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Abstract— This paper aims to build a testbed for two of the 

most prominent IPv6 transition technologies, namely, Lightweight 

4over6 and Dual Stack Lite. Four virtual machines were used to 

facilitate the implementation of each transition technology. Point 

to Point tunneling plus stateful NAT64 were used to implement 

Dual Stack Lite. Snabb was used to implement Lightweight 4over6 

testbed. The testbed is built in preparation for the benchmarking 

measurements to facilitate a comparative analysis of the 

performance of two tunneling IP transition technologies: Dual 

Stack Lite as a stateful mechanism, and Lightweight 4over6 as a 

stateless mechanism. 

Keywords—Lightweight 4over6; DS-Lite; AFTR; B4; 

Performance Analysis. 

I. INTRODUCTION 

The depletion of the public IPv4 address pool made IPv4 

inadequate, in a consequence of the rapid growth of 

communication technology and the Internet, and eventually, as 

predicted, the shortage of the available public IPv4 addresses 

made the transition to the new version of the Internet Protocol 

inevitable. IPv6 was developed by the IETF (Internet 

Engineering Task Force), and its address pool is more than 

sufficient to cover all current and future needs. IPv6 was 

designed to be more secure and efficient compared to IPv4, 

allowing the process of migrating from IPv4 to IPv6 to begin, 

despite the fact that the two versions of IP are incompatible with 

each other. As the transition from IPv4 to IPv6 may not happen 

at the same time all over the word due to several reasons (e.g., 

there are a billion of devices connected to the Internet, and some 

of them are even not able to work with IPv6), the two versions 

of IP must live together for a long time and they must somehow 

co-operate. There are many IPv6 transition technologies 

developed by IETF [1], based on different strategies which can 

be combined. IPv4aaS (IPv4-as-a-Service) is the scenario, 

when the Internet Service Providers (ISP) use only IPv6 in their 

access and core network, but they still provide an IPv4 Internet 

access to their customers. The two main approaches of IPv4aaS 

are:   

1. Double Translation: The IPv4 packets of the 

subscriber are translated into IPv6 packets by a 

customer edge device, and they are carried in the 

access and core network of the ISP as IPv6 packets, 

finally, they are translated back to IPv4 at the 

boundary of the ISP network. Such technologies are 

464XLAT and MAP-T. 

2. Tunneling: The IPv4 packets of the subscriber are 

encapsulated into IPv6 packets by a customer edge 

device, and they are carried in the access and core 

network of the ISP as IPv6 packets, finally, they are 

de-encapsulated at the boundary of the ISP network. 

Such technologies are Dual Stack Lite, Lightweight 

4over6, and MAP-E. 

The use of IPv6 transition mechanisms would greatly 

depend on many factors: cost, growth, deployment, scalability, 

infrastructure robustness, and preeminently their performance. 

This paper focuses on preparing a comparative analysis by 

conducting experiments proposing a testbed of both DS-Lite 

and Lightweight 4over6 as stateful and stateless tunneling 

IPv4aaS technologies, respectively. Thus, we pave the way for 

measuring their performance, and analyzing their results, which 

can be extremely beneficial when an Enterprise/ISP determines 

which IPv6 transition technology to use. 

This empirical measurement in [2] conducted a performance 

study of IPv6 and IPv4 through dual-stack sites from all over 

the world, using performance metrics: connectivity, 

throughput, packet loss, hop count, and round-trip time (RTT), 

considering different regions and times. Compared with IPv6, 

IPv4 had higher latency and lower throughput with intangible 

improvements since 2004, IPv6, however, had lower packet 

loss rate and better connectivity. The average hop count of the 

IPv6 network is very similar to that of IPv4. 

Based on the empirical results in [3], it was found that 

MAP-E was more feasible compared to other transition 

technologies.  MAP-T and 464XLAT had a better performance 

in terms of latency as translation-based technology, on the other 

hand, MAP-E and Ds-Lite had a better performance in terms of 

throughput as encapsulation-based technology, IPv6NET has 



shown that it has a high level of repeatability, one flaw in 

IPv6NET is the lack of control data. 

