
Testbed for the Comparative Analysis of DS-Lite and

Lightweight 4over6 IPv6 Transition Technologies

Omar D’yab, Gábor Lencse

Department of Networked Systems and Services

Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics,

Műegyetem rkp. 3., H-1111 Budapest, Hungary.

Email: omardyab@hit.bme.hu, lencse@hit.bme.hu

Abstract— This paper aims to build a testbed for two of the

most prominent IPv6 transition technologies, namely, Lightweight

4over6 and Dual Stack Lite. Four virtual machines were used to

facilitate the implementation of each transition technology. Point

to Point tunneling plus stateful NAT64 were used to implement

Dual Stack Lite. Snabb was used to implement Lightweight 4over6

testbed. The testbed is built in preparation for the benchmarking

measurements to facilitate a comparative analysis of the

performance of two tunneling IP transition technologies: Dual

Stack Lite as a stateful mechanism, and Lightweight 4over6 as a

stateless mechanism.

Keywords—Lightweight 4over6; DS-Lite; AFTR; B4;

Performance Analysis.

I. INTRODUCTION

The depletion of the public IPv4 address pool made IPv4

inadequate, in a consequence of the rapid growth of

communication technology and the Internet, and eventually, as

predicted, the shortage of the available public IPv4 addresses

made the transition to the new version of the Internet Protocol

inevitable. IPv6 was developed by the IETF (Internet

Engineering Task Force), and its address pool is more than

sufficient to cover all current and future needs. IPv6 was

designed to be more secure and efficient compared to IPv4,

allowing the process of migrating from IPv4 to IPv6 to begin,

despite the fact that the two versions of IP are incompatible with

each other. As the transition from IPv4 to IPv6 may not happen

at the same time all over the word due to several reasons (e.g.,

there are a billion of devices connected to the Internet, and some

of them are even not able to work with IPv6), the two versions

of IP must live together for a long time and they must somehow

co-operate. There are many IPv6 transition technologies

developed by IETF [1], based on different strategies which can

be combined. IPv4aaS (IPv4-as-a-Service) is the scenario,

when the Internet Service Providers (ISP) use only IPv6 in their

access and core network, but they still provide an IPv4 Internet

access to their customers. The two main approaches of IPv4aaS

are:

1. Double Translation: The IPv4 packets of the

subscriber are translated into IPv6 packets by a

customer edge device, and they are carried in the

access and core network of the ISP as IPv6 packets,

finally, they are translated back to IPv4 at the

boundary of the ISP network. Such technologies are

464XLAT and MAP-T.

2. Tunneling: The IPv4 packets of the subscriber are

encapsulated into IPv6 packets by a customer edge

device, and they are carried in the access and core

network of the ISP as IPv6 packets, finally, they are

de-encapsulated at the boundary of the ISP network.

Such technologies are Dual Stack Lite, Lightweight

4over6, and MAP-E.

The use of IPv6 transition mechanisms would greatly

depend on many factors: cost, growth, deployment, scalability,

infrastructure robustness, and preeminently their performance.

This paper focuses on preparing a comparative analysis by

conducting experiments proposing a testbed of both DS-Lite

and Lightweight 4over6 as stateful and stateless tunneling

IPv4aaS technologies, respectively. Thus, we pave the way for

measuring their performance, and analyzing their results, which

can be extremely beneficial when an Enterprise/ISP determines

which IPv6 transition technology to use.

This empirical measurement in [2] conducted a performance

study of IPv6 and IPv4 through dual-stack sites from all over

the world, using performance metrics: connectivity,

throughput, packet loss, hop count, and round-trip time (RTT),

considering different regions and times. Compared with IPv6,

IPv4 had higher latency and lower throughput with intangible

improvements since 2004, IPv6, however, had lower packet

loss rate and better connectivity. The average hop count of the

IPv6 network is very similar to that of IPv4.

Based on the empirical results in [3], it was found that

MAP-E was more feasible compared to other transition

technologies. MAP-T and 464XLAT had a better performance

in terms of latency as translation-based technology, on the other

hand, MAP-E and Ds-Lite had a better performance in terms of

throughput as encapsulation-based technology, IPv6NET has

shown that it has a high level of repeatability, one flaw in

IPv6NET is the lack of control data.

