
1

Symmetric key cryptography

- preliminaries (operational and attacker models)
- block ciphers (basics, DES, 3DES, AES)
- block ciphers in practice (modes of operation)
- a security flaw induced by CBC padding
- stream ciphers

“The best system is to use a simple, well understood algorithm which relies on
the security of a key rather than the algorithm itself. This means if anybody
steals a key, you could just roll another and they have to start all over.”

-- Andrew Carol

2© Levente Buttyán

Large numbers

time until next ice age…………………………… 239 seconds
time until the sun goes nova………………… 255 seconds
age of the planet……………………………………. 255 seconds
age of the Universe………………………………. 259 seconds

number of atoms in the planet……………..2170

number of atoms in the sun…………………..2190

number of atoms in the galaxy……………. 2223

number of atoms in the Universe ………. 2265

(dark matter excluded)

volume of the universe………………………….. 2280 cm3

(source: Schneier, Applied Cryptography, 2nd ed., Wiley 1996)

2

3© Levente Buttyán

EE DDx
plaintext

k
encryption key

k’
decryption key

Ek(x)
ciphertext

Dk’ (Ek(x)) = x

attacker

Operational model of encryption

attacker’s goal:
– to systematically recover plaintext from ciphertext
– to deduce the (decryption) key

Kerckhoff’s assumption:
– attacker knows all details of E and D
– attacker doesn’t know the (decryption) key

Ci
ph

er
s

in
 g

en
er

al

4© Levente Buttyán

Attack models

ciphertext-only
– only data transmitted over the ciphertext channel is available to the

attacker
known-plaintext
– plaintext-ciphertext pairs are available to the attacker

chosen-plaintext
– ciphertexts are available corresponding to plaintexts of the attacker’s

choice
– adaptive: choice of plaintexts may depend on previously obtained plaintext-

ciphertext pairs
chosen-ciphertext
– plaintext-ciphertext pairs are available for some number of ciphertexts of

the attacker’s choice
– adaptive: choice of ciphertexts may depend on previously obtained

plaintext-ciphertext pairs
related-key attack
– attacker has access to the encryption of plaintexts under both the

unknown key and keys known to have certain relationship with the unknown
key

Ci
ph

er
s

in
 g

en
er

al

3

5© Levente Buttyán

block ciphers

block
cipher
block
cipher

plaintext ciphertext

key
padding

Asymmetric- vs. symmetric-key encryption

asymmetric-key encryption
– it is hard (computationally infeasible) to compute k’ from k
– k can be made public (public-key cryptography)

symmetric-key encryption
– it is easy to compute k from k’ (and vice versa)
– often k = k’
– two main types: stream ciphers and block ciphers

pseudo-random
bit stream generator

pseudo-random
bit stream generator

+... ...
plaintext ciphertext

stream ciphers
seed

Ci
ph

er
s

in
 g

en
er

al

6© Levente Buttyán

Theoretical vs. practical security

one-time pad
– a stream cipher where the key stream is a true random bit stream
– unconditionally secure [Shannon, 1949]

– however, the key must be as long as the plaintext to be encrypted

practical ciphers
– use much shorter keys (128 bits (symm.), 1024 bits (asymm.))
– they are not unconditionally secure, but computationally infeasible

to break (practically secure)
– however, proving that a cipher is practically secure is not easy

• not enough to consider brute force attacks (key size) only
• a cipher may be broken due to weaknesses in its (algebraic) structure

– no proofs of security exist for many ciphers used in practice
– if a proof exists, it usually relies on assumptions that are widely

believed to be true (such as P ≠ NP)

Ci
ph

er
s

in
 g

en
er

al

4

7© Levente Buttyán

Attack complexity

best available measure of security for practical ciphers is the
complexity of the best (currently) known attack
attack complexity is the dominant of the following complexities
– data complexity

• expected number of input data units required for the attack (e.g.,
number of ciphertexts in a ciphertext-only attack)

– storage complexity
• expected number of storage units required

– processing complexity
• expected number of operations required to process input data and/or

fill storage with data
• parallelization may reduce attack time but not processing complexity

Ci
ph

er
s

in
 g

en
er

al

Block ciphers:
DES, 3DES, and AES

- basics
- operation of DES
- cryptanalysis of DES
- multiple encryption and the 3DES
- AES

