Pseudo-random number generators

- motivation and definitions
- types of attacks
- analysis of ANSI X9.17, DSA PRNG
- guidelines for using vulnerable PRNGs
- design of Yarrow-160

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.”
--- John von Neumann

Definitions

- a random number is a number that cannot be predicted by an observer before it is generated
 - if the number is generated within the range \([0, N-1]\), then its value cannot be predicted with any better probability than \(1/N\)
 - the above is true even if the observer is given all previously generated numbers

- a cryptographic pseudo-random number generator (PRNG) is a mechanism that processes somewhat unpredictable inputs and generates pseudo-random outputs
 - if designed, implemented, and used properly, then even an adversary with enormous computational power should not be able to distinguish the PRNG output from a real random sequence
Motivation

- sources of true randomness may be available ...
 - keystroke timing
 - mouse movement
 - disc access time
 - network usage statistics
 - ...
- ... but the amount of random bits obtained per time unit or available at a given point in time may not be sufficient
- random number generators used for simulation purposes are not good for cryptographic purposes
 - example: $s_{i+1} = (a \cdot s_i + b) \mod n$
 - has nice statistical properties
 - but it is predictable
- weakly designed PRNGs can easily destroy security even if very strong cryptographic primitives (ciphers, MACs, etc.) are used
 - example: early version of Netscape PRNG (to be used for SSL)

Early version of Netscape’s PRNG

```c
RNG_CreateContext()
(seCONDS, microseconds) = time of day;
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a, b);

mklcpr(x)
return((0xDEECE66D*x + 0x2BBB62DC) >> 1)

RNG_GenerateRandomBytes()
  x = MD5(seed);
  seed = seed+1;
  return x;

create_key()
  RNG_CreateContext();
  RNG_CreateRandomBytes(); RNG_CreateRandomBytes();
  challenge = RNG_CreateRandomBytes();
  secret_key = RNG_CreateRandomBytes();
```
Attacking the Netscape PRNG

- if an attacker has an account on the UNIX machine running the browser
 - `ps` command lists running processes \(\rightarrow\) attacker learns pid, ppid
 - the attacker can guess the time of day with seconds precision
 - only unknown is the value of microseconds \(\rightarrow\) \(2^{20}\) possibilities
 - each possibility can be tested easily against the challenge sent in clear within SSL

- if the attacker has no account on the machine running the browser
 - a has 20 bits of randomness, b has 27 bits of randomness \(\rightarrow\) seed has 47 bits of randomness (compared to 128 bit advertised security)
 - ppid is often 1, or a bit smaller than pid
 - sendmail generates message IDs from its pid
 - mail will bounce back with a message ID generated by sendmail
 - attacker learns the last process ID generated on the attacked machine
 - this may reduce possibilities for pid

Classification of attacks

- various ways to compromise the PRNG’s state
 - cryptanalytic attacks
 - between receiving input samples the PRNG works as a stream cipher
 - a cryptographic weakness in this stream cipher might be exploited to recover its internal state
 - side-channel attacks
 - additional information about the actual implementation of the PRNG may be exploited
 - example: measuring the time needed to produce a new output may leak information about the current state of the PRNG (timing attacks)

\[x = \text{MD5}(\text{seed}) \]
\[\text{seed} = \text{seed} + 1; \quad \text{// increment needs } m+1 \text{ byte additions if the last } m \text{ bytes are all } 0xFF \]
\[\text{return } x; \quad \text{// long output time } \rightarrow \text{ last couple of bytes of seed are } 0x00 \]

- input-based attacks
 - known-input attacks: an attacker is able to observe (some of) the PRNG inputs
 - chosen-input attacks: an attacker is able to control (some of) the PRNG inputs
 - typically applicable against smart cards

