
© 2015 Levente Buttyán

Summary on
Crypto Primitives and Protocols

Levente Buttyán
CrySyS Lab, BME

www.crysys.hu

|

Basic model of cryptography

sender

data

attacker

eavesdropping

ENCODING

key

receiver

DECODING

key

data

data

coded

data
spatial distance e.g.: message

Summary on Crypto Primitives and Protocols 2/24

|

Symmetric key (conventional) encryption

 stream ciphers

– XOR (+ or)

– one-time pad (truely random key stream)

– stream ciphers (pseudo random key stream)

» large size of the effective state space is important

» do not provide any integrity protection

» does not increase message length

 block ciphers
– operate on larger blocks (typical size is 128 bits)

– can be viewed as random permutations

– product ciphers use simple operations in many rounds

– AES (block size: 128; key size = 128, 192, 256)

G K
zi

mi

ci

E

X

Y

K

Summary on Crypto Primitives and Protocols 3/24

|

Attacks

 Kerckhoff’s principle
– it is assumed that the encryption algorithm is known to the attacker

 attack models
– ciphertext-only attack
– known-plaintext attack
– (adaptive) chosen-plaintext attack
– (adaptive) chosen-ciphertext attack

 exhaustive key search attack
– average complexity is 2k-1, if key length is k bits

 algebraic attacks
– weaknesses in the algebraic structure of a cipher may lead to attacks

that are substantially more efficient than the exhaustive key search
attack

Summary on Crypto Primitives and Protocols 4/24

|

Block cipher modes

 Cipher Block Chaining (CBC)
– IV: unpredictable, non-manipulable

– padding

– padding oracle attack

 Electronic Code Book (ECB)

 Cipher Feedback (CFB)

 Output Feedback (OFB)

 Counter (CTR)

 special modes:
– CBC-CTS (ciphertext stealing)

 authenticated encryption modes:
– CCM, GCM, OCB

E

X1

Y1

K

+

E

X2

Y2

K

+

E

X3

Y3

K

+

E

XN

YN

K

+ IV YN-1

…

K

mi ci

IV

E

state

Summary on Crypto Primitives and Protocols 5/24

|

Asymmetric (public) key encryption

 encryption and decryption are performed with different keys

 in fact, the key has two parts:

– one part is used for encryption; this can even be public

– the other part is used for decryption; this must be kept
private

– computing the private part from the public part is hard

 only the public key needs to be transmitted to the recipient,
and this does not need a secure channel

 there is no need to have shared secret between sender and
recipient this makes key management easier

 example: RSA

Summary on Crypto Primitives and Protocols 6/24

|

Hybrid encryption

 public key crypto is slower than symmetric key crypto and
require longer (e.g. 2048 bits) keys for similar security

 the speed problem can be solved with hybrid encryption:

symmetric

encryption

symmetric key

DATA coded

DATA

public key

encryption

public

KEY
coded

sym key

PRNG

Summary on Crypto Primitives and Protocols 7/24

|

Security of public key crypto schemes

 security is usually related to the difficulty of some problems
that are widely believed to be hard to solve
examples:

– factoring

– computing discrete logarithm

 sometimes it can even be rigorously proven that breaking the
encryption scheme would mean that there exist an efficient
solution to the related hard problem (reduction proof)
– although widely used practical schemes have no complete proofs

 practical considerations:
– semantic security

– non-malleability

Summary on Crypto Primitives and Protocols 8/24

|

Other primitives

 cryptographic hash functions
– map arbitrary long inputs into a fixed length output (digest, hash value)

– three important properties:
1. collision resistance

2. weak collision resistance (2nd preimage resistance)

3. one-wayness (preimage resistance)

– birthday paradox complexity of brute force collision search is 2n/2

 MAC functions
– similar to hash functions, but have an additional input (a symmetric key)
– used for message integrity protection and message origin authentication

 digital signature schemes
– similar to MAC functions, but use asymmetric keys

– besides integrity protection and origin authentication, they also ensure
non-repudiation

Summary on Crypto Primitives and Protocols 9/24

|

Using a MAC function

Sender

DATA MAC function

key

MAC

Receiver

DATA MAC function

key

MAC

=?

Summary on Crypto Primitives and Protocols 10/24

|

Hash-and-sign approach

h enc

private key

of sender
message

hash signature

h
hash

dec

public key

of sender

signature

compare

generation

verification

hash’

message

accept / reject

signed message

Summary on Crypto Primitives and Protocols 11/24

|

General model of cryptographic coding

Sender

ADAT

Attacker

ENCODING

encoding key

Receiver

DECODING

decoding key

DATA

DATA

coded

DATA
spatial or

temporal distance

e.g.: e-mail,

file, IP packet

decoding key = encoding key

conventional cryptography

(symmetric key crypto)

eavesdropping

replay

modification

forgery

encryption confidentiality

checksum integrity protection,

message origin

authentication

decoding key encoding key

public key cryptography

(asymmetric key crypto)

Summary on Crypto Primitives and Protocols 12/24

|

Support functions

 random number generation
– a (cryptographic) random number is a number that cannot be predicted with better

probability than random coin flips (even if all previous outputs have been observed)

– a pseudo-random number generator (PRNG) processes somewhat unpredictable
inputs and generates pseudo-random outputs (look very similar to real random
numbers)

 design of PRNGs
– where do you get real random input?

– when and how do you re-generate the internal state of your PRNG?

– how do you generate the output?

