
1

Anonymous communications:
Crowds and Tor

2© Levente Buttyán

Basic concepts

What do we want to hide?
– sender anonymity

• attacker cannot determine who the sender of a particular
message is

– receiver anonymity
• attacker cannot determine who the intended receiver of a

particular message is
– unlinkability

• attacker may determine senders and receivers but not the
associations between them (attacker doesn’t know who
communicates with whom)

From whom do we want to hide this?
– external attackers

• local eavesdropper (sniffing on a particular link (e.g., LAN))
• global eavesdropper (observing traffic in the whole network)

– internal attackers
• (colluding) compromised system elements (e.g., routers)

– communication partner

2

3© Levente Buttyán

Anonymizing proxy

application level proxy that relays messages back and
forth between a user and a service provider
properties:
– ensures only sender anonymity with respect to the

communicating partner (service provider does not know
who the real user is)

– a local eavesdropper near the proxy and a global
eavesdropper can see both the sender and the receiver
information

– proxy needs to be trusted for not leaking information (it
may be coerced by law enforcement agencies!)

– even if the communication between the user and the proxy,
as well as between the proxy and the server is encrypted, a
naïve implementation would have the same properties
(weaknesses)

4© Levente Buttyán

A better idea: MIX (by D. Chaum)

a MIX is a proxy that relays messages between communicating
partners such that it

– changes encoding of messages
• { r, m }KMIX MIX m

where m is the message, r is a random number, and KMIX is the MIX’s
public key

– batches incoming messages before outputting them
– changes order of messages when outputting them
– (may output dummy messages)

properties:
– sender anonymity w.r.t. communication partner
– unlinkability w.r.t. global (and hence local) eavesdroppers
– the MIX still needs to be trusted
– how about reply messages ???

MIXMIX

3

5© Levente Buttyán

MIX cascade

defense against colluding compromised MIXes
– if a single MIX behaves correctly, unlinkability is still

achieved

MIXMIXMIXMIXMIXMIX

6© Levente Buttyán

Return addresses

a return address is an iteratively encrypted message, where
layer i is encrypted with the public key of the i-th MIX on the
return path and contains

– the identifier of the next MIX on the return path
– a secret key to be used for encrypting the content of the reply
– layer i-1 of the return address

the user pre-determines the return path and pre-computes the
return address, which is sent to the receiver in the body of the
(forward) message
the return address is attached to the reply message
each MIX on the return path decodes the next layer of the
return address, encrypts the reply with the secret key found,
and forwards the reply to the next MIX on the return path
the user decrypts the reply with the secret keys iteratively

example:
– return address attached to the reply M:

MIX3, {MIX2, K3, {MIX1, K2, {SRC, K1, -}Kmix1 }Kmix2 }Kmix3– MIX3 does the following:
• decodes the return address and sees that the next MIX is MIX2
• encrypts M with K3 (result is M’)
• sends M’ with MIX2, {MIX1, K2, {SRC, K1, -}Kmix1 }Kmix2 , PADDING attached

4

7© Levente Buttyán

Tor

low-latency (real-time) mix-based anonymous
communication service

tries to provide unlinkability of senders and receivers
against an adversary who can
– observe some fraction of the network traffic
– generate, modify, delete, or delay traffic
– compromise some fraction of the participating routers

does not try to provide unlinkability with respect to a
global observer
– end-to-end traffic confirmation attacks are possible

8© Levente Buttyán

The Tor network

the Tor network is an overlay network consisting of
onion routers (OR)
ORs are user-level processes without special privileges
operated by volunteers in the Internet
each OR maintains a TLS connection to all other ORs
– a few special directory servers keep track of the ORs in the

network
– each OR has a descriptor (keys, address, bandwidth, exit

policy, etc.)
each user runs an onion proxy (OP) locally
OPs establish virtual circuits across the Tor network, and
they multiplex TCP streams coming from applications
over those virtual circuits
the last OR in a circuit connects to the requested
destination and behaves as if it was the originator of the
stream

5

9© Levente Buttyán

TLS connections

The Tor network illustrated

OR

OPAppl

Appl
circuit TCP stream

destination

initiator

10© Levente Buttyán

data within the Tor network are carried in fixed sized
cells (512 bytes)
cell types
– control cells