Proving that dual stack is the best technique, achieving better 

performance in solving the limitations of IPv4, [4] proposed a 

methodology of four phases: Build & Design network, 

Statistics, Simulator, and the results of the analysis. The 

analysis is based on three different scenarios (IPv4, IPv6, and 

Dual-Stack), which were compared using Riverbed simulator, 

evaluating five performance metrics: Delay, Traffic dropped, 

Jitter, Packet delay, and CPU Utilization. The results have 

shown that Dual-stack surpassed IPv4 and gave a better 

performance.  

Our long-term research plan includes the comparative 

analysis of various IPv6 transition technologies for IPv4aaS. 

The comparison has various aspects such as performance, 

security, efficiency of public IPv4 address sharing, etc. The aim 

of this paper is to be able to set up the two transition 

technologies as a preparation to move one step further in the 

direction of performance analysis. As we highlighted above, 

there is a lot of research in this domain, yet there is a lack of 

results that we willing to fill. The rest of this paper is organized 

as follows. In section II, we give a brief introduction to Dual 

Stack Lite and Lightweight 4over6 transition technologies. In 

Section III, we illustrate our testbed topology structure for both 

technologies: Dual Stack Lite and Lightweight 4over6. In 

Section IV, we describe our future research work plans. Section 

V concludes and summarizes our paper. 

II. INTRODUCTION TO DS-LITE AND LW4O6 

A. Dual Stack Lite 

Dual Stack Lite (or DS-Lite) is an RFC 6333 [5] stateful 
IPv6 tunneling transition mechanism formed on Network 
Address Translation (NAT), Tunneling, and Native IPv6, 
allowing clients with IPv6-only Internet access to reach IPv4-
only servers. DS-Lite is used to provide IPv4 connectivity to 
Customer Premise Equipment (CPE) using IPv6, a typical 
scenario would be connecting a client to an IPv4 web server 
through an IPv6 tunnel that interfaces to the IPv4 network. There 
are two main components of DS-Lite transition mechanism: 

• The Residential Gateway device known as the 
Basic Bridging Broadband element or B4 in short, 
is responsible for encapsulating the IPv4 packets 
of the client into IPv6 and forwarding them to the 
AFTR. 

• Address Family Transition Router device known 
as AFTR is a border relay element that de-
encapsulates the IPv4 packets from the IPv6 
packets and also performs a NAPT (stateful 
network address/port translation) to provide the 
IPv4 packets of the client with a public IPv4 source 
address. 

The ISP – on behalf of the client – performs network address 
translation, all client packets leaving the ISP’s AFTR device 
heading into the IPv4 network will be given a public IPv4 
address, hence, extending the life of the IPv4 address pool, in the 
view of the fact that one public IPv4 address is being shared 

amongst many CPE devices, allowing those private addresses of 
RFC 1918 [6] to be used repeatedly, the process of NAT works 
as a combination of port mapping and addresses, maintaining the 
inbound (Server to CPE)  and outbound (CPE to Server) traffic 
to be mapped perfectly from source to destination. 

B. Lightweight 4over6 

Lightweight 4over6 (or lw4o6) is an RFC 7596 [7] compliant 
stateless IPv6 tunneling transition mechanism, extending the 
DS-Lite by moving the NAPT from the AFTR to the B4. Lw4o6 
inherits some of its functions and components as follows: 

• LwB4: Lightweight Basic Bridging Broadband, 
which performs a NAPT, as well as encapsulates 
the packets of the client into IPv6. LwB4 acts as one 
of the IPv6 tunnel endpoints. 

• LwAFTR: Address Family Translation Router, acts 
as the other endpoint of the tunnel, looks up a static 
binding table for a match, decapsulates the packets, 
and routes them to the intended destination relying 
on A+P (address and port) softwires. 

