also be studied, as we did it in the case of TOTD [15]. The 

significance of the testbed is that it may also be used for closed 

source software, or in the cases when the subject of the study also 

includes the interaction with the random number generator of the 

 

Fig. 3. BIND, Transaction ID input correlation (left) and autocorrelation (r.) 

  

Fig. 4. OLDTOTD, Transaction ID input correlation and autocorrelation 

  

Fig. 5. NEWTOTD, Transaction ID input correlation and autocorrelation 

  

Fig. 6. mtd64-ng, Transaction ID initial correlation and autocorrelation 



  

operating system. 

The very same framework could be used for the analysis of 

NAT64 gateways. 

In our current tests, we used only eves dropping to observe the 

network traffic. Our further plans include the analysis of the 

currently tested and further DNS64 implementations, whether they 

are susceptible to cache poisoning [7]. To achieve this goal, we will 

need to send packets as well. There are various Linux tool available 

for that task. 

6. Conclusion 

Our simple virtual framework proved to be a usable tool in the 

vulnerability analysis of various DNS64 implementations. Thus, 

we conclude that our approach provides an easy and cost effective 

way for the vulnerability testing of the different implementations of 

several IPv6 transition technologies including DNS64 and NAT64. 
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