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ABSTRACT 
 
Quantum computing has a shorter history than satellites. From the engineering point of view, a quantum 
computing system may represent the highest level of information processing—a system where the physical 
layer is based on quantum mechanics. Although quantum computers are not to exist in the near future, the 
results of quantum computing are unquestionable: teleportation, O(n^1/2) search in an unsorted database, 
practically unbreakable key distribution and many more. Previous studies show that it is to mix satellite 
communication (a profitable business) and quantum computing (a new technology). Although there are 
recent studies about the physical solutions of the quantum-based communication, it is worth to examine 
the efficiency of this type of communication. Our primary goal is to create a quantum computing based 
redundancy-free error correction method that can be used over long distance aerial communication (such 
as earth-satellite). In this paper we present a theoretical study. The initial problem to solve is how to send 
certain amount of quantum bits over a noisy quantum channel, how to provide error correction. Solving 
this problem, the used method could be very useful in the long-distance aerial communication, because 
there would be no need to use redundant error correction codes as nowadays. This way, the effective 
capacity of the satellite link would also be increased. 
 
 

FULL TEXT 
 
 

I. INTRODUCTION 
   
   

The telecommunication and the satellite 
communication always have been a pulling force 
either in the military or in the civil environment. 
For an improved telecommunication system we 
need better hardware, better software and better 
solution for the transmission - irrespectively of 
what better means. Due to a convergence 
between the different technologies, there are a 
lot of solutions in telecommunications which are 
coming from other fields like information theory 
or computer studies. One of the main problems 
in the field of computer technology is the 
decreasing size of transistors used during the 
manufacturing process of the computers. 
According to engineer Gordon Moore we 
already now from the 60’s, that the size of the 

microchips reduce to half in about every 18 
months. This will cause some problems in 
creating the atomic-size transistors and handling 
their egress. But it could be a beginning of a new 
technology called quantum computing [1]. Since 
1980 recent studies have been dealing with this 
technology, and from the 90’s this way of the 
technology seem to be an efficient tool in 
telecommunication and even in satellite 
communication.  
   

Despite of the many theoretical results there are 
significant problems in the practical realization. 
Thousands of mathematicians, physicists and 
engineers are working to create a faster and 
more reliable communication system, and the 
results of quantum information theory can be 
used in factorizing and cryptography, in the 
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searching in a sorted or unsorted database etc. 
But one of the main fields where existing 
solutions can be found is communication. After 
successful wire-based experiments—some kind 
of quantum products are already in commercial 
trade—the interest of researches turned to the 
wireless solutions, and the convergence with 
satellite communication started. 
   

Our study deals with the quantum based 
communication which can be used either in the 
earth-satellite (satellite-earth) or satellite-satellite 
communication. This is a theoretical study with 
practical results presented in the second section. 
   

There is no doubt it that we could be able to 
communicate with satellite from the surface of 
the Earth using quantum based algorithms, 
because there are recent studies proving that it is 
possible. The question investigated in our paper 
is that how can it be done most effectively. 
 
 

II. QUANTUM COMMUNICATION 
 
 

Classical communication occurs between two or 
more parties on a channel with the interference 
of the environment (called noise in the 
literature). In computer science the sender 
usually sends bits and the recipient digests those. 
In quantum computing qubits are used for 
exchanging information. The main question is: 
can quantum communication be more effective 
than classical ones? Holevo’s theorem [2] states 

that for sending n classical bits n qubits are 
required no matter what kind of coding we use. 
If the participants share entangled pairs in 
advance then twice as many bits can be sent, not 
more.  
  

2.1 Moore-law 
  

As the experimental observation by Gordon 
Moore—stating that in every two year the 
number of transistors built on unit surface 
doubles—described in 1965 is still true, industry 
will face a limit in the transistor miniaturization. 
Researchers need to look for other methods to 
increase computing capacities of computers. 
One way is to design new architectures that suite 
applications more effectively. The other is to 
create a general computing architecture that is 
more powerful than the previous one. Industry 
goes this second way, but the boundaries of 
classical physics will sooner or later arise. At that 
point quantum based computation devices 
(quantum computers) can solve humanity’s need 
for computing capacity.  

 
Fig 1.: Graphical representation of the Moore-

law. Horizontaly the years, vertically number 
of transistors on an integrated circuits are 
represented. 

 

2.2 Quantum bit 
  

A quantum bit (that is often called a qubit) is a 
unit long two-dimensional complex vector. 
Every closed system can be described with this 
method. It can be imagined as if it was a coin 
flipping in the air. While in air, its state is 
undecided, it is in the superposition of the two 
sides (base states). When it is settled on the 
ground, it is in a definite state; either head or 
number. More detailed description is provided 
below. 
  

