
Evaluation of Layer 3 Multipath Solutions using
Container Technologies

Á. Kovács, G. Lencse
Department of Telecommunications

Széchenyi István University
Gyor, Hungary

E-mail: kovacs.akos@sze.hu, lencse@sze.hu

Abstract— The MPT network layer multipath communication
library is capable of using multiple communication channels by
creating an UDP tunnel over them. The contemporary version of
MPT uses the GRE tunnel protocol. MPTCP is another
multipath solution, which uses TCP subflows on kernel level to
ensure multipath communication. In this paper, we are using
multiple container technologies to install these multipath
communication solutions. Most common Docker container and a
HPC specific Singularity container interconnected with twelve
100Mbit/s links were used to evaluate the aggregation capabilities
of the combination of these technologies.

Keywords—Benchmarking, Container, Docker, Multipath,
MPT, MPTCP, Singularity

I. INTRODUCTION
Although containerization technology spreading nowadays

especially in Cloud industry, the main goal of these
technologies is quiet old. Linux’s chroot environment was
capable of isolating different processes without the need to
emulate different hardware for them at the same time. While
these container technologies mostly used to isolate network
services like web servers or database servers, sometimes the
main bottleneck of these services is the lack network
performance. MultiPath communication could be one of the
easiest way to overcome this issue. If we can use multiple
interfaces for a single communications, we may achieve the
multiplication of the network performance. Most of our ICT
devices have more than one communication interfaces, but we
only use one of them for a single communication due technical
reason: one particular TCP/IP communication channel can be
identified by the IP addresses and the port numbers of the
network devices [1]. To create a reproducible environment, we
used Docker and Singularity containers to build our testbed.

First, we used the MPT network layer multipath
communication library [2], which was developed at the Faculty
of Informatics, University of Debrecen, Debrecen, Hungary.

To compare the aggregation capability, we used MPTCP as
second multipath communication technique. It also can utilize
multiple physical devices to communicate between two
compatible nodes [3].

The reminder of this paper is organized as follows, in
section two, a brief introduction is given to the container

technologies that we used for our measurements. In section
three, the MPT Communication Library and the Multipath TCP
system introduced. In section four, our test environment is
described. In section five, we disclose our benchmarking
measurements aimed to check the performance of iperf when it
is containerized. In section six we have compared the channel
capacity aggregation efficiency of MPT in three different
scenarios: using Docker, Singularity and native execution. In
section seven we have performed the same measurements using
MPTCP. Finally, our conclusion about the experiments are
given.

II. CONTAINER TECHNOLOGIES
Containerization is widely used in cloud infrastructures. It

is used to create lightweight virtualization to separate services
and micro services like databases and webservers. Whereas
Hypervisor based virtualization allows us to run different kind
of operating systems on the same host based on Linux/Unix
and Windows kernel, the main idea of the containerization
technology is that we sacrifice the flexibility of the
virtualization and use the same kernel for each micro services.
Therefore, we save resources from running different kernels
and, thanks to that, the performance can be consumed by the
services we use. The main difference of the virtualization and
the containerization is shown in Fig. 1.

Fig. 1. KVM virtualiztaion vs. containerizaton [4]

A. Docker
Docker containers are widely used for flexibility and

availability on different Linux distributions. The only criteria
for installing Docker is the Linux Kernel version 3.10, which is
a relatively old one. The most important advantage of Docker
is the Docker hub, which contains wide range of containerized
applications like databases, network services, and services
backends as well. Docker uses a server-client architecture. The
containerized applications can reach the host’s resources trough
the Docker daemon, which must run with root privileges. By
default, Docker uses Linux-bridge to ensure network
connectivity, however, to achieve the best performance, we
must use the “--network host” directive [5], [6].

B. Singularity
Singularity container technology focuses on using container

in HPC. It differs from Docker significantly, because it uses
monolith image files for different applications, whereas Docker
uses overlay based file system. Singularity container does not
require root privileges, which is basic requirements for HPC
systems. It can reach the basic hardware’s natively, so it is an
ideal decision for using special hardware’s like GPUs and
Inifiniband interconnects which are widely used in HPC
systems. [7]

III. MULTIPATH APPLICATIONS
In this section, a brief summary is given about MultiPath

technologies.

A. MPT
The MPT architecture uses multiple layers to communicate.

Unlike other multipath solutions (e.g.: LACP, Cisco
Etherchannel) which operate at layer 2, the MPT
Communication library uses network layer to create a
multipath communication. Thus, it can be routed so the two
endpoint of the communication can be far from each other. It is
based on RFC 8086 [8], which allows MPT to implement
multipath communications using the GRE-in-UDP
encapsulation [9].