It is noticeable that the lw4o6 moves the functionality of 
NAPT from the central element, lwAFTR, to the element at the 
client, lwB4, resulting in the removal of the stateful component 
from the central element, thus increasing the scalability of the 
solution. Lw4o6 has a Binding Table inside its Softwire as the 
core of this technology, consisting of IPv4 address, IPv4 port 
range and IPv6 of B4, per-subscriber basis entry, make it 
possible to reverse the process. 

III. TESTBED DESIGN AND IMPLEMENTATION 

In preparation for the benchmarking measurements, a 

simple test system was put together for both DS-Lite and lw4o6 

using low memory footprint virtual machines for each transition 

technology. Each virtual machine was created by debian-vm 

written by Daniel Bakai [8] using the Debian 8.9 Linux 

distribution. VMware workstation 16 Player was used to run 

each testbed.  

A. Dual Stack Lite Testbed 

1) Topology and System Description  

Point-to-Point tunneling was used to implement DS-Lite. In 

our system test, each virtual machine has 1 CPU core, 128 MB 

of RAM, and up to 20 GB of a hard disk. Aforesaid the essential 

components of this technology are B4 and AFTR, where packets 

are being encapsulated and decapsulated. 

The topology was built as illustrated in Fig. 1, separated by 

three virtual networks: for instance, VMnet10 is an IPv6-only 

network between B4 (eth2) and AFTR (eth1), on the contrary, 

both VMnet5 and VMnet7 are IPv4-only networks, VMnet5 on 

the left side is the network between the Client (eth1) and B4 

(eth1), while VMnet7 on the right side is the network between 

the AFTR (eth2) and the Server (eth1), Table I shows the 

configuration for each interface and VMware settings for each 

virtual machine. 



 

Fig. 1. Dual Stack Lite Testbed Topology 

2)  B4 Testbed Implementation 

The main configuration for encapsulating at the B4, starts 

by setting up a new IPIP6 virtual interface, the remote address 

will be the IPv6 address of the AFTR, and the local address is 

the IPv6 address of the B4 itself, all going via eth2 of the B4, 

the configuration of B4 to be added as follows:   

> ip link add name ipip6 type ip6tnl local 2001:db8:0:1::1 remote 

2001:db8:0:1::2 mode any dev eth2 

> ip link set dev ipip6 up 

Configuraing a route for encapsualted packets through the 

tunnel, using kernel IP forwarding to enable forwarding feature 

for both IPv4 and IPv6, the following script was added:   

> ip route add 192.0.2.0/24 dev ipip6 

> sysctl -w net.ipv4.ip_forward=1 

>sysctl -w net.ipv6.conf.all.forwarding=1 

3) AFTR Testbed Implementation 

AFTR, on the other side, has a similar configuration align 

with the B4 tunnel configuration, as follows:  

> ip link add name ipip6 type ip6tnl local 2001:db8:2::2 remote 

2001:db8:2::1 mode any dev eth1 

> ip link set dev ipip6 up 

> ip route add 10.0.0.0/24 dev ipip6  

> iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE   

> sysctl -w net.ipv4.ip_forward=1 

> sysctl -w net.ipv6.conf.all.forwarding=1 

B. Lightweight 4over6 Testbed 

1) Topology and System Description 

Snabb [9] is an open-source implementation that was 

originally developed to support Deutsche Telekom's Tera 

Stream network. Snabb is a simple and fast packet networking, 

written with Lua programing language for high-performance 

computing by minimizing dependencies including the LuaJIT a 

just-in-time compiler to deliver multiple applications as a single 

binary. 

Snabb [9] was chosen to implement lw4o6 for the following 
causes:  

1. Its simplicity and ability to support IPv4 and IPv6. 
2. It is also practical for high packet rate applications. 
3. It can process up to 50 Mbps of a virtual Ethernet card 

(Virtio-net) network traffic per server. 
4. It supports virtualization [10]. 