Proving that dual stack is the best technique, achieving better

performance in solving the limitations of IPv4, [4] proposed a

methodology of four phases: Build & Design network,

Statistics, Simulator, and the results of the analysis. The

analysis is based on three different scenarios (IPv4, IPv6, and

Dual-Stack), which were compared using Riverbed simulator,

evaluating five performance metrics: Delay, Traffic dropped,

Jitter, Packet delay, and CPU Utilization. The results have

shown that Dual-stack surpassed IPv4 and gave a better

performance.

Our long-term research plan includes the comparative

analysis of various IPv6 transition technologies for IPv4aaS.

The comparison has various aspects such as performance,

security, efficiency of public IPv4 address sharing, etc. The aim

of this paper is to be able to set up the two transition

technologies as a preparation to move one step further in the

direction of performance analysis. As we highlighted above,

there is a lot of research in this domain, yet there is a lack of

results that we willing to fill. The rest of this paper is organized

as follows. In section II, we give a brief introduction to Dual

Stack Lite and Lightweight 4over6 transition technologies. In

Section III, we illustrate our testbed topology structure for both

technologies: Dual Stack Lite and Lightweight 4over6. In

Section IV, we describe our future research work plans. Section

V concludes and summarizes our paper.

II. INTRODUCTION TO DS-LITE AND LW4O6

A. Dual Stack Lite

Dual Stack Lite (or DS-Lite) is an RFC 6333 [5] stateful
IPv6 tunneling transition mechanism formed on Network
Address Translation (NAT), Tunneling, and Native IPv6,
allowing clients with IPv6-only Internet access to reach IPv4-
only servers. DS-Lite is used to provide IPv4 connectivity to
Customer Premise Equipment (CPE) using IPv6, a typical
scenario would be connecting a client to an IPv4 web server
through an IPv6 tunnel that interfaces to the IPv4 network. There
are two main components of DS-Lite transition mechanism:

• The Residential Gateway device known as the
Basic Bridging Broadband element or B4 in short,
is responsible for encapsulating the IPv4 packets
of the client into IPv6 and forwarding them to the
AFTR.

• Address Family Transition Router device known
as AFTR is a border relay element that de-
encapsulates the IPv4 packets from the IPv6
packets and also performs a NAPT (stateful
network address/port translation) to provide the
IPv4 packets of the client with a public IPv4 source
address.

The ISP – on behalf of the client – performs network address
translation, all client packets leaving the ISP’s AFTR device
heading into the IPv4 network will be given a public IPv4
address, hence, extending the life of the IPv4 address pool, in the
view of the fact that one public IPv4 address is being shared

amongst many CPE devices, allowing those private addresses of
RFC 1918 [6] to be used repeatedly, the process of NAT works
as a combination of port mapping and addresses, maintaining the
inbound (Server to CPE) and outbound (CPE to Server) traffic
to be mapped perfectly from source to destination.

B. Lightweight 4over6

Lightweight 4over6 (or lw4o6) is an RFC 7596 [7] compliant
stateless IPv6 tunneling transition mechanism, extending the
DS-Lite by moving the NAPT from the AFTR to the B4. Lw4o6
inherits some of its functions and components as follows:

• LwB4: Lightweight Basic Bridging Broadband,
which performs a NAPT, as well as encapsulates
the packets of the client into IPv6. LwB4 acts as one
of the IPv6 tunnel endpoints.

• LwAFTR: Address Family Translation Router, acts
as the other endpoint of the tunnel, looks up a static
binding table for a match, decapsulates the packets,
and routes them to the intended destination relying
on A+P (address and port) softwires.

It is noticeable that the lw4o6 moves the functionality of
NAPT from the central element, lwAFTR, to the element at the
client, lwB4, resulting in the removal of the stateful component
from the central element, thus increasing the scalability of the
solution. Lw4o6 has a Binding Table inside its Softwire as the
core of this technology, consisting of IPv4 address, IPv4 port
range and IPv6 of B4, per-subscriber basis entry, make it
possible to reverse the process.

