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History of crypto in a nutshell

= until the second half of the 20th century:
— cryptography = encryption, ciphers
— almost exclusively used in military and diplomacy

= from the second half of the 20th century:

— cryptography is increasingly used in business applications (banking,
electronic funds transfer)

— besides confidentiality, integrity protection, authentication, and non-
repudiation becomes important too

= from the end of the 20th century:
— cryptography is used in everyday life of people (although they may be
unaware of that)
» SSL/TLS — secure web transactions
» GSM/3G security — subscriber authentiocation, encryption on the air interface
» WIiFi, Bluetooth, smart cards, ...
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Basic model
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Histrorical ciphers

= Skytale from Sparta

= Caesar cipher

= Vigenere cipher (le chifre indéchiffrable)
= German Enigma from WWII
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Skytale

= used by the Spartans in the 3rd century BC
" transposition cipher (mixes letters of the plaintext)
= encoding and decoding:

= the key is the (diameter of the) rod
= key space is small > easy to break
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= used by Julius Caesar
= substitution cipher (replaces letters of the plaintext)

= each letter is replaced by the letter at some fixed number of
positions (e.g., 3) down the alphabet

plain: ABCDEFGHIJKLMNOPQRSTUVWIXY Z
cipher: DEFGHIJKLMNOPQRSTUVWXYZABUZC
example: CRYPTOGRAPHY - FUBSWRJUDSKB

* the key is the value of the shift (of the alphabet)
= size of the key space is 26-1 = 25 > easy to break

History of Cryptography | 6/45



Monoalphabetic substitution

= generalization of the Caesar cipher
= replacement of letters is determined by a permutation

plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
cipher: HTKCUOISJYARGMZNBVFPXDLWOQE
example: CIPHER -> KJNSUV

= the key is the permutation
* the key space is huge: 26! ~ 1.56*288

» time left until the nextice age .....ccooovvvvevcevececceeeeeeeceeen, 23% sec
» time left until the Sun becomes a supernova .................. 2°° sec
» ageofthe Earth ..., 2°° sec
» age of the UNIVErse ... 2°? sec
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Breaking monoalphabetic substitutions
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every language has its own
letter statistics

— there are letters that are
more frequently
encountered than others

e.g., in English:
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in case of monoalphabetic substitution, the ciphertext
preserves the letter statistics of the original plaintext!

— after decoding the most frequent and least frequent letters, the rest
of the text can be figured out much like solving a crossword puzzle

History of Cryptography | 8/42



Polyalphabetic substitution (Vigenere)
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coding:

key: RELAT IONSR ELA

plaintext: TOBEO RNOTT OBE
ciphertext: KSMEH ZBBLK SME
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coding:
key: RELAT IONSR ELA
plaintext: TOBEO RNOTT OBE
ciphertext: KSMEH ZBBLK SME
decoding:
key: RELAT IONSR ELA
ciphertext: KSMEH ZBBLK SME
plaintext: TOBEO RNOTT OBE




The Enigma

= first electro-mechanical cipher
= patented by Arthur Scherbius in 1918
= adopted by the German Army in 1926

() 1335, Martan Swimmer A
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Main components of the Enigma

= four main components:

— keyboard

for input of the plaintext / ciphertext
— lampboard

for display of the ciphertext / plaintex
— plugboard

for swapping some input letter pairs
— scrambler unit (including the rotors)

producing the ciphertext from the
plaintext (and vice versa)

" “e—~Keyboafd

- T ~*Plugboard
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Enigma key space

= the key consists of the following basic settings:
— letter pairs swapped (e.g., A/L—P/R—-T/D - B/W - K/F - O/Y)
— order of rotors in the slots (e.g., Il = 1ll = 1)
— initial position of the rotors (e.g., R—D —D)

= key space size:
100391791500 x 6 x 263 ~ 2°3

= vyet, Enigma was broken by the Allies in WWII
— exploiting protocol weaknesses and weak keys
— code breaking was partly automated - birth of first computers
— credit goes to Marian Rejewski and Alan Turing
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Breaking the Enigma

= every morning, the Germans distribute a daily key to their units to be used with

Enigma
= however, they do not directly use the daily key to encrypt messages
= jnstead:

— they generate a fresh message key for every message
— they encrypt the message key with the daily key, and send this at the beginning of the communication
— then they encrypt the message with the message key, and send it to the receiver
— the receiver first decrypts the message key with the daily key and then decrypts the message with the
message key
= in order to cope with errors during transmission, the message key is repeated twice
at the beginning of the message!