Application (Tunnel)
TCP/UDP (Tunnel)

IPv4 (Tunnel)
GRE-in-UDP

UDP (Physical) UDP (Physical)
IPv4 (Physical) IPv4 (Physical)

interface interface

Fig. 2. The architecture of MPT [2], [9]

The IP packets are transmitted through a logical tunnel
interface by MPT, which encapsulates them into a GRE-in-
UDP segment. MPT always uses a tunnel interface so it can
map the packets coming through it. Applications that are using
basic Ethernet interfaces to communicate are not needed to be
modified because MPT uses a standard IP communication on

the tunnel interface. MPT maps these packets and selects a real
Ethernet interface to send them.

IPv4 UDP
Fixed Port GRE Tunnel

IP
Tunnel

TCP/UDP
Application

data

Fig. 3. The PDU structure MPT based on GRE in UDP [2]

B. MPTCP
Multipath TCP Linux implementation is developed by the

Department of Computing Science and Engineering at
Université Catholique de Louvain, Belgium. Its main goal is to
improve the TCP protocol, which was designed in the 1970’s.
It uses a kernel module to utilize the available Ethernet NICs
for a single TCP communication [10].

MPTCP does not use user space software or logical
interface and it changes the default TCP implementation in the
Linux kernel to a special one. MPTCP creates TCP sub-flows
from a single TCP session and sends them through the
available network interfaces, but it requires some
configuration. To ensure the easy usage, the developers created
a “network_up” script, which automatically configures the
upcoming interfaces.

Application
MPTCP

Subflow (TCP) Subflow (TCP)
IPv4 (Physical) IPv4 (Physical)

Fig. 4. The architecture of MPTCP communication stack [10]

MPTCP network stack negotiates in the normal TCP/SYN
exchange if the other side of the communication is capable for
using multiple path for aggregate communication. After that, a
new TCP sub-flow can be established. Each of these subflows
has its own sequence number and congestion control like
normal TCP flows [11].

C. Comparison of MPT and MPTCP in a Nutshell
One of the main advantages of MPT over MPTCP is that

MPT is not restricted to use only TCP like MPTCP. MPT can
use both TCP and UDP over the tunnel IP for communications.
Therefore, MPT is more suitable for multimedia transmission.
For example, MPT has been successfully applied for
elimination of stalling events on YouTube video playback [12]
or fast connection recovery [13].

Another important difference between MPT and MPTCP is
that MPT masquerades the multipath technology under a
logical interface while MPTCP uses the available interfaces
with different default routes on each available NICs.

MPTCP can only utilize up to eight of the NIC but uses less
resources (e.g. CPU power) than MPT. MPT has no such limits
to the number of underlying paths [14].

IV. TEST ENVIRONMENT

Two DELL Precision Workstation 490 computers were
used for our tests. Their basic configuration was:

VLAN1
VLAN2
VLAN3

VLAN4

VLAN5

VLAN6

VLAN7

VLAN8

eth1 10.0.0.1

eth2 10.1.1.1
eth3 10.2.2.1

eth4 10.3.3.1

eth5 10.4.4.1

 eth6 10.5.5.1
eth7 10.6.6.1

eth8 10.7.7.1

VLAN1
VLAN2
VLAN3

VLAN4

VLAN5

VLAN6

VLAN7

VLAN8

Cisco Catalyst 2960

Dell Workstation 490
3x Intel PT Quad 1000

Dell Workstation 490
3x Intel PT Quad 1000

tun0
192.168.200.2

eth1 10.0.0.2

eth2 10.1.1.2
eth3 10.2.2.2

eth4 10.3.3.2

eth5 10.4.4.2

 eth6 10.5.5.2
eth7 10.6.6.2

eth8 10.7.7.2
VLAN9

VLAN10

VLAN11

VLAN12

VLAN9

VLAN10

VLAN11

VLAN12

eth9 10.8.8.1

 eth10 10.9.9.1
eth11 10.10.10.1

eth12 10.11.11.1

eth9 10.8.8.2

 eth10 10.9.9.2
eth11 10.10.10.2

eth12 10.11.11.2

tun0
192.168.200.1

eth0
192.168.100.115/24

eth0
192.168.100.116/24

Fig. 4. The architecture of MPTCP communication stack [14]

a) DELL 0GU083 motherboard, Intel 5000X chipset
b) Two Intel Xeon 5140 2.33GHz dual core processors
c) 8x2GB 533MHz DDR2 RAM (quad channel)
d) Broadcom NetXtreme BCM5752 Gigabit Ethernet

controller (PCI Express, integrated)
e) Three Intel PT quad port Gigabit Ethernet interfaces

(PCI Express)
f) Debian Strech 9.7, kernel version 4.9.130-2 amd64

Each computer was able to handle 13 Ethernet interfaces,
twelve for testing, and the built in one for management
purposes. We used a 24 port Cisco 2960 Ethernet switch to
limit each interface to 100Mbit/s because the available
resources (especially CPU power) were not enough to utilize
the NIC-s at 1000Mbit/s. Each pair of the interfaces was in
different VLANs to eliminate the global broadcast sending.
The testbed was the same as we used in [14].