In our testbed, each virtual machine has 1 CPU core, 128 

MB of RAM, and up to 20 GB of a hard disk, one exception 

was the lwAFTR memory, which due to loading huge pages 

was increased to 2 GB. As mentioned, the core components of 

this technology are: lwB4 and lwAFTR. Lw4o6-tun is the tunnel 

where packets are being encapsulated and decapsulated. 

 The topology was built as illustrated in Fig. 2, separated by 

three virtual networks: VMnet16 represents the Lw4o6-tun 

tunnel which is an IPv6-only network that connects lwB4 with 

lwAFTR, On the contrary, both VMnet15 and VMnet17 are 

IPv4-only networks, VMnet15 on the left side is the network 

between the Client (eth1) and B4 (eth1), while VMnet17 on the 

right side is the network between the AFTR (eth2) and the 

Server (eth1). Table II shows the configuration for each 

interface and VMware settings for each virtual machine. 

 

  

Fig. 2. Lightweight 4over6 Testbed Topology 

2) LwB4 Testbed Implementation 
The high-level steps of configuring the tunnel, as per our 

testbed, is initially creating an IP4 in IP6 tunnel with a source 

TABLE I.  DS-LITE LINUX AND VMWARE NETWORK SETTINGS 

VM setting Client B4 AFTR Server 

eth0 Linux DHCP DHCP DHCP DHCP 

eth1 Linux  10.0.0.5 10.0.0.10 2001:db8:2::2 192.0.2.2 

eth2 Linux  N/A 2001:db8:2::1 192.0.2.1 N/A 

eth0 VMware  NAT NAT NAT NAT 

eth1 VMware  VMnet5 VMnet5 VMnet10 VMnet7 

eth2 VMware  N/A VMnet10 VMnet7 N/A 



address on the B4 of 2001:db8::1/64 and a destination address 
of 2001:db8:2::2. Once created, we allocate an IPv4 address to 
the tunnel itself, which is the 10.0.0.15 address, 
correspondingly, we set up a default route so that all IPv4 traffic 
is going to be sent via that tunnel, thereupon, we set a source 
NAT rule, so that all the traffic passes through that tunnel gets 
Natted to have a source address of the 10.0.0.15; thus 10.0.0.15 
address can be added once the tunnel is created. In terms of the 
size of the supported MTU (Maximum Transmission Unit) on 
the bridge interface, whether tunneling or translating, each 
packet gets bigger, for the purpose of our testbed 1400 to 1500 
would be sufficient, normally it's 1500. Dealing with IPv6 
routing in Linux we need to be very explicit, hence, a metric of 
249 was set. 

2001:db8::2 is the interface address of lwAFTR referred as 

V6NEXTHOP, since the address of the tunnel endpoint is a 

remote route, sending traffic over there, we going to go over the 

address of lwAFTR on eth2 interface using the lwB4 source 

address with metric 249 and would be preferred to a default 

route, variables were used to replace addresses and interfaces 

prior to the actual script aligned with what we have in the 

binding table rule as follows: 

 
> ip link set eth2 up 
> ip -6 addr add 2001:db8:2::1 dev eth2 
> ip -6 tunnel add lw4o6-tun remote 2001:db8:2::2 local  2001:db8::1/64 

mode ipip6 encaplimit 4 hoplimit 64 tclass 0x00 flowlabel 0x00000 
> ip link set dev lw4o6-tun mtu 1400 up 
> ip addr add 10.0.0.15 /32 dev lw4o6-tun nodad 
> iptables -A POSTROUTING -t nat -o lw4o6-tun -j SNAT --to-source 

10.0.0.15 
> ip route add 192.0.2.0/24  dev lw4o6-tun proto static 
> ip -6 route add 2001:db8:2::/64 via 2001:db8::2  dev eth2 src 2001:db8::1 

metric 249 

3) LwAFTR Testbed Implementation 
There are two ways of running lwAFTR using Snabb: 

1. On-a-stick: lwAFTR <=> IPv4/IPv6, in this mode 
(enabled by --on-a-stick interface0), both 
IPv4/IPv6 external/internal interfaces are on a 
single physical interface. 

