

Large numbers

time until next ice age
number of atoms in the planet
volume of the universe2 ²⁸⁰ cm ³
(source: Schneier, Applied Cryptography, 2 nd ed., Wiley 1996)
© Levente Buttyán

2

	A	ttack models
iers in general	· · ·	 ciphertext-only only data transmitted over the ciphertext channel is available to the attacker known-plaintext plaintext-ciphertext pairs are available to the attacker chosen-plaintext ciphertexts are available corresponding to plaintexts of the attacker's choice adaptive: choice of plaintexts may depend on previously obtained plaintext-ciphertext pairs chosen-ciphertext plaintext-ciphertext pairs are available for some number of ciphertexts of the attacker's choice adaptive: choice of ciphertexts may depend on previously obtained plaintext-ciphertext pairs chosen-ciphertext pairs are available for some number of ciphertexts of the attacker's choice adaptive: choice of ciphertexts may depend on previously obtained plaintext-ciphertext pairs related-key attack attacker has access to the encryption of plaintexts under both the unknown key and keys known to have certain relationship with the unknown
Cip	© Le	Key evente Buttyán 4

	Theoretical vs. practical security
	 one-time pad a stream cipher where the key stream is a true random bit stream unconditionally secure [Shannon, 1949] however, the key must be as long as the plaintext to be encrypted
iphers in general	 practical ciphers use much shorter keys (128 bits (symm.), 1024 bits (asymm.)) they are not unconditionally secure, but computationally infeasible to break (practically secure) however, proving that a cipher is practically secure is not easy not enough to consider <i>brute force attacks</i> (key size) only a cipher may be broken due to weaknesses in its (algebraic) structure no proofs of security exist for many ciphers used in practice if a proof exists, it usually relies on assumptions that are widely believed to be true (such as P ≠ NP)
Ci	© Levente Buttyán 6

	Exhaustive key search and key size
 lock cipher basics	 given a small number of plaintext-ciphertext pairs encrypted under a key K, K can be recovered by exhaustive key search with 2^{k-1} processing complexity (expected number of operations) input: (X, Y), (X', Y'), progress through the entire key space for each trial key K', decrypt Y if the result is not X, then throw away K' if the result is X, then check the other pairs (X', Y'), if K' does not work for at least one pair, then throw away K' if K' worked for all pairs (X, Y), (X', Y'),, then output K' as the target key on average, the target key is found after searching half of the key space if the plaintexts are known to contain redundancy, then ciphertext-only exhaustive key search is possible with a relatively small number of ciphertexts
6	© Levente Buttyán 10

	Meet-in-the-middle attack on double enc.
	 a naïve exhaustive key search attack on double encryption tries all 2^{2k} keys
	 a known-plaintext meet-in-the-middle attack defeats double encryption using an order of 2^k operations and 2^k storage attack time is reduced at the cost of substantial space
k ciphers / Multiple encryption	 meet-in-the-middle attack: input: known plaintext-ciphertext pairs (X, Y), (X', Y'), compute M_i = E_i(X) for all possible key values K₁ = i and store all (M_i, i) pairs in a table compute M'_j = D_j(Y) for all possible key values K₂ = j and check for hits M'_j = M_i against entries in the stored table M'j need not be stored, it can be checked as it is generated each hit identifies a candidate solution key pair (i, j) using a second plaintext-ciphertext pair (X', Y'), discard false hits for an L stage cascade of random ciphers, the expected number of false key hits when t plaintext-ciphertext pairs are available is 2^{Lk-tn}, where n and k are the block and key sizes, resp.
Blo	© Levente Buttyán 22

	Properties of ECB mode
Block ciphers / Modes of operation	 encrypting the same plaintext with the same key results in the same ciphertext identical plaintext blocks result in identical ciphertext blocks (under the same key of course) messages to be encrypted often have very regular formats repeating fragments, special headers, string of 0s, etc. are quite common blocks are encrypted independently of other blocks reordering ciphertext blocks result in correspondingly reordered plaintext blocks ciphertext blocks can be cut from one message and pasted in another, possibly without detection error propagation: one bit error in a ciphertext block affects only the corresponding plaintext block (results in garbage) overall: not recommended for messages longer than one block, or if keys are reused for more than one block

	Properties of CTR mode
Block ciphers / Modes of operation	 similar to OFB cycle length depends on the size of the counter (typically 2ⁿ) the i-th block can be decrypted independently of the others parallelizable (unlike OFB) random access the values to be XORed with the plaintext can be pre-computed at least as secure as the other modes note1: in CFB, OFB, and CTR mode only the encryption algorithm is used (decryption is not needed) that is why Rijndael is optimized for encryption these modes shouldn't be used with public-key encryption algs. note2: the OFB and CTR modes essentially make a synchronous stream cipher out of a block cipher, whereas the CFB mode converts a block cipher into a self-synchronizing stream-cipher
	© Levente Buttyán 41

	Last byte(s) oracle
CBC padding	 assume we get that x⊕r has a correct padding, but we don't know if it is 0 or 11 or 222 algorithm: let j = 1 change r_j and send r₁r₂r₈y₁y₂y₈ to the server again if the padding is still correct then the j-th byte was not a padding byte; increment j and go back to step 2 if the padding becomes incorrect then the j-th byte was the first padding byte; x_j⊕r_j x_{j+1} x₈⊕r₈ = (8-j) (8-j) and hence x_j x_{j+1} x₈ = r_j⊕(8-j) r₈⊕(8-j)
security flaw induced by	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
A	© Levente Buttyán 46