V. TESTING IPERF
First, we used container technology to test the industry

standard iperf benchmark tool to find out if it is capable of
measuring network bandwidth utilization while running inside
a container. We created our own iperf container using a simple
dockerfile:

FROM debian:9
WORKDIR /root/
RUN apt update
RUN apt install -y libssl-dev iperf net-tools

And we built a singularity image, using Singularity
bootstrap file based on Docker Hub:

Bootstrap: docker
From: debian:9
%post
apt update
apt install -y libssl-dev iperf net-tools

To test iperf in Docker, we had to run Docker with special
arguments to let the Docker use host networking, which means

that the Docker daemon injects its packages among the host
packages natively:

docker run -it --network host iperf-testing

Testing iperf with singularity is a bit easier while it’s
default behavior is to use host mode networking.

We used MPT natively for testing and running iperf in
different containers and native for comparison.

To ensure that MPT and MPTCP may not use the 13th NIC
of the testbed we created an iptables rule to drop all packet
between the two management interfaces.

We compared the path aggregation capabilities of the
created iperf containers with that of the native execution. The
results are shown in Fig. 5.

Fig. 5. Results of the iperf contaner benchmark

As we can see, if we are using singularity as container
technology, the throughput can achieve almost the same
performance as the native. If we are using Docker as a
container solution, the results do not scale up over 9 NICs. For

the best results, we were using iperf on the host natively for the
further tests while the multipath solution was containerized.

VI. EXPERIMENTS USING MPT
To test MPT communication library with docker, we

compiled the latest source code form [2], then we created a
new container with a special overlay, which contains the MPT
communication library. After that, we run Docker with special
arguments to let the Docker be able to create and use the tunnel
interface of the MPT communication library:
docker run -it --network host --cap-add=NET_ADMIN \
--device /dev/net/tun:/dev/net/tun mpt

For examining the aggregation capability of a containerized
MPT communication library, we used iperf with the following
command:

iperf -c 10.100.0.2 -t 120 -i 2 -y C

This command executes iperf benchmark on the tunnel
device for 120 sec, in every two seconds, it displays the result
and saves it to CSV format. MPT can be run within the
container like natively and it creates the tun device on the host
computer. We used the IP addresses of these tunnel endpoints
in the iperf command to ensure using MPT for the
communication. The results are shown in Fig. 6.

Fig. 6. MPT benchmark using container technologies

As we can see the MPT using singularity almost reached
the performance of the native version of the experiment.
Although the results of MPT using Docker are the same as that
of the native version up to 7 NICs, they are significantly worse
from 8 NIC, and the tendency is even slightly decreasing. The
maximum throughput is also lower than that of the iperf tests.

VII. EXPERIMENTS USING MPTCP
MPTCP is a bit more complex as it uses a kernel space

module to add the capability of using multiple physical NICs
for multipath communication. It means that MPTCP cannot be
containerized because it works as a part of the kernel. As we
used MPTCP on the physical host, the containers – which use
the same kernel as the host – are automatically able to use
multipath communication ensured by MPTCP. We edited the
/etc/network/interfaces file to ensure that the

management interface is started last, so that it will not be used
as multipath communication channel. As we were unable to
containerize a kernel module, we used the before mentioned
and tested iperf container to compare the aggregation capability
of MPTCP. So in this case the not MPTCP, but iperf was
containerized. The measurement setup was similar to that of
our first experiment, but now we using MPTCP as the
underlying multipath communication.

In this case we used the following iperf command:
singularity exec /root/iperf.simg iperf

-c 10.0.0.2 -t 120 -i 2 -y C

We executed this command with one of the NICs used by
MPTCP because it can use only 8 NICs to communicate [14].

Fig. 7. MPT benchmark using container technologies

The measurement results are shown in Fig. 7. As we can
see, using MPTCP with different container technologies or
native execution we got almost the same results, the differences
are negligible. This is because the MPTCP can only use 8
NICs, so this was limiting factor in all three cases.

VIII. CONCLUSION
Using container technologies to provide different network

services is a widely used practice in the industry, although it
has some disadvantages. To ensure the highest possible
throughput, we usually prefer container technologies that use
host adapters natively, but this solution violates the principle of
separation of the different applications. We can use upper layer
network implementations like the examined multipath
technologies (MPT and MPTCP). We have shown that there is
a minor performance penalty on Singularity and a major on
Docker containerization technology compared to the native
execution. In the future, we plan to test some more up-to-date
hardware with even 1000Mbit/s throughput capability to
measure the aggregation capability.