“Feistel and Coppersmith rule: Sixteen rounds and one hell of an avalanche.”
-- Stephan Eisvogel in de.comp.security

5

9© Levente Buttyán

Block ciphers

an n bit block cipher is a function E: {0, 1}n x {0, 1}k {0, 1}n,
such that for each K ∈ {0, 1}k, E(X, K) = EK(X)
– is an invertible mapping from {0, 1}n to {0, 1}n

– cannot be efficiently distinguished from a random permutation
the inverse of EK(X) is denoted by DK(Y), where Y = EK(X)

Bl
oc

k
ci
ph

er
 b

as
ic
s

EE… …

…

n bit input n bit output

k bit key

permutation
defined by K

po
ss

ib
le

 c
ip

he
rt

ex
ts

po
ss

ib
le

 p
la

in
te

xt
s

permutation
defined by K’

po
ss

ib
le

 c
ip

he
rt

ex
ts

po
ss

ib
le

 p
la

in
te

xt
s

…

10© Levente Buttyán

Exhaustive key search and key size

given a small number of plaintext-ciphertext pairs encrypted
under a key K, K can be recovered by exhaustive key search
with 2k-1 processing complexity (expected number of
operations)
– input: (X, Y), (X’, Y’), …
– progress through the entire key space

• for each trial key K’, decrypt Y
• if the result is not X, then throw away K’
• if the result is X, then check the other pairs (X’, Y’), …
• if K’ does not work for at least one pair, then throw away K’

– if K’ worked for all pairs (X, Y), (X’, Y’), …, then output K’ as the
target key

– on average, the target key is found after searching half of the key
space

if the plaintexts are known to contain redundancy, then
ciphertext-only exhaustive key search is possible with a
relatively small number of ciphertexts

Bl
oc

k
ci
ph

er
 b

as
ic
s

6

11© Levente Buttyán

DES – Data Encryption Standard

input size: 64
output size: 64
key size: 56
16 rounds
Feistel structure

Initial PermutationInitial Permutation

FF+

FF+

FF+

FF+

…
Initial Permutation-1Initial Permutation-1

(64)

(64)

(32)(32)

(48)

(48)

(48)

(48)

Ke
y

Sc
he

du
le

r

(56)

K

K1

K2

K16

K3

X

YBl
oc

k
ci
ph

er
s

/
D
ES

12© Levente Buttyán

DES round function F

++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++

S1S1 S2S2 S3S3 S4S4 S5S5 S6S6 S7S7 S8S8

PP

– Si – substitution box (S-box)
– P – permutation box (P-box)

key
injection

Bl
oc

k
ci
ph

er
s

/
D
ES

7

13© Levente Buttyán

DES key scheduler

Permuted Choice 1Permuted Choice 1

Permuted Choice 2Permuted Choice 2

Left shift(s) Left shift(s)

Permuted Choice 2Permuted Choice 2

Left shift(s) Left shift(s)

…

(28)

(56)
K

(28)

(28)(28)

(48)

(48)

K1

K2

each key bit is used in around 14 out of 16 rounds

Bl
oc

k
ci
ph

er
s

/
D
ES

14© Levente Buttyán

Feistel structure illustrated

FF+

FF+

FF+

…

L0 R0

L1 R1

L2 R2

Lr-1 Rr-1

Rr Lr

K1

K2

Kr

FF+

FF +

…

L0 R0

L1R1

L2 R2

Rr-1 Lr-1

Rr Lr

K1

K2

FF+

K3

FF +

Kr

…

tw
is

te
d

la
dd

er

un
tw

is
te

d
la

dd
er

Bl
oc

k
ci
ph

er
s

/
D
ES

8

15© Levente Buttyán

Properties of Feistel ciphers

round i maps (Li-1, Ri-1) into (Li, Ri) as follows:
Li = Ri-1
Ri = Li-1 ⊕ F(Ri-1, Ki)

a Feistel cipher is always invertible even if F is not invertible:
Ri-1 = Li
Li-1 = Ri ⊕ F(Ri-1, Ki) = Ri ⊕ F(Li, Ki)

decryption can be achieved using the same r-round process with the
round keys used in reverse order (Kr through K1)

Bl
oc

k
ci
ph

er
s

/
D
ES FF+

L RKi

FF+

Ki
L ⊕ F(R, K)