- mishandling of seed files
Classification of attacks

- In practice, it is prudent to assume that occasional compromises of the state may happen.
- Various ways to exploit compromised states:
 - Permanent compromise attacks:
 - Given: state at time \(t_0 \)
 - Find: all future (or past) states
 - Iterative guessing attacks:
 - Given: state at time \(t_0 \), outputs in \([t_0, t_1]\)
 - Find: state at time \(t_1 \)
 - Backtracking attacks:
 - Given: state at time \(t_0 \)
 - Find: outputs before \(t_0 \)
 - Meet-in-the-middle attacks:
 - Given: state at time \(t_0 \) and \(t_2 > t_0 \)
 - Find: state at time \(t_1 \), where \(t_0 < t_1 < t_2 \)

ANSI X9.17

State: \(K, seed_i \)
Output generation:
\[
T_i = E_K(\text{current timestamp})
\]
\[
\text{output}_i = E_K(T_i \oplus seed_i)
\]
\[
\text{seed}_{i+1} = E_K(T_i \oplus \text{output}_i)
\]
Attacks on X9.17

- cryptanalytic attacks
 - it seems that they require to break the block cipher \(E \)
 - however, this has never been proven formally

- input based attacks
 - assume that an attacker can freeze the clock (\(T_i = T \) for all \(i \))
 - \(\text{output}_{i+1} = E_K(T \oplus \text{seed}_{i+1}) = E_K(T \oplus E_K(T \oplus \text{output}_i)) = E'_{K}(\text{output}_i) \)
 - for a good cipher \(E \), we expect a repeating value in the above sequence after \(~2^n-1\) steps, where \(n \) is the block size of \(E \)
 - in a sequence of true \(n \)-bit random values, a collision is expected after \(~2^{n/2}\) steps (birthday paradox)
 - the attacker can distinguish the output of X9.17 from a sequence of true random numbers given that he can observe sufficiently many \(~2^{n/2}\) outputs
 - not practically important
 - certificational weakness

Attacks on X9.17

- weaknesses leading to state compromise extensions
 - part of the state (\(K \)) never changes
 - if \(K \) is compromised, then the PRNG can never fully recover
 - \(\text{seed}_{i+1} \) depends on \(\text{seed}_i \) only via \(\text{output}_i \)
 - if \(K \) is known from a previous state compromise and \(\text{output}_i \) is observable, then finding \(\text{seed}_{i+1} \) is not so difficult (timestamps can usually be assumed to have only 10-20 bits of entropy)

- deriving the seed from two consecutive outputs (and \(K \))
 \[
 \text{seed}_{i+1} = E_K(T_i \oplus \text{output}_i) \quad (1) \\
 \text{seed}_{i+1} = D_K(\text{output}_{i+1}) \oplus T_{i+1} \quad (2)
 \]
 - assume that timestamps has 10 bits of entropy
 - try all values for \(T_i \), and form a sorted list of possible values for \(\text{seed}_{i+1} \) using (1)
 - try all values for \(T_{i+1} \), and form another sorted list of possible values for \(\text{seed}_{i+1} \) using (2)
 - the correct \(\text{seed}_{i+1} \) value is the one that appears on both lists
 (expected number of matching pairs is \(~1-2^{20-n}\))
Attacks on X9.17

- iterative guessing attack
 - if an attacker knows K and seed, and sees (some public function f of) output, then he can determine seed easily
 - let $f(output_i) = v$
 - try all possible values t for T_i and form a list of values $v_t = f(E_K(t \oplus seed_i))$
 - select t^* such that $v_{t^*} = v$
 - seed$_{i+1} = E_K(t^* \oplus E_K(t^* \oplus seed_i))$

- backtracking
 - if an attacker knows K and seed$_{i+1}$ and sees (some public function f of) output, then he can determine output and seed, easily
 - (EXERCISE)

- timer entropy issues
 - if larger amount of random bytes are needed (e.g., RSA key pair generation), then the PRNG is called repeatedly within a very short time
 - consecutive T_i values have much less entropy than 10-20 bits

Exercise

- Explain how the backtracking attack (given K and seed$_{i+1}$ and some public function f of output, find output, and seed,) works on the X9.17 PRNG.
DSA PRNG

- state: \(X_i \)
- optional input: \(W_i \) (\(W_i = 0 \) if not supplied)
- output generation:
 - \(\text{output}_i = \text{hash}((W_i + X_i) \mod 2^{160}) \)
 - \(X_{i+1} = (X_i + \text{output}_i + 1) \mod 2^{160} \)

\[X_i \quad W_i \quad \text{hash} \quad \text{output}_i \]