III. TESTBED DESIGN AND IMPLEMENTATION

In preparation for the benchmarking measurements, a

simple test system was put together for both DS-Lite and lw4o6

using low memory footprint virtual machines for each transition

technology. Each virtual machine was created by debian-vm

written by Daniel Bakai [8] using the Debian 8.9 Linux

distribution. VMware workstation 16 Player was used to run

each testbed.

A. Dual Stack Lite Testbed

1) Topology and System Description

Point-to-Point tunneling was used to implement DS-Lite. In

our system test, each virtual machine has 1 CPU core, 128 MB

of RAM, and up to 20 GB of a hard disk. Aforesaid the essential

components of this technology are B4 and AFTR, where packets

are being encapsulated and decapsulated.

The topology was built as illustrated in Fig. 1, separated by

three virtual networks: for instance, VMnet10 is an IPv6-only

network between B4 (eth2) and AFTR (eth1), on the contrary,

both VMnet5 and VMnet7 are IPv4-only networks, VMnet5 on

the left side is the network between the Client (eth1) and B4

(eth1), while VMnet7 on the right side is the network between

the AFTR (eth2) and the Server (eth1), Table I shows the

configuration for each interface and VMware settings for each

virtual machine.

Fig. 1. Dual Stack Lite Testbed Topology

2) B4 Testbed Implementation

The main configuration for encapsulating at the B4, starts

by setting up a new IPIP6 virtual interface, the remote address

will be the IPv6 address of the AFTR, and the local address is

the IPv6 address of the B4 itself, all going via eth2 of the B4,

the configuration of B4 to be added as follows:

> ip link add name ipip6 type ip6tnl local 2001:db8:0:1::1 remote

2001:db8:0:1::2 mode any dev eth2

> ip link set dev ipip6 up

Configuraing a route for encapsualted packets through the

tunnel, using kernel IP forwarding to enable forwarding feature

for both IPv4 and IPv6, the following script was added:

> ip route add 192.0.2.0/24 dev ipip6

> sysctl -w net.ipv4.ip_forward=1

>sysctl -w net.ipv6.conf.all.forwarding=1

3) AFTR Testbed Implementation

AFTR, on the other side, has a similar configuration align

with the B4 tunnel configuration, as follows:

> ip link add name ipip6 type ip6tnl local 2001:db8:2::2 remote

2001:db8:2::1 mode any dev eth1

> ip link set dev ipip6 up

> ip route add 10.0.0.0/24 dev ipip6

> iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE

> sysctl -w net.ipv4.ip_forward=1

> sysctl -w net.ipv6.conf.all.forwarding=1

B. Lightweight 4over6 Testbed

1) Topology and System Description

Snabb [9] is an open-source implementation that was

originally developed to support Deutsche Telekom's Tera

Stream network. Snabb is a simple and fast packet networking,

written with Lua programing language for high-performance

computing by minimizing dependencies including the LuaJIT a

just-in-time compiler to deliver multiple applications as a single

binary.

Snabb [9] was chosen to implement lw4o6 for the following
causes:

1. Its simplicity and ability to support IPv4 and IPv6.
2. It is also practical for high packet rate applications.
3. It can process up to 50 Mbps of a virtual Ethernet card

(Virtio-net) network traffic per server.
4. It supports virtualization [10].

In our testbed, each virtual machine has 1 CPU core, 128

MB of RAM, and up to 20 GB of a hard disk, one exception

was the lwAFTR memory, which due to loading huge pages

was increased to 2 GB. As mentioned, the core components of

this technology are: lwB4 and lwAFTR. Lw4o6-tun is the tunnel

where packets are being encapsulated and decapsulated.

 The topology was built as illustrated in Fig. 2, separated by

three virtual networks: VMnet16 represents the Lw4o6-tun

tunnel which is an IPv6-only network that connects lwB4 with

lwAFTR, On the contrary, both VMnet15 and VMnet17 are

IPv4-only networks, VMnet15 on the left side is the network

between the Client (eth1) and B4 (eth1), while VMnet17 on the

right side is the network between the AFTR (eth2) and the

Server (eth1). Table II shows the configuration for each

interface and VMware settings for each virtual machine.

