
Port Number Exhaustion of a 464XLAT

Implementation in a Virtual Environment

Norbert Nagy, Gábor Lencse

Department of Networked Systems and Services

Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics

Műegyetem rkp. 3, Budapest, H-1111, Hungary

Email: norbert.nagy@edu.bme.hu, lencse@hit.bme.hu

Abstract—There are several IPv6 translation technologies,

and we chose one of them, 464XLAT. In this paper, we focused

on how we can perform a successful DoS (Denial of Service)

attack and exhaust the available port number range on one of its

components, the provider-side translator (PLAT). To achieve

this, we built a testbed using virtual machines. We implemented

the client-side translator (CLAT) with Tayga software and used a

combination of Tayga and the Netfilter framework for the

provider-side translator (PLAT). We measured the limitations of

our testbed and carried out successful tests using a DNS query

generator program, dns64perf++, thus exhausting the port

number range on the PLAT.

Keywords—464XLAT; Connection tracking table; DoS

attack; Netfilter, Stateful NAT64, Tayga.

I. INTRODUCTION

Because of the depletion of the IPv4 address pool, the use
of IPv6 addressing is inevitable. This translation cannot go
overnight, and because of this reason, several IPv6 transition
solutions have been created, one of them being 464XLAT [1].
464XLAT is usually used in wireless (cellular) environments,
but in our research work, we tested it in a wired testbed.
Nowadays, more and more service providers have an IPv6
network, but they also have users who need IPv4 service, as
there are some IPv4-only applications like Skype or Spotify
[2]. 464XLAT solves the problem when IPv4 users want to
connect to other IPv4 servers on the internet over an IPv6
network. It achieves this with double translation. It uses SIIT
translation on the customer side device called CLAT, and
stateful NAT64 on the provider side device called PLAT. For
the stateful behavior, PLAT uses NAPT (Network Address and
Port Translation), which means for the connection tracking it
stores the source and destination IP addresses, port numbers,
and the protocol (TCP or UDP) that was used [1].

On the one hand, IPv6 transition technologies make the
cooperation between the two incompatible versions of the
Internet Protocol (IPv4 and IPv6) possible. However, on the
other hand, their application involves various security
vulnerabilities [3]. The vulnerabilities of the different IPv6
technologies are actively researched [4]. The Denial of Service
(DoS) attack is the one that is “absorbing resources needed to
provide service” [5]. As for the different opportunities of a DoS

attack against 464XLAT, there are multiple ways to prevent its
PLAT component from performing translations. One can
simply exceed the CPU capability of the device, thus it can’t
translate or translate the packets properly. This has been done
in [6]. Another way to prevent the proper behavior is to fill up
the connection tracking table of the PLAT device until it is full.
There is a third option, which takes advantage of the fact that
PLAT works in a stateful way, thus all customers share the
resources that are used in the translation, such as port numbers
and public IP addresses. In this paper, we focused on how one
or multiple hosts can exhaust the PLAT port number range so
the PLAT can’t operate normally.

There are multiple open-source 464XLAT implementations
on the internet. But we used Tayga [7] a stateless NAT64
software for the CLAT. For the PLAT, we also used Tayga to
do a stateless NAT64 translation and Netfilter to perform the
stateful NAT44 translation, thus together they implemented a
stateful NAT64. We chose this implementation to accurately
demonstrate how PLAT operates.

The size of the available port number range is: 65536-
1024=64512, where 65536 is the number of all available port
numbers because port numbers are represented on 2 bytes,
which is 16 bits, thus the number of representable port numbers
is 216=65536. 1024 is the number of the well-known ports,
which are not used as source port numbers. To exhaust the
available port number range, we needed to generate a
significant volume of network traffic. For this reason, we used
the dns64perf++ program [8] (documented in [9]). It can
generate DNS AAAA query requests with a variable query
name field and sends them to a specified destination.
Meanwhile, this program measures the response time of the
query. We have chosen this program because we were able to
specify the number of requests per second.