L R

16© Levente Buttyán

Complementation property of DES

Y = DESK(X) implies Y* = DESK*(X*)
– where X* denotes the bitwise complement of X

Bl
oc

k
ci
ph

er
s

/
D
ES

FF+

Li-1* Ri-1*

Ri*Li*

Ki*

F(Ri-1, Ki)

E

+

S

PF

R*

K*

E(R*) = E(R)*

E(R)* + K* = E(R) + K

S(E(R) + K)

P(S(E(R) + K)) = F(R, K)

9

17© Levente Buttyán

Consequences of the complementation prop.

assume an attacker can mount a chosen-plaintext attack
the attacker chooses a plaintext X, and obtains Y1 = DESK(X)
and Y2 = DESK(X*)
by the complementation property, the attacker knows that
DESK*(X) = Y2*
the attacker then runs an exhaustive key search
– for each trial key K’, he computes Y’ = DESK’(X)

• if Y’ = Y1, then K’ is possibly the target key (should be further tested)
• if Y’ = Y2*, then K’* is possibly the target key (should be further

tested)
• otherwise throw away both K’ and K’*

expected number of keys required before success is reduced
from 255 to 254

still impractical as an attack

Bl
oc

k
ci
ph

er
s

/
D
ES

18© Levente Buttyán

DES weak keys and semi-weak keys

a weak key is a key K such that DESK(DESK(X)) = X
– there are 4 DES weak keys:

0101 0101 0101 0101
FEFE FEFE FEFE FEFE
1F1F 1F1F 0E0E 0E0E
E0E0 E0E0 F1F1 F1F1

a semi-weak key pair is a pair (K1, K2) such that
DESK1(DESK2(X)) = X
– there are 6 pairs of DES semi-weak keys

why are these keys weak?
– for each weak key K, there exist 232 fix points of DESK,

i.e., plaintext X such that DESK(X) = X
– for 4 out of the 12 semi-weak keys, there exist 232 anti-fix points,

i.e., plaintext X such that DESK(X) = X*

Bl
oc

k
ci
ph

er
s

/
D
ES

10

19© Levente Buttyán

Linear and differential cryptanalysis of DES

linear cryptanalysis (LC)
– linear cryptanalysis is the most powerful attack against DES to

date
– requires an enormous number (~243) known plaintext-ciphertext

pairs infeasible in practical environments
– could work in a ciphertext only model if plaintexts are redundant

(e.g., contain parity bits)

differential cryptanalysis (DC)
– most general cryptanalytic tool to date against iterated block

ciphers (including DES, FEAL, IDEA)
– primarily a chosen-plaintext attack
– in case of DES, it requires ~247 chosen plaintext-ciphertext pairs

infeasible in practical environments

DES was optimized against DC when it was designed
it can, however, be improved with respect to LC (apparently the
designers of DES was not aware of this attack at that time)

Bl
oc

k
ci
ph

er
s

/
Cr

yp
ta

na
ly
si
s

of
 D

ES

20© Levente Buttyán

if a block cipher is susceptible to exhaustive key search (e.g., DES),
then encryption of the same message more than once may increase
security

– stage keys may not be independent
• e.g., two-key 3DES: K1 = K3

– a stage cipher may be either a block cipher or its corresponding decryption
function

• e.g., 3DES-EDE (encryption-decryption-encryption)

Multiple encryption and 3DES

Bl
oc

k
ci
ph

er
s

/
M

ul
ti
pl
e

en
cr

yp
ti
on E/DE/D E/DE/DX Y

M

K1 K2

double encryption

E/DE/D E/DE/DX Y
A

K1 K3

triple encryption

E/DE/D

K2

B

11

21© Levente Buttyán

DES is not a group

group property
– given any two keys K1 and K2, there exists a third key K3, such

that DESK1(DESK2(X)) = DESK3(X) for all X

if DES was a group, then multiple encryption would be
equivalent to single encryption approaches like 3DES to
strengthen DES would be useless

Bl
oc

k
ci
ph

er
s

/
M

ul
ti
pl
e

en
cr

yp
ti
on

22© Levente Buttyán

Meet-in-the-middle attack on double enc.