Fig. 2. Lightweight 4over6 Testbed Topology

2) LwB4 Testbed Implementation
The high-level steps of configuring the tunnel, as per our

testbed, is initially creating an IP4 in IP6 tunnel with a source

TABLE I. DS-LITE LINUX AND VMWARE NETWORK SETTINGS

VM setting Client B4 AFTR Server

eth0 Linux DHCP DHCP DHCP DHCP

eth1 Linux 10.0.0.5 10.0.0.10 2001:db8:2::2 192.0.2.2

eth2 Linux N/A 2001:db8:2::1 192.0.2.1 N/A

eth0 VMware NAT NAT NAT NAT

eth1 VMware VMnet5 VMnet5 VMnet10 VMnet7

eth2 VMware N/A VMnet10 VMnet7 N/A

address on the B4 of 2001:db8::1/64 and a destination address
of 2001:db8:2::2. Once created, we allocate an IPv4 address to
the tunnel itself, which is the 10.0.0.15 address,
correspondingly, we set up a default route so that all IPv4 traffic
is going to be sent via that tunnel, thereupon, we set a source
NAT rule, so that all the traffic passes through that tunnel gets
Natted to have a source address of the 10.0.0.15; thus 10.0.0.15
address can be added once the tunnel is created. In terms of the
size of the supported MTU (Maximum Transmission Unit) on
the bridge interface, whether tunneling or translating, each
packet gets bigger, for the purpose of our testbed 1400 to 1500
would be sufficient, normally it's 1500. Dealing with IPv6
routing in Linux we need to be very explicit, hence, a metric of
249 was set.

2001:db8::2 is the interface address of lwAFTR referred as

V6NEXTHOP, since the address of the tunnel endpoint is a

remote route, sending traffic over there, we going to go over the

address of lwAFTR on eth2 interface using the lwB4 source

address with metric 249 and would be preferred to a default

route, variables were used to replace addresses and interfaces

prior to the actual script aligned with what we have in the

binding table rule as follows:

> ip link set eth2 up
> ip -6 addr add 2001:db8:2::1 dev eth2
> ip -6 tunnel add lw4o6-tun remote 2001:db8:2::2 local 2001:db8::1/64

mode ipip6 encaplimit 4 hoplimit 64 tclass 0x00 flowlabel 0x00000
> ip link set dev lw4o6-tun mtu 1400 up
> ip addr add 10.0.0.15 /32 dev lw4o6-tun nodad
> iptables -A POSTROUTING -t nat -o lw4o6-tun -j SNAT --to-source

10.0.0.15
> ip route add 192.0.2.0/24 dev lw4o6-tun proto static
> ip -6 route add 2001:db8:2::/64 via 2001:db8::2 dev eth2 src 2001:db8::1

metric 249

3) LwAFTR Testbed Implementation
There are two ways of running lwAFTR using Snabb:

1. On-a-stick: lwAFTR <=> IPv4/IPv6, in this mode
(enabled by --on-a-stick interface0), both
IPv4/IPv6 external/internal interfaces are on a
single physical interface.

2. Bump-in-the-wire: IPv4 <--> lwAFTR <--> IPv6 in
this mode (enabled by --v4 interface0 --v6
interface1) both external/internal interfaces are on a
dedicated physical interface.

The distinction between on-a-stick and bump-in-the-wire is
purely related to the L2/physical topology. In both modes the
external/internal interfaces of lwAFTR have distinct MACs and

IPs, the only difference if it uses one or two physical Ethernet
ports, for our testbed purposes, we have decided to use On-a-
stick mode.

The lwAFTR of Snabb requires creating a bridge, and virtual
Ethernet interfaces of the bridge, to set it up using Linux kernel.
The following script was added to the lwAFTR:

> ip link add veth0 type veth peer name veth1
> ip link set veth0 up
> ip link set veth1 up
> ip link set eth1 up
> brctl addbr lwaftr
> brctl addif lwaftr veth0
> brctl addif lwaftr eth1
> ip link set lwaftr up

Packet towards the internal/v6 interface will look like this.
I.e., destination MAC is the MAC address of the lwAFTR
internal-interface, destination IPv6 is the br-address configured
for the softwire, source IPv6 is the b4-ipv6 configured for the
softwire. Inside is an IPv4 frame with a source address equal to
the IPv4 address configured in the softwire, and the destination
address is an IPv4 address on the internet. LwAFTR will remove
the IPv6 encapsulation and forward it to the external-interface.