The remainder of this paper is organized as follows. In
section II, we describe the testbed used to exhaust the port
number range of the PLAT. In section III, we determine the
limitations of our testbed and detail the constraints that we had
to deal with. In section IV, we detail the method of how
464XLAT’s vulnerability can be exploited and we show one
example. Finally, in section V, we summarize and conclude our
paper.

II. 464XLAT TESTBED

A. The architecture

Virtual machines can be quickly created, and they are easy
to set up, for these reasons, we used VMware virtual machines
for the testbed. These virtual machines were run by VMware
Workstation Player. As shown in Table I, 5 VMs were created
and assigned to various VMnets. Two of these represented
IPv4 hosts, we called them Clients. The other two of them were
the CLAT and the PLAT. They were connected by an IPv6
network. CLAT was connected to the clients. The last virtual
machine was connected to the PLAT’s IPv4 interface and
behaved as an IPv4 server on the Internet.

B. Testbed implementation

The clients, server, and the CLAT had 256 MB memory
and 1 CPU core, while the PLAT had 3 CPU cores and 512
MB memory. More resources were needed on the PLAT since
it did the stateful NAT64 translation (actually a stateless
NAT64 plus a stateful NAT44). For the virtual machine
operating systems, we installed Debian 8 and configured them
according to Table I.

C. End device configurations.

On the server, we only configured the network interface

according to Fig. 1 and set the necessary route. We were not

interested in the DNS query answers, thus, we didn’t set up a

DNS server on this machine. On the clients’ machines, we

also configured the IP addresses and the default route. We also

downloaded the dns64perf++ program from GitHub. Due to

the fact that our program uses a high number of different

source port numbers (and thus also sockets) for packet

generation, we had to increase the limit on the number of open

files in Linux. To achieve this, the following line was inserted

into the /etc/security/limits.conf file:

root hard nofile 100000

D. CLAT configuration

For the stateless NAT64 function, we used Tayga, and the

following lines were modified in the configuration files.

In /etc/default/tayga, we switched off the activation

of the stateful NAT44 function and started Tayga.

RUN=”yes”
CONFIGURE_NAT44=”no”

In /etc/tayga.conf file, we made the following

modifications.

ipv4-addr 192.0.2.9
ipv6-addr 2001:db8:2::9
prefix 2001:db8:a::/96
#dynamic-pool 192.168.255.0/24
#data-dir /var/spool/tayga
map 10.0.0.2 2001:db8:c::10.0.0.2
map 10.0.0.2 2001:db8:c::10.0.0.3

Finally, we created a bash shell script to set up the IP

forwarding and necessary routes.

TABLE I. LINUX AND VMWARE NETWORK SETTINGS FOR VIRTUAL MACHINES.

Virtual machine name Client Client 2 CLAT PLAT Server

eth0 Linux conf DHCP DHCP DHCP DHCP DHCP

eth0 VMware conf NAT NAT NAT NAT NAT

eth1 VMware conf VMnet11 VMnet11 VMnet11 VMnet12 VMnet13

eth2 VMware conf N/A N/A VMnet12 VMnet13 N/A

Fig. 1. Topology of the test network.

#!/bin/bash
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
ip route add 198.51.100.0/24 dev nat64
ip route add 2001:db8:c::/96 dev nat64
ip route del 2001:db8:a::/96 dev nat64
#needed to be deleted as tayga set it automatically
ip route add 2001:db8:a::/96 via 2001:db8:2::2

E. PLAT configuration

The stateful NAT64 translation is handled by the PLAT.

We implemented this with two programs. First, we used Tayga

to do the translation from IPv6 to IPv4. But Tayga works in a

stateless way, so we used Netfilter [10] to implement the

stateful function.

Tayga’s configuration is very similar to the previous case.