= example:

PGHUPGH ATTACKATMIDNIGHT
bbby bbbl
start coding with setting start coding with setting

Enigma | defined by the daily key defined by the message key

(e.g., QCW) (in this case: PGH)
Eiviis d2idrdcidwuciics
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Breaking the Enigma

= Rejewski thought that the repetition of the message key at the
beginning of the message is a weakness that may be exploited

— a guess for the daily key can be confirmed by checking if decoding with
the guessed key produces a repeating letter triplet at the beginning of
the decoded message

= the Polish codebreakers built a machine that tried different
guesses for the daily key in an automated way

— the machine consisted of 6 Enigma copies (each corresponding to one of
the 6 possible rotor orders)

— the machine continuously modified the position setting of the rotors,
and attempted decrypting some intercepted message, until it found the
daily key

" from 1933, Poland was able to routinly break encrypted
German communications
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Breaking the Enigma

= in December 1938, the Germans increase the security of the Enigma

— they introduce 2 new rotors (operators have to choose 3 rotors out of 5, and
the order in which they are put in the machine - this increases possible
rotor placements from 6 to 60)

— they increase the number of letter pairs swapped on the plugboard from 6
to 10
— key space grows to ~2°6

= in April 1939, Hitler breaks the non-aggression treaty with Poland

= inJuly 1939, Poland reveals their Enigma breaking capability to
England

= on August 16, 1939, the design documents of the Enigma breaking
machine are transferred to London

= on September 1, 1939, Germany invades Poland
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Breaking the Enigma

= some weaknesses exploited by the British

— cillies
» German Enigma operators sometimes used very weak (far from random)
message keys (e.g., QWE, BNM)

» an operator always used the same message key (C.I.L.) — perhaps the
initials of his wife or girl friend?

» these weak keys were called cillies (~silly)

— Germans had usage constraints that actually weakened their system

» rotors had to be changed every day, and the same rotor must not be
placed in the same slot on two consecutive days

» e.g., after I-1I-V, they could not use llI-II-IV

» this actually reduced the size of the key space that the British had to search
over
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Breaking the Enigma

. Ln Skeptember 1939, Alan Turing joins the code breakers in Bletchley
ar

= his task is to find a new method for breaking the cipher that does not
rely on the repetition of the message key at the beginning of the
coded message

= Turing invents a new method that is essentially an attack known
today as the known-plaintext attack

— German messages are well structured
— some messages contain guessable words at guessable locations

— e.g., every morning at 6am, they send a weather forecast, which
includes the world "wetter” always at the same position within
the message

= the British build new Enigma breaking machines (Victory, Agnus Dei)
based on the plans of Turing in 1940

= indeed, Germans change their message key sending protocol in May
1940, but this does not affect the cryptanalytic capabilities of the
British anymore
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Modern cryptography

= Shannon’s work on information theoretical characterization of
encryption [1948]

= substitution-permutation ciphers and the Data Encryption
Standard (DES) [19707s]

= the birth of public key cryptography [1976-78]
" quantum cryptography [1980’s]
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The birth of modern cryptography

= first theoretically sound formulation of the
notion of security of an encryption algorithm

— used information theory to define the concept of
perfect secrecy

— gave necessary conditions for a cipher to be
perfectly secure

— proved that the one-time pad provides perfect
secrecy Claude E. Shannon

= jdeas to build strong block ciphers usable in
practice

— create a complex cipher by repeated use of
otherwise simple transformations

— none of the simple transformations alone would be
sufficiently strong, but their repeated use and the
large number of iterations would ultimately result
in a strong cipher (aka. product ciphers)
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Data Encryption Standard (DES)

X, (60

= based on Lucifer, a cipher developed by
IBM in the 70’s

[ Initial Permutation ]

A4

= symmetric key block cipher ‘32’¢ ) (32)
(F)— F [ (48)
= features: X,

— Feistel structure (same structure can be used
for encoding and decoding)

— number of rounds: 16 @4— F f (48)
— input block size: 64 bits ) K L
. . 2 | 5
— output block size: 64 bits i
— key size: 56 bits l J ‘z 8
@4— F | (a8) | < K
|>< .
HW implementation: :
DES chip ZjSisisisis | '
®— F I -
| K16

'

[ Initial Permutation ]

Y ‘(64)
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Security of DES

= average complexity of a brute force attack is 2°°
— was suspected breakable by NSA back in the 70’s
— definitely became breakable by the late 90’s by distributed computing
— new standard AES was accepted in 2001

" algebraic attacks
— DES has never been broken in a practical sense

— best known attacks:
» linear cryptanalysis (LC)
— requires ~243 known plaintext — ciphertext pairs
» differential cryptanalysis (DC)
— requires ~2%4 chosen plaintexts (and corresponding ciphertexts)
— DCand LC were discovered in the late 80’s and early 90’s