• used to manage (set up and destroy) circuits

– relay cells
• used to manage (extend and truncate) circuits, to manage (open

and close) streams, and to carry end-to-end stream data

Cells

CircID

CircID Rly StreamID CmdDigest Length

Cmd

2 1 2 6 2 1 498

2 1 509

DATA

DATA

6

11© Levente Buttyán

Setting up a circuit

circuits are shared by multiple TCP streams
they are established in the background

– OPs can recover from failed circuit creation attempts without
harming user experience

OPs rotate to a new circuit once a minute

a circuit is established incrementally, in a “telescoping” manner
– a circuit is established to the first OR on the selected path by

setting up a shared key between the OP and that OR
– this circuit is extended to the next OR by setting up a shared key

with that OR; this already uses the circuit established in the
previous step

– and so on…

OROP OR OR

12© Levente Buttyán

Establishment of shared keys

Diffie-Hellman based protocol:

OP OR: EPK_OR(gx)
OR OP: gy | H(K | “handshake”)

where K is the established key gxy

properties:
– unilateral entity authentication (OP knows that it is talking to OR,

but not vice versa)
– unilateral key authentication (OP knows that only OR knows the

key)
– key freshness (due to the fresh DH contributions of the parties)
– perfect forward secrecy

• (assuming that OR deletes the shared key K when it is no longer used)
• if OR is later compromised, it cannot be used to decrypt old (recorded)

traffic

7

13© Levente Buttyán

Relaying cells on circuits

application data is sent in relay cells
OP encrypts the cell iteratively with all the keys that it shares
with the ORs on the path (onion-like layered encryption)
each OR peals off one layer of encryption
last OR sends cleartext data to the destination
on the way back, each OR encrypts the cell (adds one layer),
and the OP removes all encryptions
AES is used in CTR mode (stream cipher) encryption does not
change the length

14© Levente Buttyán

Opening and closing streams

opening:
– the TCP connection request from the application is re-

directed to the local OP (via SOCKS)
– OP chooses an open circuit (the newest one), and an

appropriate OR to be the exit node (usually the last OR, but
maybe another due to exit policy conflicts)

– OP opens the stream by sending a “relay begin” cell to the
exit OR

– the exit OR connects to the given destination host, and
responds with a “relay connected” cell

– the OP informs the application (via SOCKS) that it is now
ready to accept the TCP stream

– OP receives the TCP stream, packages it into “relay data”
cells, and sends those cells through the circuit

closing:
– OP or exit OR sends a “relay end” cell to the other party,

which responds with its own “relay end” cell

8

15© Levente Buttyán

Operation illustrated

C1, Create, E(gX1)

C1, Relay, {…, Extend, OR2, E(gX2)}K1

C1, Relay, {{…, Begin, website}K2}K1

C1, Relay, {{…, Data, “HTTP Get”}K2}K1

C1, Created, gY1, H(K1)

C1, Relay, {…, Extended, gY2, H(K2)}K1

C1, Relay, {{…, Connected}K2}K1

C1, Relay, {{…, Data, “HTTP…”}K2}K1

C2, Create, E(gX2)

C2, Relay, {…, Begin, website}K2

C2, Relay, {…, Data, “HTTP Get”}K2

C2, Created, gY2, H(K2)

C2, Relay, {…, Connected}K2

C2, Relay, {…, Data, “HTTP …”}K2

TCP
handshake

HTTP Get

HTTP …

OP OR1 OR2 website

16© Levente Buttyán

Integrity checking
ORs are connected through TLS connections external adversaries
cannot modify or forge cells

attacks from internal adversaries (compromised ORs) are detected by
checking the digest field in the cells

digest is verified by the exit OR
– in fact, correct digest determines who is the exit OR (leaky-pipe circuits)

when OP establishes a shared key with an OR in a circuit, they both
initialize a SHA-1 digest with a key derived from the shared key

each time one party creates a relay cell (intended to the other party), it
adds the content of the new cell to the digest, and puts the first few
bytes of the resulting digest value into the digest field of the cell

current digest content of a new cell

content of a new cell
header

digest field

HH

new digest

9

17© Levente Buttyán

Leaky-pipe mechanism

any OR in the circuit can be chosen as the exit point of a
stream
digest field is computed with the key shared with the chosen
exit OR
layered encryption scrambles the digest field (too)
when the cell arrives to the chosen exit OR, all layers of
encryption are pealed off, and the digest verifies correctly
this signals to the OR that it is the exit point