a naïve exhaustive key search attack on double encryption tries
all 22k keys
a known-plaintext meet-in-the-middle attack defeats double
encryption using an order of 2k operations and 2k storage
– attack time is reduced at the cost of substantial space

meet-in-the-middle attack:
– input: known plaintext-ciphertext pairs (X, Y), (X’, Y’), …
– compute Mi = Ei(X) for all possible key values K1 = i and store all

(Mi, i) pairs in a table
– compute M’j = Dj(Y) for all possible key values K2 = j and check for

hits M’j = Mi against entries in the stored table
• M’j need not be stored, it can be checked as it is generated

– each hit identifies a candidate solution key pair (i, j)
– using a second plaintext-ciphertext pair (X’, Y’), discard false hits
– for an L stage cascade of random ciphers, the expected number of

false key hits when t plaintext-ciphertext pairs are available is
2Lk-tn, where n and k are the block and key sizes, resp.

Bl
oc

k
ci
ph

er
s

/
M

ul
ti
pl
e

en
cr

yp
ti
on

12

23© Levente Buttyán

AES – Advanced Encryption Standard

NIST selected Rijndael (designed by Joan Daemen and Vincent
Rijmen) as a successor of DES (3DES) in November 2001
Rijndael parameters
– key size 128 192 256
– input/output size 128 128 128
– number of rounds 10 12 14
– round key size 128 128 128

not Feistel structure
decryption algorithm is different from encryption algorithm
(optimized for encryption)
single 8 bit to 8 bit S-box
key injection (bitwise XOR)

Bl
oc

k
ci
ph

er
s

/
A
ES

 (
Ri

jn
da

el
)

24© Levente Buttyán

General structure of encryption/decryption

add round key

substitute bytes

shift rows

mix columns

add round key

substitute bytes

shift rows

mix columns

add round key

substitute bytes

shift rows

add round key

plaintext

ciphertext

add round key

inverse subs bytes

inverse shift rows

inverse mix columns

add round key

inverse subs bytes

inverse shift rows

inverse mix columns

add round key

inverse subs bytes

inverse shift rows

add round key

plaintext

ciphertext

w[0..3]

w[4..7]

w[36..39]

w[40..43]

ex
pa

nd
ed

 k
ey

ro
un

d
1

ro
un

d
9

ro
un

d
10

round 1
round 9

round 10

Bl
oc

k
ci
ph

er
s

/
A
ES

 (
Ri

jn
da

el
)

13

25© Levente Buttyán

Shift row and mix column

s00

s10

s20

s30

s01

s11

s21

s31

s02

s12

s22

s32

s03

s13

s23

s33

s00

s11

s22

s33

s01

s12

s23

s30

s02

s13

s20

s31

s03

s10

s21

s32

LROT1
LROT2
LROT3

shift row

s00

s10

s20

s30

s01

s11

s21

s31

s02

s12

s22

s32

s03

s13

s23

s33

s’00

s’10

s’20

s’30

s’01

s’11

s’21

s’31

s’02

s’12

s’22

s’32

s’03

s’13

s’23

s’33

mix column

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

x =

multiplications and additions
are performed over GF(28)

Bl
oc

k
ci
ph

er
s

/
A
ES

 (
Ri

jn
da

el
)

26© Levente Buttyán

Key expansion

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

w0 w1 w2 w3

w4 w5 w6 w7

+ + + +

w8 w9 w10 w11

+ + + +

…

function g
- rotate word
- substitute bytes
- XOR with round constant

gg

gg

Bl
oc

k
ci
ph

er
s

/
A
ES

 (
Ri

jn
da

el
)

14

27© Levente Buttyán

Summary

block cipher basics
– trade-offs in block size
– trade-offs in key size, exhaustive key search
– product ciphers, SP networks

DES
– operation
– properties (Feistel structure, complementation, weak keys)
– differential and linear cryptanalysis
– multiple encryption and the 3DES
– meet-in-the middle attack on 2DES

AES
– operation

Using a block cipher in practice:
modes of operation

- ECB
- CBC
- CFB, OFB, CTR

15

29© Levente Buttyán

Block cipher modes of operation

ECB – Electronic Codebook
– used to encipher a single plaintext block (e.g., a DES key)

CBC – Cipher Block Chaining
– repeated use of the encryption algorithm to encipher a message

consisting of many blocks
CFB – Cipher Feedback
– used to encipher a stream of characters, dealing with each

character as it comes
OFB – Output Feedback
– another method of stream encryption, used on noisy channels