Attacks on the DSA PRNG

- **cryptanalytic attacks**
 - if the hash function is good, then the PRNG output seems to be hard to distinguish from a real random sequence
 - no formal proof

- **input based attacks**
 - assume the attacker can control \(W_i \)
 - setting \(W_i = (W_{i-1} - \text{output}_{i-1} - 1) \mod 2^{160} \) will force the PRNG to repeat its output
 - \(\text{output}_i = \text{hash}((W_i + X_i) \mod 2^{160}) = \)
 - \(\text{hash}(((W_{i-1} - \text{output}_{i-1} - 1) + (X_{i-1} + \text{output}_{i-1} + 1)) \mod 2^{160}) = \)
 - \(\text{output}_{i-1} \)
 - this works only if input samples are sent directly into the PRNG
 - in practice, they are often hashed before sent in
Attacks on the DSA PRNG

- A weakness that may make state compromise extensions easier
 - \(X_{i+1} \) depends on \(W_i \) only via \(\text{output}_i \)
 \[\rightarrow \text{if an attacker compromised } X_i \text{ and can observe } \text{output}_i, \text{ then he knows } X_{i+1} \text{ no matter how much entropy has been fed into the PRNG by } W_i \]

- Iterative guessing attack
 - If an attacker knows \(X_i \) and observes (a public function \(f \) of) \(\text{output}_i \), then he can find \(X_{i+1} \)
 - Let \(f(\text{output}_i) = v \)
 - Assume that \(W_i \) has only 20 bits of entropy
 - The attacker can try all possible values \(w \) for \(W_i \), and compute
 \[v_w = f(\text{hash}(w + X_i \mod 2^{160})) \]
 - Let \(w^* \) be the value such that \(v = v_{w^*} \)
 - \(X_{i+1} = (X_i + \text{hash}(w^* + X_i \mod 2^{160}) + 1) \mod 2^{160} \)

- Filling the gaps
 - If an attacker knows \(X_i \) and \(X_{i+2} \), and observes \(\text{output}_i \), then he can compute \(\text{output}_i \) as
 \[\text{output}_i = (X_{i+2} - X_i - 2 - \text{output}_{i+2}) \mod 2^{160} \]

Strengthening the DSA PRNG

- All inputs should be hashed together before feeding them into the PRNG (to make input based attacks harder)
- \(X_{i+1} \) should depend on \(W_i \) directly and not via the output
 - Example: \(X_{i+1} = X_i + \text{hash}(\text{output}_i + W_i) \)
Guidelines for using vulnerable PRNGs

- use a hash function at the output to protect the PRNG from direct cryptanalytic attacks
- hash all inputs together with a counter or timestamp before feeding into the PRNG to make chosen-input attacks harder
- pay special attention to PRNG starting points and seed files to make it harder to compromise the PRNG state
- occasionally generate a new starting state and restart the PRNG to limit the scope of state compromise extensions

The Yarrow-160 PRNG

- design philosophy
 - accumulate entropy from as many different sources as possible
 - reseed the key (state) only when enough entropy has been collected (this puts the PRNG in an unguessable state at each reseed)
 - between reseeds, use strong crypto algorithms to generate outputs from the key (like a stream cipher)

- four major components
 - entropy accumulator
 - collects samples from entropy sources into two entropy pools (slow and fast pool)
 - reseed mechanism
 - periodically reseeds the key with new entropy from the pools
 - reseed control
 - determines when a reseed should be performed
 - generation mechanism
 - generates PRNG output from the key (state)
Entropy accumulator

- inputs from each source are fed alternately into two entropy pools
 - fast pool
 - provides frequent reseeds
 - ensures that state compromises has as short a duration as possible
 - slow pool
 - rare reseeds
 - entropy is estimated very conservatively
 - rationale: even if entropy estimation of the fast pool is inaccurate, the PRNG still eventually gets a secure reseed from the slow pool