In the other direction (packets arriving at the v4/external-
interface of lwAFTR) will look like this: Destination MAC is
the MAC address of the external-interface, destination IPv4
address is the ipv4 address configured in the softwire. Lwaftr
will encapsulate in IPv6 as shown before and forward on the
internal interface.

LwAFTR transitions from v4-in-v6 to v4 as maintained by
the binding table, but also vice versa from v4 to v4-in-v6, hence,
the core configuration for Snabb is building a lwAFTR bridge
which can be configured by constructing its binding-table
through the soft-wire configuration. In the binding table, b4-ipv6
must match lwB4 internal-interface, and br-address must
match lwAFTR eth1 address, which are 2001:db8::1 and
2001:db8:2::2, respectively, as per our testbed. Consequently,
the Softwire configuration is to be added by creating a
lwaftr.conf file as follows:

softwire-config {
 instance {
 device "veth1";
 queue {
 id 0;
 external-interface {
 ip : 192.0.2.1;
 mac "02:00:00:00:00:01";
 next-hop {
 ip : 192.0.2.2;
 }

TABLE II. LW4O6 LINUX AND VMWARE NETWORK SETTINGS

VM setting Client lwB4 lwAFTR Server

eth0 Linux DHCP DHCP DHCP DHCP

eth1 Linux 10.0.0.10 10.0.0.1 br-address: 2001:db8:2::2 192.0.2.2

eth2 Linux N/A 2001:db8:2::1 192.0.2.1 N/A

internal interface N/A b4-ipv6: 2001:db8::1
softwire IPv4: 10.0.0.15

V6NEXTHOP: 2001:db8::2

N/A

eth0 VMware NAT NAT NAT NAT

eth1 VMware VMnet15 VMnet15 VMnet16 VMnet17

eth2 VMware N/A VMnet16 VMnet17 N/A

 }
 internal-interface {
 ip 2001:db8::1;
 mac "02:00:00:00:00:02";
 next-hop {
 ip 2001:db8::2;
 }
 }
 }
 }
 external-interface {
 allow-incoming-icmp true;
 error-rate-limiting {
 packets 600000;
 period 2;
 }
 generate-icmp-errors true;
 mtu 1500;
 reassembly {
 max-fragments-per-packet 40;
 max-packets 20000;
 }
 }
 internal-interface {
 allow-incoming-icmp true;
 error-rate-limiting {
 packets 600000;
 period 2;
 }

 generate-icmp-errors true;
 hairpinning true;
 mtu 1540;
 reassembly {
 max-fragments-per-packet 40;
 max-packets 20000;
 }
 }

 binding-table {
 softwire {
 ipv4 10.0.0.15;
 psid 0;

 b4-ipv6 2001:db8::1;
 br-address 2001:db8:2::2;
 port-set {
 psid-length 0;
 }
 }
 }
}

C. Ds-Lite and lw4o6 traffic

Traffic from client to the server has been captured using

tcpdump -nli command on eth1 of B4, AFTR, and Server of

the Ds-Lite, as well as eth1 of lwB4, lwAFTR, and Server of

the lw4o6 as shown in Figs. 3 and 4, respectively.

IV. FUTURE RESEARCH WORK

Our future plan is to move one step further in the direction

of a comparative performance analysis of DS-Lite as a stateful

and Lightweight 4over6 as a stateless tunneling transition

technologies, certainly, using our experience gained with our

current testbeds, we started the measurements using a bare-

metal system, the plan is to publish the results this year.

V. CONCLUSION

In this paper we have investigated two of the most

prominent tunneling IPv4aaS IPv6 transition technologies:

Dual Stack Lite and lightweight 4over6, given a brief

introduction, and proposed two testbeds for both technologies

which manifest to be suitable for our next research work

towards the scalability of the two technologies.

ACKNOWLEDGMENT

The authors would like to thank Snabb community,

especially, Ian Farrer and Max Rottenkolber for the help and

support they provided in configuring Snabb.