CTR – Counter
– simplified OFB with certain advantages

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

30© Levente Buttyán

encrypt

decrypt

ECB mode

EE

P1

C1

K EE

P2

C2

K EE

PN

CN

K…

DD

C1

P1

K DD

C2

P2

K DD

CN

PN

K…

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

16

31© Levente Buttyán

Properties of ECB mode

encrypting the same plaintext with the same key results in the
same ciphertext
identical plaintext blocks result in identical ciphertext blocks
(under the same key of course)
– messages to be encrypted often have very regular formats
– repeating fragments, special headers, string of 0s, etc. are quite

common
blocks are encrypted independently of other blocks
– reordering ciphertext blocks result in correspondingly reordered

plaintext blocks
– ciphertext blocks can be cut from one message and pasted in

another, possibly without detection
error propagation: one bit error in a ciphertext block affects
only the corresponding plaintext block (results in garbage)

overall: not recommended for messages longer than one block,
or if keys are reused for more than one block

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

32© Levente Buttyán

CBC mode

encrypt

decrypt

EE

P1

C1

K

+

EE

P2

C2

K

+

EE

P3

C3

K

+

EE

PN

CN

K

+IV CN-1

…

DD

C1

P1

K

+IV

DD

C2

P2

K

+

DD

C3

P3

K

+

DD

CN

PN

K

+CN-1

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

17

33© Levente Buttyán

Properties of CBC mode

encrypting the same plaintexts under the same key, but
different IVs result in different ciphertexts
ciphertext block Cj depends on Pj and all preceding plaintext
blocks
– rearranging ciphertext blocks affects decryption
– however, dependency on the preceding plaintext blocks is only via

the previous ciphertext block Cj-1
– proper decryption of a correct ciphertext block needs a correct

preceding ciphertext block only
error propagation:
– one bit error in a ciphertext block Cj has an effect on the j-th and

(j+1)-st plaintext block
• Pj’ is complete garbage and Pj+1’ has bit errors where Cj had
• an attacker may cause predictable bit changes in the (j+1)-st plaintext

block
error recovery:
– recovers from bit errors (self-synchronizing)

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

34© Levente Buttyán

Integrity of the IV in CBC mode

the IV need not be secret, but its integrity should be
protected
– malicious modification of the IV allows an attacker to make

predictable changes to the first plaintext block recovered
one solution is to send the IV in an encrypted form at the
beginning of the CBC encrypted message

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

18

35© Levente Buttyán

Padding

the length of the message may not be a multiple of the block
size of the cipher
one can add some extra bytes to the short end block until it
reaches the correct size – this is called padding
usually the last byte indicates the number of padding bytes
added – this allows the receiver to remove the padding

note: if the encrypted message must have the same size as the
clear message, then no padding can be used
– encrypt the last ciphertext block again
– select m bits and XOR them to the remaining m bits of the clear

message

05

short end block padding

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

36© Levente Buttyán

CFB mode

– encrypt – decrypt

EE

Pi Ci

K

+

shift register (n)

(n)

select s bitsselect s bits

(n)

(s)
(s) (s)

(s)

initialized with IV

EE

Ci Pi

K

+

shift register (n)

(n)

select s bitsselect s bits

(n)

(s)
(s) (s)

(s)
initialized with IV

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

19

37© Levente Buttyán

Properties of CFB mode

encrypting the same plaintexts under the same key, but
different IVs result in different ciphertexts
the IV can be sent in clear
ciphertext character Cj depends on Pj and all preceding
plaintext characters
– rearranging ciphertext characters affects decryption
– proper decryption of a correct ciphertext character needs the

preceding n/s ciphertext characters to be correct
error propagation:
– one bit error in a ciphertext character Cj has an effect on the

decryption of that and the next n/s ciphertext characters (the
error remains in the shift register for n/s steps)

• Pj’ has bit errors where Cj had, all the other erroneous plaintext
characters are garbage

• an attacker may cause predictable bit changes in the j-th plaintext
character

error recovery:
– self synchronizing, but requires n/s characters to recover

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

38© Levente Buttyán

OFB mode

– encrypt – decrypt

EE

Pi Ci

K

+

shift register (n)

(n)

select s bitsselect s bits

(n)

(s)

(s) (s)

(n)

initialized with IV

EE

Ci Pi

K

+

shift register (n)