- entropy estimation
 - entropy of each sample is measured in three ways:
 - a: programmer supplies an estimate for the entropy source
 - b: a statistical estimator is used to estimate the entropy of the sample
 - c: length of the sample multiplied by \(\frac{1}{2} \)
 - entropy estimate of the sample is \(\min(a, b, c) \)
 - entropy contribution of a source is the sum of entropy estimates of all samples collected so far from that source
 - entropy contribution of each source is maintained separately

Reseed control

- periodic reseed
 - the fast pool is used to reseed when any of the sources reaches an estimated entropy contribution of 100 bits
 - the slow pool is used to reseed when at least two sources reaches an estimated entropy contribution of 160 bits

- explicit reseed
 - an application may explicitly ask for a reseed operation (from both pools)
 - should be used only when a high-valued random secret is to be generated
Reseed mechanism

- reseed from the fast pool (h is SHA1, E is 3DES):
 \[v_0 := h(\text{fast pool}) \]
 \[v_i := h(v_{i-1} \| v_0 \| i) \quad \text{for} \ i = 1, 2, \ldots, P_t \]
 \[K := h(h(v_{P_t} \| K), k) \]
 \[C := E_k(0) \]
 where \(h' \) is a "size adaptor"
 \[h'(m, k) = \text{first} \ k \ \text{bit of} \ s_0 \| s_1 \| s_2 \| \ldots \]
 \[s_0 = m \]
 \[s_i = h(s_0 \| \ldots \| s_{i-1}) \quad i = 1, 2, \ldots \]
 reset all entropy estimates to 0
 wipe the memory of all intermediate values

- reseed from the slow pool:
 - feed \(h(\text{slow pool}) \) into fast pool
 - reseed from fast pool as described above

observations

- new value of \(K \) directly depends on previous value of \(K \) and current pool content (pool \(\rightarrow v_0 \rightarrow v_{P_t} \))
 - if an attacker has some knowledge of the previous value of \(K \), but does not know most of the pool content, then he cannot guess the new \(K \)
 - if an attacker does not know the previous value of \(K \), but observed many inputs of the pool, then he still cannot guess the new \(K \)
- execution time depends on security parameter \(P_t \)
 - this makes the time needed for iterative guessing attacks longer
Generation mechanism

- **algorithm (E is 3DES):**

 \[C := (C+1) \mod 2^n \quad // \ n \text{ is the block size of } E \]

 \[R := E_k(C) \]

 output: \(R \)

- **generator gate**
 - after \(P_g \) output has been generated, a new key is generated

 \[K := \text{next } k \text{ bits of PRNG output} \]

 - \(P_g \) is a security parameter currently set to 10

 - **rationale:** if a key is compromised, then only 10 previous output can be computed by the attacker (prevention of backtracking attacks)

Protecting the entropy pool

- the pool can be swapped into swap files and stored on disk

 - several operating systems allow to lock pages into memory

 - mlock() (UNIX), VirtualLock() (Windows), HoldMemory() (Macintosh)

 - memory mapped files can be used as private swap files

 - the files should have the strictest possible access permissions

 - file buffering should be disabled to avoid that the buffer is swapped

- allocated memory blocks can be scanned through by other processes

 - entropy pool is often allocated at the beginning when the security subsystem is started → pool is often at the head of allocated memory blocks

 - the pool can be embedded in a larger allocated memory block

 - its location can be changed periodically (by allocating new space and moving the pool) in the background

 - this background process can also be used to prevent the pool from being swapped (touched pages are kept in memory with higher probability)
Summary

- PRNGs for cryptographic purposes need special attention
 - simple congruential generators are predictable
 - naïve PRNG design will not do (cf. early Netscape PRNG)
- widely used cryptographic PRNGs may have weaknesses too
 - ANSI X9.17
 - DSA PRNG
 - RSAREF 2.0
 - ...
- some guidelines for using vulnerable PRNGs
- design of Yarow-160
 - careful design that seems to resist various attacks
- protecting the entropy pools

Recommended readings

- Kelsey, Schneier, Ferguson. Yarrow-160: Notes on the design and analysis of the Yarrow cryptographic PRNG.