B4, eth1
13:48:18.286616 IP 10.0.0.5 > 192.0.2.2: ICMP echo request, id 2059, seq 1, length 64

13:48:18.292882 IP 192.0.2.2 > 10.0.0.5: ICMP echo reply, id 2059, seq 1, length 64

AFTR, eth1
13:48:18.287700 IP6 2001:db8:2::1 > 2001:db8:2::2: IP 10.0.0.5 > 192.0.2.2: ICMP echo request, id 2059, seq 1, length 64

13:48:18.292331 IP6 2001:db8:2::2 > 2001:db8:2::1: IP 192.0.2.2 > 10.0.0.5: ICMP echo reply, id 2059, seq 1, length 64

Server, eth1
13:48:18.290712 IP 192.0.2.1 > 192.0.2.2: ICMP echo request, id 2059, seq 1, length 64

13:48:18.290767 IP 192.0.2.2 > 192.0.2.1: ICMP echo reply, id 2059, seq 1, length 64

Fig. 3. The tcpdump capture of the DS-Lite

LwB4, eth1
14:46:48.042862 IP 10.0.0.10 > 192.0.2.2: ICMP echo request, id 3158, seq 56, length 64

14:46:48.045742 IP 192.0.2.2 > 10.0.0.10: ICMP echo reply, id 3158, seq 56, length 64

lwAFTR, eth1
14:46:48.909121 IP6 2001:db8:2::1 > 2001:db8:2::2: IP 10.0.0.15 > 192.0.2.2: ICMP echo request, id 3158, seq 68, length 64

14:46:48.913058 IP6 2001:db8:2::2 > 2001:db8:2::1: IP 192.0.2.2 > 10.0.0.15: ICMP echo reply, id 3158, seq 68, length 64

Server, eth1
14:46:48.325435 IP 10.0.0.15 > 192.0.2.2: ICMP echo request, id 3158, seq 187, length 64

14:46:48.323472 IP 192.0.2.2 > 10.0.0.15: ICMP echo reply, id 3158, seq 187, length 64

Fig. 4. The tcpdump capture of the lw4o6

REFERENCES

[1] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6
transition technologies: A subjective classification for security analysis",
IEICE Transactions on Communications, vol. E102-B, no.10, pp. 2021-
2035. doi: 10.1587/transcom.2018EBR0002.

[2] Li, K.-H.; Wong, K.-Y. “Empirical analysis of IPv4 and IPv6 networks
through dual-stack sites”. Information, 2021, vol. 12, no. 6, 246. doi:
10.3390/info12060246.

[3] M. Georgescu, H. Hazeyama et al., “Empirical analysis of IPv6 transition
technologies using the IPv6 Network Evaluation Testbed”, EAI Endorsed
Transactions on Industrial Networks and Intelligent Systems vol 2, no 2,
(2015), doi :10.4108/inis.2.2.e1.

[4] M. R. A. Ahmed and S. S. A. Shaikhedris, “Network migration and
performance analysis of IPv4 and IPv6”, 2020 International Conference
on Computer, Control, Electrical, and Electronics Engineering
(ICCCEEE), Khartoum, Sudan, 2021, pp. 1-6. doi:
10.1109/ICCCEEE49695.2021.9429664

[5] A. Durand, R. Droms, J. Woodyatt, and Y. Lee, “Dual-stack lite
broadband deployments following IPv4 exhaustion”, IETF RFC 6333,
2011, doi:10.17487/RFC6333.

[6] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., and E. Lear,
"Address Allocation for Private Internets", BCP 5, RFC 1918, 1996, doi:
10.17487/RFC1918.

[7] Y. Cui, Q. Sun, M. Boucadair, T. Tsou, Y. Lee et al., “Lightweight
4over6: An extension to the dual-stack lite architecture”, IETF RFC 7596,
2015, doi:10.17487/RFC7596.

[8] D. Bakai, “Debian-VM”, [Online]. Available:
https://git.sch.bme.hu/bakaid/debian-vm

[9] Snabb, “snabbco/snabb”, [Online]. Available:
https://github.com/snabbco/snabb.

[10] Snabb Virtualization, “Igalia/snabb”, [Online]. Available:
https://github.com/Igalia/snabb/tree/lwaftr/src/program/lwaftr/doc.