– attacker models (only some outputs can be observed ... state compromise extension)

– example: Fortuna

Summary on Crypto Primitives and Protocols 13/24

state

collect

generate

somewhat

unpredictable

input

pseudo-random

output

update

PRNG

re-seed

|

Support functions

 key exchange protocols
– allow two remote parties to setup a shared key when needed

– attacker model:

» attacker controls the communication channel (Man-in-the-Middle)

» cannot break crypto primitives

» eavesdropping, injection, replay, reflection, interleaving, typing attacks

– security requirements:

» key authentication (implicit or explicit) cryptographic protection

» key freshness timestamps, nonces, key agreement

– main design principle:

» make sure that interpretation of messages does not implicitely depend on
context

– classification

» key transport (using only symmetroc key crypto or using public key crypto)

» key agreement

Summary on Crypto Primitives and Protocols 14/24

|

WiFi security

 security challenges in wireless networks
– no physical protection of communication channels

– broadcast nature of communications

 WEP
– operation (station authentication, message integrity and confidentiality)

– WEP flaws, possible attacks, lessons learned

 WPA, WPA2
– new authentication framework (802.1X, EAP, key hierarchy)

– TKIP (WPA) (design constraints and weaknesses)

– AES-CCM (WPA2)

Summary on Crypto Primitives and Protocols 15/24

|

TLS

 TLS subprotocols and their functions

 TLS Record Protocol
– uses strong algorithms (HMAC, AES)
– good protection against passive eavesdropping
– some protection against traffic analysis (random length padding)
– vulnerable to some padding oracle attacks (Lucky 13, POODLE)

 TLS Handshake Protocol
– uses strong algorithms (RSA, DH, DSS, well designed PRF based on HMAC)
– some protection against passive and active attacks
– possibly vulnerable to some active attacks (e.g., DROWN)

 attacks on SSL/TLS
– CBC padding oracle attack and variants (e.g., Lucky 13, POODLE)

– CBC predictible IV vulnerability (BEAST)

– attacks exploiting compression ratio and timing side channels (BREACH,
TIME, CRIME)

– cross-protocol attacks (DROWN)

Summary on Crypto Primitives and Protocols 16/24

|

What goes wrong in practice?

 key management issues
– e.g., keys are generated with weak random number generators

 protocol weaknesses
– e.g., crypto algorithms are used in wrong ways

 implementation issues
– bugs

– side channels (e.g., timing attacks)

 human stupidity
– e.g., using home made ”crypto” algortihms

Summary on Crypto Primitives and Protocols 18/24

EXAMPLES

|

Early version of Netscape’s PRNG

RNG_CreateContext()
(seconds, microseconds) = time of day;
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a|b);

mklcpr(x)
return((0xDEECE66D*x + 0x2BBB62DC) >> 1)

RNG_GenerateRandomBytes()
x = MD5(seed);
seed = seed+1;
return x;

create_key()
RNG_CreateContext();
RNG_GenerateRandomBytes(); RNG_GenerateRandomBytes();
client_random = RNG_GenerateRandomBytes(); // sent in client_hello
pre_master_secret = RNG_GenerateRandomBytes();

Summary on Crypto Primitives and Protocols 20/24

|

Attacking the Netscape PRNG

 if an attacker has an account on the UNIX machine running the
browser
– ps command lists running processes attacker learns pid, ppid

– the attacker can guess the time of day with seconds precision (assumption)

– only unknown is the value of microseconds ~220 possibilities

– each possibility can be tested easily against the client_random sent in clear
in the client_hello message

 if the attacker has no account on the machine running the browser
– a has 20 bits of randomness, b has 27 bits of randomness seed has 47 bits

of randomness (compared to 128 bit advertised security)

– ppid is often just a bit smaller than pid

– sendmail generates message IDs from its pid
» send mail to an unknown user on the attacked machine

» mail will bounce back with a message ID generated by sendmail

» attacker learns the last process ID generated on the attacked machine

» this may reduce possibilities for pid

Summary on Crypto Primitives and Protocols 21/24

|

secureURL.php

 Nguyen Quoc Bao, Secure URL 2.0,
www.phpclasses.org/quocbao_secureurl

 designed to hide URL parameters and protect their integrity

Summary on Crypto Primitives and Protocols 22/24

|

Breaking secureURL.php

 we analyzed this package in the context of a penetration testing
work that we conducted for request by a client

 the client’s web site used the secureURL.php package for hiding
URL parameters

 the entire design of the site’s defense architecture heavily
depended on the assumption that URL parameters were
properly hidden

 we broke the “cryptographic” algorithm of secureURL.php, and
this also allowed us to successfully break into the client’s
system (with some additional work, of course)

 in this case, the use of bad cryptography created a false
impression of security for our client

 we reported the flaw at http://seclists.org/bugtraq/2011/Sep/139

 Summary on Crypto Primitives and Protocols 23/24

|

Breaking secureURL.php

 encryption is based on XOR-ing the plaintext parameter string
with the MD5 digest of a user defined secret key
– repeated as many times as needed to mask the entire plaintext

parameter string

 the same MD5 digest is used for every request!

 if we can guess a plaintext parameter string, and observe its
encrypted version, then we can compute this MD5 digest, and
we are done

 we could obtain plaintext parameter strings in multiple ways
– some pages contained some parameter names and values in plaintext

accidentally (e.g., comments or debug messages)

– the web site contained open source web components, and we could
examine the original program to get information on what parameter
strings it used

Summary on Crypto Primitives and Protocols 24/24