2. Bump-in-the-wire: IPv4 <--> lwAFTR <--> IPv6 in 
this mode (enabled by --v4 interface0 --v6 
interface1) both external/internal interfaces are on a 
dedicated physical interface.  

The distinction between on-a-stick and bump-in-the-wire is 
purely related to the L2/physical topology. In both modes the 
external/internal interfaces of lwAFTR have distinct MACs and 

IPs, the only difference if it uses one or two physical Ethernet 
ports, for our testbed purposes, we have decided to use On-a-
stick mode. 

The lwAFTR of Snabb requires creating a bridge, and virtual 
Ethernet interfaces of the bridge, to set it up using Linux kernel. 
The following script was added to the lwAFTR: 

> ip link add veth0 type veth peer name veth1 
> ip link set veth0 up 
> ip link set veth1 up 
> ip link set eth1 up 
> brctl addbr lwaftr 
> brctl addif lwaftr veth0 
> brctl addif lwaftr eth1 
> ip link set lwaftr up 

Packet towards the internal/v6 interface will look like this. 
I.e., destination MAC is the MAC address of the lwAFTR 
internal-interface, destination IPv6 is the br-address configured 
for the softwire, source IPv6 is the b4-ipv6 configured for the 
softwire. Inside is an IPv4 frame with a source address equal to 
the IPv4 address configured in the softwire, and the destination 
address is an IPv4 address on the internet. LwAFTR will remove 
the IPv6 encapsulation and forward it to the external-interface. 

In the other direction (packets arriving at the v4/external-
interface of lwAFTR) will look like this: Destination MAC is 
the MAC address of the external-interface, destination IPv4 
address is the ipv4 address configured in the softwire. Lwaftr 
will encapsulate in IPv6 as shown before and forward on the 
internal interface. 

LwAFTR transitions from v4-in-v6 to v4 as maintained by 
the binding table, but also vice versa from v4 to v4-in-v6, hence, 
the core configuration for Snabb is building a lwAFTR bridge 
which can be configured by constructing its binding-table 
through the soft-wire configuration. In the binding table, b4-ipv6 
must match lwB4 internal-interface, and br-address must 
match lwAFTR eth1 address, which are 2001:db8::1 and 
2001:db8:2::2, respectively, as per our testbed. Consequently, 
the Softwire configuration is to be added by creating a 
lwaftr.conf file as follows: 

softwire-config { 
  instance { 
    device "veth1"; 
    queue { 
      id 0; 
      external-interface { 
        ip : 192.0.2.1; 
        mac "02:00:00:00:00:01"; 
        next-hop { 
          ip : 192.0.2.2; 
        } 

TABLE II.  LW4O6 LINUX AND VMWARE NETWORK SETTINGS 

VM setting Client lwB4 lwAFTR Server 

eth0 Linux DHCP DHCP DHCP DHCP 

eth1 Linux  10.0.0.10 10.0.0.1 br-address: 2001:db8:2::2 192.0.2.2 

eth2 Linux  N/A 2001:db8:2::1 192.0.2.1 N/A 

internal interface N/A b4-ipv6: 2001:db8::1 
softwire IPv4: 10.0.0.15  

V6NEXTHOP: 2001:db8::2  
 

N/A 

eth0 VMware  NAT NAT NAT NAT 

eth1 VMware  VMnet15 VMnet15 VMnet16 VMnet17 

eth2 VMware  N/A VMnet16 VMnet17 N/A 

 