2.3 Postulates 
  

1) Each state of a closed system can be described 
by means of a vector in a Hilbert space [1]. In 
quantum computing the state vectors are denoted 
as 〉| ϕ  (say ‘ket phi’ according to Dirac). The 

coordinates of 〉| ϕ  are complex numbers and 

each of them refers to the probability amplitude 
of the associated basis (classical) state. The 
simplest quantum system is the so called qubit 
which replaces in the quantum world the classical 
information bearing unit, the bit. A qubit can be 
prepared in a two dimensional superposition of 
both classical bit values (0 and 1) as 

 C∈〉|+〉|=







=〉| baba

b

a
,;10ϕ , (1) 

where 
2

a and 
2

b  represent the probabilities of 

getting the classical bit values (orthonormal basis 
states) 0| 〉  and 〉|1  as the result of measuring the 

qubit respectively. Of course 1
22 =+ ba  shall 

be fulfilled because of the complete probability 
law of probability theory (i.e., only unit length 
vectors are allowed). The conjugate transpose of 

〉| ϕ  is denoted by ( ) [ ]*** ba
T =〉||=〈 ϕϕ . 
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Generalizing the above set of definitions a 
quregister consisting of n qubits is described as 
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Based on (2) we emphasize that the above 
quregister contains all the 12 −n  basis states (i.e., 
classical integer number) at the same time, which 
can be regarded as the source of quantum 
parallelism. 

The inner (scalar) product of two states is 
denoted and defined as 
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Two vectors are orthogonal if and only if 
0=〉|〈 ψϕ  and are identical if and only if 

1=〉|〈 ψϕ . 

The outer (matrix) product of two states is 
denoted and defined as 
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2) Having explained how to describe the system, 
now we present how to calculate its evolution. In 
quantum computing only a special type of linear 
operators can be used, namely the unitary 
operator i.e., the inverse of its matrix equals its 

adjoint (conjugate transpose) 
+− = UU 1

. So each 
quantum gate can be handled as an nn ×  matrix 
and the state of the system at the output of the 
gate 〉|=〉| inout U ϕϕ . 
  

3) The only exception from the unitarity principle 
of quantum gates is the measurement device 
which does not suffer from this restriction. Each 
measurement can be defined by means of a set of 
measurement operators { }mM , where m refers to 

the different measurement outcomes. These 
operators can be imagined as they were in the 
same “gate or box” and all of them act upon 
measurement. Then the measured system evolves 
into its next state according to the measurement 
probabilities. Hence the mathematical 
representation of a measurement operator is not 
always unitary the measurement is not always 
reversible.  The probability of getting a 

measurement result m assuming 〉| inϕ  as an input 

state equals to 

 〉|〈= ↑
inmmin MMmP ϕϕ)( , (5) 

and the state of the system after the 
measurement is 

 
〉|〈

〉|
=〉|

↑
inmmin
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M

ϕϕ

ϕ
ϕ , (6) 

The measurement operator set needs to fulfill the 
following condition too: 

 IMM
m

mm
=∑ ↑ , (7) 

So the measured system will not disappear we 
will know its state after measurement with certain 
probability. 
   

4) The last rule provides how to merge quantum 
systems (e.g., qubits into a quregister) together. 

We shall use the tensor product (⊗) between the 
state vectors of the individual systems. Let us 
suppose we have two qubits 〉|+〉|=〉| 10 111 baϕ  

and 〉|+〉|=〉| 10 222 baϕ . Then the state of the 

quregister consisting of these two qubits is  

 〉|+〉|+〉|+〉|=〉|〉⊗=|〉| 11011000 212121212121 bbbaabaaϕϕϕϕ . (8) 

The tensor product preserves the unit length for 
the qregister in accordance with Postulate 1. The 

notation ⊗ is often omitted or replaced with ’⋅’.  
  

2.4 Some applications 
  

Today, the most important applications of 
quantum communication is Quantum based Key 
Distribution systems (QKDs). These devices 
provide both theoretically and practically 
unbreakable key distribution via optical cable. 
The devices can be bought and mostly use the 
BB84 protocol to operate. Of course there are 
several other aspects of quantum computing and 
computation, some mentioned below. 
One of the most referred result is the search for 
a marked item in an unsorted database. That is 
called the Grover algorithm. This gives the result 

after )( NΘ  iteration where N  is the number 

of elements in the database. 
Another further application could be the 
teleportation. To do that a classical channel is 
used to create a particle that has the same 
properties as the one on the “sender” side. 
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III. CHANNEL CODING 
 
 

3. 1 Quantum channel 
  

One of the major differences between the 
classical and quantum channels that in the 
second one the information carrying quantum 
system is in interaction with the environment as 
an undesirable noise. This phenomena is named 
quantum decoherence. The noise appearing 
from the entanglement with the environment 
can be observed in Fig 2. 
 