StreamID CmdDigest LengthCircID Rly

2 1 2 6 2 1 498

DATA

OR3 (exit)

OR2

OR1

18© Levente Buttyán

Exit policies

hackers can launch their attacks via the Tor network
– no easy way to identify the real origin of the attacks
– exit nodes can be accused
– this can discourage volunteers to participate in the Tor

network
– fewer ORs means lower level of anonymity

each OR has an exit policy
– specifies to which external addresses and ports the node

will connect
– examples:

• open exit – such nodes will connect anywhere
• middleman – such nodes only relay traffic to other Tor nodes
• private exit – only connect to the local host or network
• restricted exit – prevent access to certain abuse-prone

addresses and services (e.g., SMTP)

10

19© Levente Buttyán

Rendez-vous points and hidden services

renedez-vous point enable responder anonymity (one can offer
a TCP-based service without revealing his IP address to the
world)
the server’s OP chooses some ORs as introduction points and
advertises them on an anonymous lookup service
the OP builds a circuit to each of these introduction points
the client learns about the service out-of-band
the client’s OP chooses an OR as the rendez-vous point
the OP builds a circuit to the rendez-vous point, and gives it a
random rendez-vous cookie
the client OP builds a circuit to one of the introduction points,
opens an anonymous stream to the server, and sends the
cookie
the server OP builds a circuit to the given rendez-vous point
and sends the cookie
the rendez-vous point verifies the cookie and connects the
client circuit to the server circuit
the client establishes an anonymous stream through the circuit
and uses the anonymous service

20© Levente Buttyán

Rendez-vous point illustrated

TLS connections

OR

OPAppl

Appl
hidden service

initiator

OP
introduction point

introduction point
rendez-vous point

(cookie)

cookie

cookie

11

21© Levente Buttyán

Some attacks

end-to-end timing (or size) correlation
– an attacker watching traffic patterns at the initiator and the

responder will be able to confirm the correspondence with high
probability

– it was not the goal of Tor to prevent this

website fingerprinting
– an attacker can build up a database containing files sizes and

access patterns for targeted websites
– he can later confirm a user’s connection to a given website by

observing the traffic at the user’s side and consulting the database
– in case of Tor, granularity of fingerprinting is limited by the cell

size

tagging attacks
– an attacker can “tag” a cell by altering it, and observing where the

garbled content comes out of the network
– integrity protection of cells prevent this

22© Levente Buttyán

Crowds

a crowd is a collection of users formed dynamically
each user runs a process called jondo on his computer
when the jondo is started it contacts a server called blender to
request admittance to the crowd
if admitted, the blender reports the current membership of the
crowd and sends information necessary to join the crowd
(keys)
the user sets his browser to use his jondo as a web proxy
when the jondo receives the first request from the browser, it
initiates the establishment of a random path of jondos in the
crowd

– the jondo picks a jondo (possibly itself) in the crowd at random,
and forwards the request to it (after sanitizing it)

– when this jondo receives the request it forwards it with probability
pf (to a randomly selected jondo again) or submits the request to
the destination server with probability 1-pf

subsequent requests follow the same path
the server replies traverse the same path (in reverse direction)
communication between jondos is encrypted

12

23© Levente Buttyán

Examples

serverscrowd

24© Levente Buttyán

Degrees of anonymity

beyond suspicion:
– attacker can see evidence of a sent message, but …
– the sender appears no more likely to be the originator than any

other potential sender in the system

probable innocence:
– the sender may be more likely the originator than any other

potential sender, but
– the sender appears no more likely to be the originator than to not

be the originator

possible innocence:
– the sender appears more likely to be the originator than to not be

the originator, but
– there’s still a non-trivial probability that the originator is someone