      } 
      internal-interface { 
        ip 2001:db8::1; 
        mac "02:00:00:00:00:02"; 
        next-hop { 
          ip 2001:db8::2; 
        } 
      } 
    } 
  } 
  external-interface { 
    allow-incoming-icmp true; 
    error-rate-limiting { 
      packets 600000; 
      period 2; 
    } 
    generate-icmp-errors true; 
    mtu 1500; 
    reassembly { 
      max-fragments-per-packet 40; 
      max-packets 20000; 
    } 
  } 
  internal-interface { 
    allow-incoming-icmp true; 
    error-rate-limiting { 
      packets 600000; 
      period 2; 
    } 
 
    generate-icmp-errors true; 
    hairpinning true; 
    mtu 1540; 
    reassembly { 
      max-fragments-per-packet 40; 
      max-packets 20000; 
    } 
  } 
 
  binding-table { 
    softwire { 
      ipv4 10.0.0.15; 
      psid 0; 

      b4-ipv6 2001:db8::1;  
      br-address 2001:db8:2::2;  
      port-set { 
        psid-length 0; 
      } 
    } 
  } 
}  

C. Ds-Lite and lw4o6 traffic 

Traffic from client to the server has been captured using 

tcpdump -nli command on eth1 of B4, AFTR, and Server of 

the Ds-Lite, as well as eth1 of lwB4, lwAFTR, and Server of 

the lw4o6 as shown in Figs. 3 and 4, respectively. 

IV. FUTURE RESEARCH WORK 

Our future plan is to move one step further in the direction 

of a comparative performance analysis of DS-Lite as a stateful 

and Lightweight 4over6 as a stateless tunneling transition 

technologies, certainly, using our experience gained with our 

current testbeds, we started the measurements using a bare-

metal system, the plan is to publish the results this year.  

V. CONCLUSION 

In this paper we have investigated two of the most 

prominent tunneling IPv4aaS IPv6 transition technologies: 

Dual Stack Lite and lightweight 4over6, given a brief 

introduction, and proposed two testbeds for both technologies 

which manifest to be suitable for our next research work 

towards the scalability of the two technologies. 

ACKNOWLEDGMENT 

The authors would like to thank Snabb community, 

especially, Ian Farrer and Max Rottenkolber for the help and 

support they provided in configuring Snabb. 

B4, eth1 
13:48:18.286616 IP 10.0.0.5 > 192.0.2.2: ICMP echo request, id 2059, seq 1, length 64 

13:48:18.292882 IP 192.0.2.2 > 10.0.0.5: ICMP echo reply, id 2059, seq 1, length 64 

 

AFTR, eth1 
13:48:18.287700 IP6 2001:db8:2::1 > 2001:db8:2::2: IP 10.0.0.5 > 192.0.2.2: ICMP echo request, id 2059, seq 1, length 64 

13:48:18.292331 IP6 2001:db8:2::2 > 2001:db8:2::1: IP 192.0.2.2 > 10.0.0.5: ICMP echo reply, id 2059, seq 1, length 64 

 

Server, eth1 
13:48:18.290712 IP 192.0.2.1 > 192.0.2.2: ICMP echo request, id 2059, seq 1, length 64 

13:48:18.290767 IP 192.0.2.2 > 192.0.2.1: ICMP echo reply, id 2059, seq 1, length 64 

Fig. 3. The tcpdump capture of the DS-Lite 

LwB4, eth1 
14:46:48.042862 IP 10.0.0.10 > 192.0.2.2: ICMP echo request, id 3158, seq 56, length 64 

14:46:48.045742 IP 192.0.2.2 > 10.0.0.10: ICMP echo reply, id 3158, seq 56, length 64 

 

lwAFTR, eth1 
14:46:48.909121 IP6 2001:db8:2::1 > 2001:db8:2::2: IP 10.0.0.15 > 192.0.2.2: ICMP echo request, id 3158, seq 68, length 64 

14:46:48.913058 IP6 2001:db8:2::2 > 2001:db8:2::1: IP 192.0.2.2 > 10.0.0.15: ICMP echo reply, id 3158, seq 68, length 64 

 

Server, eth1 
14:46:48.325435 IP 10.0.0.15 > 192.0.2.2: ICMP echo request, id 3158, seq 187, length 64 

14:46:48.323472 IP 192.0.2.2 > 10.0.0.15: ICMP echo reply, id 3158, seq 187, length 64 

Fig. 4. The tcpdump capture of the lw4o6 
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