 
  

Fig 2.: General model of the quantum channel 
  

3.2 Free-space channel 
  

The free-space Quantum Key Distribution 
(QKD) [3_1] was first introduced over an 
optical path of about 30 cm in 1991. Several 
demonstrations (indoor optical paths of 205 m 
and outdoor optical paths of 75 m) increased the 
usability of QKD by extending it with line-of-
site laser communications systems. There are 
certain key distribution problems in this category 
for what free-space QKD would have definite 
practical advantages (for example, it is not 
practical to send a courier to a satellite).  
  

In 1998, a research group at Los Alamos 
National Laboratory, New Mexico, USA 
developed a free-space QKD over outdoor 
optical paths for up to 950 m under nighttime 
conditions [3]. Four years later, in 2002 the 
researchers of the same laboratory have 
demonstrated that free-space QKD is possible in 
daylight or at night [4]. In 2006, the distance of 
144 km was reached by an international research 
group [5]. 
  

In our point of view, the quantum computing 
algorithms can be used to affirm our 
communication in following four ways: [6] 
  

1. Open-air communication: usually “horizontal” 
telecommunication that happens below 100km 
height. For channel, the air is used instead of 
optical cable. 
   

2. Earth-satellite communications: it happens 
through greater heights than the Open-air 
communication, usually between 300 and 800 
km altitude. Signal encoding and decoding is 
used to produce quantum error correction that 
allows operation in noisy environment.  
   

3. Satellite broadcast: the broadcast satellite is in 
orbit at 36,000 km using 27 MHz frequency for 
signalling. In the Quadrature Phase Shift Keying 
(QPSK) every symbol contains two bits, this is 
why the bit speed is 54 Mbs. Half the bits are 
used for error-correction, so at most we have 
38 Mbs, but in common solutions there are only 
27-28 Mbs, in which usually 5-6 TV-channels is 
stored with a bandwidth of 2-5 Mbs each. 
Quantum algorithms can improve the effective 
bandwidth, thus the brand is better utilized as in 
traditional cases. 
  

4. Inter-satellite communication: the 
communication between satellites where the 
channel is the free-space. Any kind of coding 
and encoding can be used, to increase 
stability [7]. 
  

Despite the fine number of results a lot of work 
has to be done. The existing experiments usually 
use one of the easiest key distribution protocols. 
There is a need to trace some adoptable 
algorithms and apply them to communication 
problems between Earth and satellite and also 
between satellites. For this, a well-described 
channel model should be set up. Correct 
parameters to describe the noise of the different 
types of atmosphere should be found. As the 
quantum channels show few similarities with the 
classical ones describing those require more 
sophisticated approaches.  
  

3.3 Channel coding 
  

For a well functioning communication we need a 
channel coding to handle the errors appearing in 
a communication channel. In quantum 
computing the classical error coding methods 
could not be used because of the following three 
reasons [8]: 
1. The errors are continuous. The errors can 
results either amplitude or phase decoherence. 
Moreover both errors have complex coefficients 
which means that their codomains are 
continuous. 
2. Through the No Cloning Theorem (cloning is 
allowed only for the classical states e.g., 0 or 1) a 
simple copy-based redundancy is unadmittable. 
3. There are “problems” with the measurement 
of the transmited states. For the error correction 
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the type of error has to be known but if the 
quantum bits are measured for determination of 
the failure then the original bits are lost. 
  

Despite these challenges, several quantum based 
error correction have been published but they 
are based on quantum and not classical 
theorems [9]. The simplest one is the 3-qubit bit-
flip code which can correct one bit-flip error in a 
channel similarly to the classical binary 
symmetric channel. Without any deep 
mathematical details the main points of this 
error coding algorithm is described below. The 
two communication parties are called Alice and 
Bob. The initial quantum bit is not copied but 
Alice code it in a three bit length quantum bit. 
At the output we detect a syndrome vector. It’s 
important that the qubits are not measured by 
Bob he examined only the equation of the three 
qubits without any information about their 
content. The table of syndromes shows what 
kind of correction has to be done for achieving 
the correct information. 
 

 

 
Fig 3.: Initial linear transformation for 3 qubit 

bit-flip code 
 

The 3-qubit phase-flip code can correct one 
phase-flip error (there is no similar failure in the 
classical world). The procedure for this 
correction is similar as in the 3-qubit bit-flip 
code, but we use other initial coding process and 
other  
 

The Shor-code presented by Peter Shor was the 
first code for correcting an arbitrary quantum bit 
error (either a bit-flip or phase-flip error) [REF]. 
Unfortunately the correction system requires 
large overhead – for sending one quantum bit 
we need to handle 17 qubits.  
 