— it was revealed in the late 90’s that the designers of DES had known
about DC, and optimized the DES S-boxes such that DES provides
maximum resistance against DC
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A breakthrough in modern cryptography

Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 1976
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Raplh Merkle, Martin Hellman, and Whitfield Diffie
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The key exchange problem

= by the 70’s digital computers and telecommunication networks
were increasingly used in the financial sector

= banks could use symmetric key ciphers, such as Lucifer and later
DES, to encrypt sensitive data

= but they faced a practical question: how to setup a shared DES
key between two end points (e.g., two remote branches of the
same bank) ???

— in case of earlier military and diplomatic applications, keys were
transferred by agents in a physically secure way

— this was expensive and inflexible for banks
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The Diffie-Hellman key exchange protocol

public parameters:
a large prime p and a generator element g of Zp* ={1, 2, ..., p-1}

Alice Bob
|

select random x
compute g* mod p

X
g*mod p S
select randomy
compute g¥ mod p
B g¥ mod p
compute k =(g¥)* mod p compute k = (g¥)Y mod p
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The Diffie-Hellman key exchange protocol

= if an attacker can only eavesdrop the communications between
Alice and Bob, then he has only g mod p and gy mod p

" to compute g mod p, he would need x ory

" jtis hard to compute x from g<mod p
— this is the so called “discrete logarithm” problem
— no polynomial time algorithm is known to solve it

— if pislarge, then computing discrete logarithm (mod p) is practically
infeasible

" there seem to exist one way functions:
— givenx, it is easy to compute f(x)
— giveny, it is hard to find an x for which y = f(x)

= can we use such functions to realize a sort of asymmetric key
cryptography ??7?
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The idea of asymmetric key cryptography

= encoding and decoding keys are not the same (unlike in
symmetric key cryptography)

= computing the decoding key from the encoding key is hard
(infeasible in practice)

= encoding key can be made public, decoding key should be
kept secret

— anybody can obtain the public encoding key of
Alice, and send an encrypted message to her

— only Alice can decrypt the message with the
private decoding key

— an attacker cannot compute the private key from
the public key

— aka. public key cryptography

— solves the key exchange problem (but has other
issues to solve)
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The RSA cryptosystem

Ronald Rivest, Adi Shamir, Leonard Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems, 1978

Adi Shamir, Ronald Rivest, and Leonard Adleman
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The RSA cryptosystem

= key-pair generation algorithm:
— choose two large primes p and g (easy)
— n=pq, ¢(n) = (p-1)(g-1) (easy)
— choose e, such that 1 < e < ¢(n) and gcd(e, (n)) =1 (easy)

— compute the inverse d of e mod ¢(n), i.e., d such that ed mod ¢(n) =1
(easy if p and g are known)

— output public key: (e, n) (public exponent and modulus)
— output private key: d (private exponent)

= encryption algorithm:
— represent the plaintext message as an integer m € [0, n-1]
— compute the ciphertext c=m®#mod n

= decryption algorithm:
— compute the plaintext from the ciphertext c asm =c?mod n
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Security of asymmetric key algortihms

" security is typically related to the difficulty of solving some hard
mathematical problem

— e.g., factoring or discrete logarithm

= provable security by reduction proofs:

— we show that any efficient algorithm that breaks our crypto scheme
could be used to efficiently solve a believed to be hard mathematical
problem

— this means that breaking our crypto scheme is at least as hard as solving
the hard mathematical problem

= there exist provably secure crypto systems, but most of them
are not efficient (fast) enough for practical applications

= most of the public key crypto schemes that we use in pracitce
are not provably secure (or only partial proofs exist)
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Example: Security of the RSA crypto system

» factoring integers is believed to be a hard problem
— given a composit integer n, find its prime factors
— true complexity is unknown
— it is believed that no polinomial time algortihm exists to solve it

= computing d from (e, n) is equivalent to factoring n

= computing m from c and (e,n) may not be equivalent to
factoring n (this is known as the RSA problem)

— if the factors p and g of n are known, then one can easily compute d,
and using d, one can also compute m from c

— we don’t know if one could factor n, given that he can efficiently
compute m from c and (e,n)
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The secret story of public key cryprography

James Ellis Clifford Cocks Malcolm Williamson
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The secret story of public key cryprography

= Ellis, Cocks, and Williamson worked for GCHQ_(British security agency)

= in 1969, Ellis defined the general model of asymmetric key cryptography (called it
non-secret key coding)