REFERENCES
[1] B. Almási A. Harman, “An overview of the multipath communication

technologies”, In Proceedings of the Conference on Advances in
Wireless Sensor Networks 2013 (AWSN 2013), Debrecen University
Press, Debrecen, Hungary, ISBN: 978-963-318-356-4, 2013, pages 7-11.

[2] B. Almási, Sz. Szilágyi “MPT Multipath Communication Library”,
available:
https://erlang2.inf.unideb.hu/~szilagyi/index.ph
p/mpt-gre/

[3] C. Paasch, S. Barre, et al., Multipath TCP in the Linux Kernel, available
from http://www.multipath-tcp.org. used version 0.90

[4] Ann Mary Joy, “Performance comparison between Linux containers and
virtual machines” , 2015 International Conference on Advances in
Computer Engineering and Applications, 2015, pp: 342 - 346

[5] Amr A. Mohallel; Julian M. Bass; Ali Dehghantaha “Experimenting
with docker: Linux container and base OS attack surfaces”,2016
International Conference on Information Society (i-Society),2016,pp.:
17 - 21

[6] Flávio Ramalho; Augusto Neto, “Virtualization at the network edge: A
performance comparison”, 2016 IEEE 17th International Symposium on
A World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2016, pp.: 1 – 6.

[7] Miguel G. Xavier; Marcelo V. Neves; Fabio D. Rossi; Tiago C. Ferreto;
Timoteo Lange; Cesar A. F. De Rose, “Performance Evaluation of
Container-Based Virtualization for High Performance Computing
Environments”, 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing , 2013, pp.: 233 -
240

[8] L. Yong, E. Crabbe, X. Xu, T. Herbert, “GRE-in-UDP encapsulation”,
IETF RFC 8086, March 2017.

[9] B. Almási, G. Lencse, Sz. Szilágyi, "Investigating the Multipath
Extension of the GRE in UDP Technology" Computer Communications
(Elsevier), vol. 103, no. 1, pp. 29-38, May 1, 2017.

[10] A. Ford, C. Raiciu, M. Handley, S. Barre, J. Iyengar, “Architectural
Guidelines for Multipath TCP Development” RFC 6182, March 2011.

[11] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik and M.
Handley, “Improving datacenter performance and robustness with
multipath TCP” - SIGCOMM 2011, Toronto, Canada, August 2011.

[12] F. Fejes, S. Rácz, and G. Szabó, “Application agnostic QoE triggered
multipath switching for Android devices”, In: Proc. 2017 IEEE
International Conference on Communications (ICC 2017), Paris, France,
May 21-25, 2017, pp. 1585–1591. DOI: 10.1109/ICC.2017.7997450

[13] F. Fejes, R. Katona, and L. Püsök, “Multipath strategies and solutions in
multihomed mobile environments”, in: Proc. 7th IEEE International
Conference on Cognitive InfoCommunications (CogInfoCom 2016),
Wroclaw, Poland, Oct. 16-18, 2016, pp. 79–84, DOI:
10.1109/CogInfoCom.2016.7804529

[14] Á. Kovács, “Comparing the aggregation capability of the MPT
communications library and multipath TCP” 2017 Proceedings of 7th
IEEE Conference on Cognitive Infocommunications, Budapest,
Magyarország : IEEE Hungary Section, (2017) pp. 157-162. , 6 p.

http://inl.info.ucl.ac.be/cpaasch
http://inl.info.ucl.ac.be/sbarre
http://www.multipath-tcp.org/

	I. Introduction
	II. Container technologies
	A. Docker
	B. Singularity

	III. Multipath Applications
	A. MPT
	B. MPTCP
	C. Comparison of MPT and MPTCP in a Nutshell

	IV. Test Environment
	Two DELL Precision Workstation 490 computers were used for our tests. Their basic configuration was:
	a) DELL 0GU083 motherboard, Intel 5000X chipset
	b) Two Intel Xeon 5140 2.33GHz dual core processors
	c) 8x2GB 533MHz DDR2 RAM (quad channel)
	d) Broadcom NetXtreme BCM5752 Gigabit Ethernet controller (PCI Express, integrated)
	e) Three Intel PT quad port Gigabit Ethernet interfaces (PCI Express)
	f) Debian Strech 9.7, kernel version 4.9.130-2 amd64

	V. Testing Iperf
	VI. Experiments using MPT
	VII. Experiments using MPTCP
	VIII. CONCLUSION
	References