The relevant part of the /etc/tayga.conf file is as follows:

ipv4-addr 192.0.2.9
ipv6-addr 2001:db8:2::9
prefix 2001:db8:a::/96
#dynamic-pool 192.168.255.0/24
#data-dir /var/spool/tayga
map 10.0.0.2 2001:db8:c::10.0.0.2
map 10.0.0.2 2001:db8:c::10.0.0.3

The /etc/default/tayga has the same content.

RUN=”yes”
CONFIGURE_NAT44=”no”

In order to make the stateful part up and running, we added

the following iptables rule.

iptables -t nat -A POSROUTING -o eth2 -j MASQUERADE

This rule will change the source IP address so the outgoing

packet will have the PLAT’s IP address instead of the clients’

IP addresses.

We also set up the forwarding and routing with the

following script.

#!/bin/bash
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
ip route add 10.0.0.0/24 dev nat64
ip route add 2001:db8:c::/96 via 2001:db8:2::1

III. CONSTRAINS AND LIMITATIONS

A. Testbed limitations

Our measurements were performed on a single physical
computer. The resources of the computer were split between
the virtual machines. Thus, the virtual environment that we
used had its limitations. We carried out some measurements in
order to define the rate at which we can send the DNS queries
so that they are transmitted without loss. 60,000 packets were
sent from one of the clients with a 1ms delay between each
packet, and we measured the number of packets that arrived at
the server with TShark. After that, we repeated the test with a
lower delay between the consecutive packets, down to 0.1ms.
We observed that the minimum delay that we were able to set
up for all the packets to arrive at the server was 0.2ms. This is
equivalent to 5000 query/s, so our testbed was able to send
packets with a maximum 5000query/s rate.

B. Constraints on the PLAT

The stateful function was implemented with Netfilter. It
stores the connections in a connection tracking table. It can be
viewed in /proc/net/ip_conntrack [11].

Because the DNS queries use UDP, it was important to
know the UDP session timeout, which means, that after 30
seconds, the ports can be re-used again. It can be viewed in
/proc/sys/net/ipv4/netfilter/ip_conntrack_udp_

timeout [12], the timeout value was 30s, and we didn’t

change that.

There is a hash table that stores a list of NAT table entries,
and the size of the table can be viewed or modified in
/sys/module/nf_conntrack/parameter/hashsize.

Fig. 2. Taffic observed at the eth2 interface of PLAT.

The size of the connection tracking table was modified in
/proc/sys/net/ipv4/netfilter/ip_conntrack_max.

It is important to know that the size of the NAT table should be
8 times larger than the hash table size. The hash table size is
recommended to be a power of 2, thus we set this at 16384.
The connection tracking table's size was set to 131072 [13].
This size is a high enough number, so the table will not fill up
before all the port numbers are in use.

IV. 464XLAT VULNERABILITY

A. Vulnerability

We are aware that there are multiple vulnerabilities in
464XLAT, but in this paper, our goal is to send the packets
through the PLAT so that it will use all its available port
numbers and reach a point where it can’t work properly
anymore because it doesn’t have any available source port
number to translate an incoming packet. It is possible because
all devices behind the PLAT share a pool of connection
descriptors that are used during the NAT translation.

B. Sample attack

To exploit the above-stated vulnerability, we used two
clients and sent 60000 queries at a 2500 query/s rate from each
machine. Thus, the traffic remained within our limitation of
5000 query/s at the PLAT. This resulted in 120,000
connections at the PLAT. The connection table size was
131072. This size prevents the possibility that the NAT table
will be full. During the attack, we did a packet capture with
TShark on the PLAT’s outgoing interface. We examined the
packet capture and found that 64534 packets left the PLAT in
12.9s. In these packets there were 24 ARP or ICMP, thus
64512 DNS query packets were translated. This is the exact
number of available source port numbers. After this, no packets
were captured until the 30.09s. Let us recall that the UDP
session timeout was the 30s. After 30.09s, only a few hundred
packets left the PLAT.