— public and private keys
— (trap-door) one way functions

= in 1973, Cocks invented a cryptosystem same as RSA
— he was introduced to the idea of non-secret key crypto

— he worked in the field of number theory, and immediately thought of using factoring as a
hard problem

= in 1974, Williamson (a friend of Cocks) invented a key exchange protocol same as
the Diffie-Hellman protocol

= by 1975, Ellis, Cocks, and Williamson worked out all the major results of public key
cryptography, which were (re)invented some years later

= the story was made pulic only in 1997
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Pretty Good Privacy (PGP)

=  Phil Zimmermann

— a peace activist in the 1980s during the Nuclear
Weapons Freeze campaign

— saw the need to develop what would later become PGP
» for protecting human rights overseas
» for protecting grassroots political organizations in the US

= US Senate Bill 266 of 1991

— Congressional discussion on requiring that all communications equipment
and services have a “trap door” in them to permit government anti-criminal
and counterterrorism activities

— familiar?
» U.S.A.PATR.I.O.T. Act of 2001 signed into law by G. W. Bush
» extension by 4 yearsin 2011 by B. Obama

= first working version of PGP arrived in 1991 (when it was still legal)
— free software that used strong encryption (e.g., RSA)
— strong crypto available to ordinary people for the first time in history

— new opportunities for human rights organizations and other users
concerned with privacy
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Patent and export problems with PGP

= the RSA algorithm was patented in the US by MIT, and was licensed to
RSA Data Security Inc.
— vyears of disagreement about the permission to use RSA in PGP

— finally, RSADSI created the RSAREF library for use in freeware and shareware,
and PGP 2.5 used RSAREF (in the US)

— an “international” version of PGP, developed completely outside of the US,
used the original implementation of the RSA algorithm

= Public Key Partners filed a complaint in 1992 with US Customes,

complaining that Zimmermann was exporting cryptography without
the appropriate licenses

— until 1997, international regulation considered cryptography a weapon

— free and open cryptosystems were regulated as munitions in the US

— acriminal investigation of Zimmermann was started in 1992

— printed books were and are exempt from the export controls

— the investigation of Zimmermann was dropped in 1996

— export controls on cryptography were radically liberalized in 2000
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PGP and the crypto war

= publication of PGP Source Code and Internals (MIT Press, 1995)

PGP: Source Code and Internals Hardcover — June 9, 1995
by Philip R. Zimmermann (Author)

Yrirvriryr - 1 customer review

» See all formats and editions

Hardcover
from $285.00

9 Used from $285.00
3 New from $1,008.50

| == T VFREE TWO-DAY SHIPPING
PQ?&%'Z‘rmonn amazon: LCENt £ p COLLEGE STUDENTS - Leam more

= |ater, Pretty Good Privacy Inc. published the source code of PGP
in @ more sophisticated set of books

— also included specialized software tools optimized for easy optical
character recognition (OCR) scanning of C source code

— this made it easy to export unlimited quantities of cryptographic source
code, rendering the export controls moot
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Quantum and post-quantum crypto

" quantum cryptography (started in the 1980’s)
— using quantum effects to solve traditional problems in new ways
» e.g., quantum key exchange using polarized photons

— using quantum computers to break modern ciphers efficiently
» e.g., the Schor factorization algortihm to break RSA

* post-quantum cryptography

— developing cryptographic algorithms that resist even attacks by a
guantum computer

» see http://pqgcrypto.org/
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Practical applications of cryptography

= today, national and international laws, regulations, and expectations about
privacy, data governance, and corporate governance either imply or require
the widespread use of strong cryptography

— secure communication over public channels / networks
» WWW (https / TLS)
» WIiFi (WPA, WPA?2)
» GSM/3G
» Bluetooth

— secure data storage
» disk encryption (TrueCrypt, BitLocker, ...)
» encrypted cloud strage (Tresorit, CipherCloud, ...)

— authentication

» smart cards (e.g., bank cards)

» ignition keys of cars

» electronic tickets in public transport (automated fare collection systems)
— software authentication and integrity protection

» digitally signed code (e.g., drivers, applets, Android packages)
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Further readings

FROM THE AUTHOR OF

CODE

BOOK

SLVYISIe AND uUuERATHES

SIMON SINGH
.:..':w..;.zmm:n;" b o DAVID KAHN

milifary secrecy and academic rivalkry’
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Avatao challenges

https://avatao.com/

" Goal: Mastering Cryptographic Engineering
= Module: Challenges for a Cryptographic Protocols course

= Challenges:

— Breaking the Nihilist historical cipher
— Trithemius cipher
— Four-Square game
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