Now for the better error correction we have 
Calderbank-Shor-Steane codes, stabilizer codes 
etc.  [8] The basic idea of the Steane-code is that 
the correction of the bit-flip errors is similar to 
the classical cases, the correction of the phase-
flip errors are traced back with a quantum 
transformation to the case of the bit-flip errors. 
This code is a short one, but the main advantage 
is that the size of the circuit needed for error 
detection and correction is linear to the size of 

the code (and not exponential one like at the 3-
bit bit-flip or phase-flip code. 
 
 

IV. REDUNDANCY-FREE 

QUANTUM CHANNEL 
  
  

4. 1 Redundancy-free channel 
  

One of the most exciting questions in the field 
of quantum communictaion is the following: 
How to send over a noisy quantum channel 
certain amount of qubits, to provide error 
correction? The qubits are independent, each 
contains information that needs to be processed. 
 

Our initial assumption is that the channel rotates 
the qubit with an ω  degree, that is consdired to 
be constant so far. We wish to create a system 
where error correction is possible. By this, not a 
complete restoration is meant. The transmission 
is considered successful when at the end of the 
channel the qubit remains in its original state’s 
ε  environment. 
 

The main question is, whether it is possible to 

construct such A  (and a corresponding B , 

which produce the inverse of matrix A ) 
transformation in the following scheme, that the 
information can be processed through the 
channel? 

  
Fig 4.: Initial channel model. A  transforms the 

initial qubits into a special form. B  has to 

produce the inverse of matrix A . 
 

To achieve this we mix the qubits and send them 
over the channel, as shown in Figure 4. What we 
expect is that at the measurement, the error for 
one qubit is distributed among the others in its 
environment (its neighbors). By being so, the 
error remaind in an ε  environment for each 
qubit. 
  

We use n long qubits so that Nn =2 , where n 

is the length of the qubits and N  is the size of 
the space. One can construct a classical channel 
with zero redundancy error correction for any 
unitary channel. Of course the information itself 

qubit 

 

 

A channel 

 

 

B qubit 
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is classical, coded into qubits. This case the 
channel model is the following: The inputs and 

outputs are classical bits: ( 0 , 1 ). Since U  is 

unitary, thus it can be written in the following 
form: 
  

 ∑=
i

ii uU λ  (9) 

where iλ , iu are the eigenvalues and the 

eigenvectors of matrix U  and  

 e n
j

n
αλ =  (10) 

Figure 5.: Generalized channel model 
  

This description lead to a redundancy-free 
solution because the classical states are coded 

into the eigenvectors of the U matrix and the 
eigenvalues can be written in the form shown in 
(10) in case of a unitary transformation. 
 
With this model one can create redundancy-free 
error correction. It also works for higher 
dimensions, not only two. 
 
 

The first simulation results show that with the 

appropriate selection of the matrix A  we can 
restore one quantum bit sent over the channel 
without any other (redundant) information.  
  

4. 2 Using a redundancy-free channel in long 
distance communication 
  

As discussed before, the free-space quantum 
channel could be used in least four different 
ways in satellite communication. The 
redundancy-free channel is not only a solution 
for wired systems, but could be  part of the 
wireless communicaton too. This method could 
be very useful in the long-distance aerial 
communication, because there would be no need 
to use redundant error correction codes as 
nowadays. This way the effective capacity of the 
satellite link would also be increased 
  

With redundancy-free solutions we can get over 
the troubles issued from the atmosphere (in 
earth-satellite communication) and we can 

achive higher bandwidth (effective one) in 
stallite-satellite communiction. 
 

The main idea in our redundancy-free theory is 
the engineering precision which mean that we  
usually don’t need 100 percent perfect solution 
for an engineering challenge, the 99 percent 
perfect solution is a good solution. Of course 
the above described method is only in a rough 
state, for further use the model further 
investigations are needed. 
 
If we allow a little variance from the beginning 
we can manage a well operating system for 
quantum based communication.  
 
 

V. CONCLUSION 
 
 

In this paper some possible advantages of the 
redundancy-free quantum channel are examined, 
and a solution is presented for creating this kind 
of channel. 
The long-distance redundancy-free aerial 
communication can be used in other earth-based 
application illustrating well that the results of the 
space research come over to the everydays life. It 
can be used in applications where the 
information dissemination is important but 100 
percent solution is not neccessary and cable-
based solution does not exists. 
The redundancy-free quantum correction 
method can be a new tools either for the existing 
or the planned quantum space applications. 
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