(n)

select s bitsselect s bits

(n)

(s)

(s) (s)

(n)

initialized with IV

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

20

39© Levente Buttyán

Properties of OFB mode

a different IV should be used for every new message,
otherwise messages will be encrypted with the same key
stream
the IV can be sent in clear
– however, if the IV is modified by the attacker, then the cipher

will never recover (unlike CFB)
ciphertext character Cj depends on Pj only (does not depend on
the preceding plaintext characters)
– however, rearranging ciphertext characters affects decryption

error propagation:
– one bit error in a ciphertext character Cj has an effect on the

decryption of only that ciphertext character
• Pj’ has bit errors where Cj had
• an attacker may cause predictable bit changes in the j-th plaintext

character
error recovery:
– recovers from bit errors

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

40© Levente Buttyán

– encrypt – decrypt

CTR mode

EE

Pi Ci

K

+

(n)

(n)

(n)

counter + i

(n)

EE

Ci Pi

K

+

(n)

(n)

(n)

counter + i

(n)

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

21

41© Levente Buttyán

Properties of CTR mode

similar to OFB
cycle length depends on the size of the counter (typically 2n)
the i-th block can be decrypted independently of the others
– parallelizable (unlike OFB)
– random access

the values to be XORed with the plaintext can be pre-computed
at least as secure as the other modes

note1: in CFB, OFB, and CTR mode only the encryption algorithm is
used (decryption is not needed)
– that is why Rijndael is optimized for encryption
– these modes shouldn’t be used with public-key encryption algs.

note2: the OFB and CTR modes essentially make a synchronous stream
cipher out of a block cipher, whereas the CFB mode converts a block
cipher into a self-synchronizing stream-cipher

Bl
oc

k
ci
ph

er
s

/
M

od
es

 o
f

op
er

at
io
n

A security flaw induced by CBC
padding

22

43© Levente Buttyán

CBC encryption with padding

TLS padding
– last byte is the length n of the padding (not including the last byte)
– all padding bytes have the value n
– examples for correct padding: 0, 11, 222, 3333, …

verification of TLS padding:
– if the last byte is n, then verify if the last n+1 bytes are all n

EE

P1

C1

K

+

EE

P2

C2

K

+

EE

P3

C3

K

+

EE

PN

CN

K

+IV CN-1

…

pa
dd

in
g

pa
d.

 le
n.

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

44© Levente Buttyán

Side channel

TLS record message format

send a random message to a TLS server
the server will drop the message with overwhelming probability
– either the padding is incorrect (the server responds with a

DECRYPTION_FAILED alert)
– or the MAC is incorrect with very high probability (the server responds

with BAD_RECORD_MAC alert)
if the response is BAD_RECORD_MAC, then the padding was correct

we get 1 bit of information !

p.lenpadding

application data

MAC

type version length

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

23

45© Levente Buttyán

Last byte(s) oracle

assume we have an encrypted block y1y2…y8 = EK(x1x2…x8)
we want to compute x8 (the last byte of x)
idea:
1. choose a random block r1r2…r8; let i = 0
2. send r1r2…r7(r8⊕i)y1y2…y8 to the server (oracle)
3. if there’s a padding error, then increment i and go back to step 2
4. if there’s no padding error, then r⊕x ends with 0 or 11 or 222 …

• the most likely is that (r8⊕i)⊕x8 = 0, and hence x8 = r8⊕i

DK
DK

r1r2…r7(r8⊕i)

garbage

K

+

DK
DK

y1y2…y8

K

+IV
x1x2…x8

(r1⊕x1)(r2⊕x2)…(r8⊕i⊕x8)

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

46© Levente Buttyán

Last byte(s) oracle

assume we get that x⊕r has a correct padding, but we don’t
know if it is 0 or 11 or 222 …
algorithm:

1. let j = 1
2. change rj and send r1r2…r8y1y2…y8 to the server again
3. if the padding is still correct then the j-th byte was not a padding

byte; increment j and go back to step 2
4. if the padding becomes incorrect then the j-th byte was the first

padding byte; xj ⊕ rj|xj+1 ⊕ rj+1 | … | x8 ⊕ r8 = (8-j) |…| (8-j) and hence
xj xj+1 … x8 = rj⊕(8-j) rj+1⊕(8-j) … r8⊕(8-j)

x = DE AD BE EF DE AD BE EF
r = 01 23 45 67 DD AE BD EC
r⊕x = DF 8E FB 88 03 03 03 03
j r r⊕x padding
1 00 23 45 67 DD AE BD EC DE 8E FB 88 03 03 03 03 OK
2 00 22 45 67 DD AE BD EC DE 8F FB 88 03 03 03 03 OK
3 00 22 44 67 DD AE BD EC DE 8F FA 88 03 03 03 03 OK
4 00 22 44 66 DD AE BD EC DE 8F FA 89 03 03 03 03 OK
5 00 22 44 66 DC AE BD EC DE 8F FA 89 02 03 03 03 ERROR
x5 x6 x7 x8 = DD⊕03 AE⊕03 BD⊕03 EC⊕03 = DE AD BE EF

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

24

47© Levente Buttyán

Block decryption oracle

assume we have an encrypted block y1y2…y8 = EK(x1x2…x8) and we know
the value of xjxj+1…x8 (using the last byte(s) oracle)
we want to compute xj-1
algorithm:

1. choose a random block r1r2…r8 such that
rj = xj⊕(9-j); rj+1 = xj+1⊕(9-j); … r8 = x8⊕(9-j);

2. let i = 0
3. send r1r2…rj-2(rj-1⊕i)rj…r8y1y2…y8 to the server (oracle)
4. if there’s a padding error then increment i and go back to step 3
5. if there’s no padding error then xj-1⊕rj-1⊕i = 9-j and hence

xj-1 = rj-1⊕i⊕(9-j)

x = DE AD BE EF DE AD BE EF
r = 01 23 45 67 DA A9 BA EB
r⊕x = DF 8E FB 88 04 04 04 04
i r r⊕x padding
0 01 23 45 67 DA A9 BA EB DF 8E FB 88 04 04 04 04 ERROR
1 01 23 45 66 DA A9 BA EB DF 8E FB 89 04 04 04 04 ERROR
… … … …
140 01 23 45 EB DA A9 BA EB DF 8E FB 04 04 04 04 04 OK

x4 = EB⊕04 = EF

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

48© Levente Buttyán

Decryption oracle

assume we have a CBC encrypted message (C1, C2, …, CN) where
– C1 = EK(P1⊕IV)
– Ci = EK(Pi⊕Ci-1) (for 1 < i < N)
– CN = EK([PN|pad|plen]⊕CN-1)

we want to compute P1, P2, … PN

algorithm:
– decrypt CN using the block decryption oracle and XOR the result

to CN-1; you get PN|pad|plen
– decrypt Ci using the block decryption oracle and XOR the result to

Ci-1; you get Pi
– decrypt C1 using the block decryption oracle and XOR the result to

IV; you get P1 (if IV is secret you cannot get P1)

complexity of the whole attack:
on average we need only ½*256*8*N = 1024*N oracle calls !

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

25

49© Levente Buttyán

Application

vulnerable protocols: SSL, TLS, WTLS, IPsec, …
some notes:
– problems (and solutions) with TLS

• alert messages are encrypted BAD_RECORD_MAC and
DECRYPTION_FAILED cannot be distinguished

– measure timing between oracle call and oracle response
– BAD_RECORD_MAC takes more time than DECRYPTION_FAILED

• BAD_RECORD_MAC and DECRYPTION_FAILED are fatal errors
connection is closed after one oracle call

– a password can still be broken if it is sent periodically to a server using
TLS (a different session is used each time the password is sent)

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

50© Levente Buttyán

Example: IMAP over TLS

Outlook Express checks for new mail on the server periodically (every
5 minutes)
each time the same password is sent for every folder
XXXX LOGIN “username” “password”<0D><0A>
it is possible to uncover the password using the attack as follows:

client man-in-the-middle server

X X X X L O G
I N b u t t y
a n k i s k a
c s a

DECRYPTION_FAILED
DECRYPTION_FAILED

∆t

r1 r2 r3 r4 r5 r6 r7 r8
a n k i s k a

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

26

51© Levente Buttyán

Fixes

randomize response time after an error occurred (measuring
timing of alert messages won’t work)
use random padding bytes
put the padding before the MAC !

A
 s

ec
ur

it
y

fl
aw

 i
nd

uc
ed

 b
y

CB
C

pa
dd

in
g