C. Explanation

What happened was, that when 64512 packets arrived, they
got translated and all available source port numbers were used.
These connections got into the connection tracking table and
stayed there until the UDP timeout expired. Meanwhile, the
packets kept coming. We believe a couple of hundred packets
were stored in some buffer and the rest packets were dropped.
Further work is needed to make sure what happened with the
incoming packets and why it happened. But we do know that
after the UDP timeout expired, the buffered packets were
translated and sent out on the PLAT’s IPv4 interface.

V. CONCLUSION

We successfully exhausted the available source port
number range on the PLAT using DNS query messages in our

testbed. Thus, we showed a possible DoS attack against the
464XLAT. It is worth mentioning that with the proper
mitigations (multiple public IP addresses on the IPv4 interface
of the PLAT or limiting connections based on source IP
addresses), 464XLAT can be made more resilient to Denial of
Service attacks, but we proved that it is possible to use all
available port numbers to prevent the provider side device from
working properly.

ACKNOWLEDGMENT

The authors thank Ameen Al-Azzawi for reviewing and
commenting the manuscript of this paper.

REFERENCES

[1] M. Mawatri, M.Kawashima, C.Byrne: 464XLAT: Combination of

Stateful and Stateless Translation, IETF RFC 6877, April 2013, DOI:
10.17487/RFC6877

[2] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6
transition technologies: A subjective classification for security analysis”,
IEICE Transactions on Communications, vol. E102-B, no.10, pp. 2021-
2035. DOI: 10.1587/transcom.2018EBR0002

[3] G. Lencse and Y. Kadobayashi, “Methodology for the identification of
potential security issues of different IPv6 transition technologies: Threat
analysis of DNS64 and stateful NAT64”, Computers & Security
(Elsevier), vol. 77, no. 1, pp. 397-411, August 1, 2018, DOI:
10.1016/j.cose.2018.04.012

[4] A. Al-Azzawi, “Towards the security analysis of the five most
prominent IPv4aaS technologies”, Acta Techica Jaurinensis, vol. 13, no.
2, pp. 85–98, Mar. 2020. DOI: 10.14513/actatechjaur.v13.n2.530

[5] A. Shostack, Threat Modeling: Designing for Security, Wiley & Sons,
Indianapolis, Indiana, USA, 2014.

[6] A. Al-Azzawi and G. Lencse, "Identification of the possible security
issues of the 464XLAT IPv6 transition technology", Infocommuni-
cations Journal, vol. 13, no. 4, pp. 10-18, December 2021, DOI:
10.36244/ICJ.2021.4.2

[7] N. Lutchansky , “TAYGA: Simple, no-fuss NAT64 for Linux”,
http://www.litech.org/tayga/

[8] D. Bakai: “DNS64perf++: A C++14 DNS64 tester program”, free
software under GPLv2 license, https://github.com/bakaid/dns64perfpp

[9] G. Lencse, D. Bakai, "Design and implementation of a test program for
benchmarking DNS64 servers", IEICE Transactions on
Communications, vol. E100-B, no. 6. pp. 948-954, June 2017. DOI:
10.1587/transcom.2016EBN0007

[10] R. Rosen, “Netfilter”. In: Linux Kernel Networking. Apress, Berkeley,
CA. 2014. DOI: 10.1007/978-1-4302-6197-1_9

[11] O. Andreasson, “IP tables tutorial”, chapter 4, The conntrack entries
http://www.faqs.org/docs/iptables/theconntrackentries.html

[12] M. Sauter, “UDP NAT timeouts and how to chane them on Linux”,
https://blog.wirelessmoves.com/2015/06/udp-nat-timeouts-and-how-to-
change-them.html

[13] H. Eychenne, “Netfilter conntrack performance tweaking v0.8”,
https://wiki.khnet.info/index.php/Conntrack_tuning

.