else

absolute
privacy

beyond
suspicion

probable
innocence

possible
innocence

exposed provably
exposed

13

25© Levente Buttyán

Types of attackers

local eavesdropper
– can observe communication to and from the users computer

end server
– the web server to which the transaction is directed

collaborating crowd members
– crowd members that can pool their information and deviate

from the protocol

26© Levente Buttyán

Security analysis – local eavesdropper

a local eavesdropper can see that the user originated a request
– it can observe an outgoing message without an incoming one
– sender is exposed

however, he typically cannot see the target of the request
– requests are encrypted unless they are submitted to the target

server
– if request is encrypted, each end-server appears for the attacker

equally likely to be the target of the request beyond suspicion
anonymity

– if the user’s own jondo submits the request, then the target is
exposed; the probability of this is 1/n where n is the size of the
crowd (see next slide)

– Pr{ receiver / beyond suspicion } =
Pr{ local eavesdropper sees only encrypted request } = 1 – 1/n

1 as n infinity

14

27© Levente Buttyán

Security analysis – local eavesdropper

α – originator of request
ω – jondo that submits request to end server

Pr{ω = x | α = x} = ?

Pr{ x x SRV } = (1/n)(1-pf)
Pr{ x i x SRV } = Σi (1/n)pf(1/n)(1-pf) = (1/n)pf(1-pf)
Pr{ x i j x SRV } = ΣiΣj (1/n)pf(1/n)pf(1/n)(1-pf) =
(1/n)pf

2(1-pf)
…

Pr{ω = x | α = x} =
Pr{ x * x SRV } =
(1/n)(1-pf)Σk=0

∞pf
k = (1/n)(1-pf)(1/(1-pf)) = 1/n

28© Levente Buttyán

Security analysis – end server

end-server is the target of the request
– receiver anonymity is not possible

anonymity for the originator is strong
– user’s jondo always forwards the request to a random

member of the crowd (~ hides user identity with a one-time
pad)
the end-server receives the request from any crowd
member with equal probability

– from the end-server perspective, each user is equally likely
to be the originator beyond suspicion sender anonymity
is guaranteed

15

29© Levente Buttyán

Security analysis – end server

Pr{ α = x | ω = y} = ?

Pr{ α = x, ω = y } / Pr{ ω = y } =
Pr{ ω = y | α = x }Pr{ α = x } / Σz Pr{ ω = y | α = z }Pr{ α = z } =

// Pr{ α = z } = 1/n
Pr{ ω = y | α = x } / Σz Pr{ ω = y | α = z } =
Pr{ x * y } / n Pr{ z * y } =
(1/n) / n(1/n) = 1/n

if user’s jondo could submit the request to the server immediately:
Pr{ ω = y | α = x } = ?
if y = x, then Pr{ x SRV } + Pr{ x * x SRV } = (1-pf) + pf(1/n)
if y ≠ x, then Pr{ x * y SRV } = pf(1/n)

Pr{ α = x | ω = y} = Pr{ ω = y | α = x } / Σz Pr{ ω = y | α = z } =
Pr{ ω = y | α = x } =

if x = y, then (1-pf) + pf(1/n)
otherwise, pf(1/n)

sender is more likely to be the jondo from which the request was
received, than any other jondo !

30© Levente Buttyán

Security analysis – collaborating jondos

ωC – jondo from which first collaborator on the path receives
the request

Pr{ ωC = y | α = x } =
if y = x, then Pr{ x C } + Pr{ x * x C }
if y ≠ x, then Pr{ x * y C }

Pr{ α = x | ωC = y } < Pr{ α = y | ωC = y }

16

31© Levente Buttyán

Security analysis – collaborating jondos

notation
– Hi – the event that the first collaborator on the path is in the

i-th position
– Hi+ = Hi v Hi+1 v Hi+2 v …
– I – the event that the first collaborator on the path is

immediately preceded on the path by the initiator

definition
– the path initiator has probable innocence if P(I | H1+) ≤ 1/2

theorem
– if n ≥ (c + 1)pf / (pf – 1/2), then the path initiator has

probable innocence against c collaborators

in addition, Pr{ absolute privacy } 1 as n infinity
both for sender and receiver anonymity

32© Levente Buttyán

Security analysis – collaborating jondos

observation: I implies H1+

Pr{ I | H1+ } = Pr{ I, H1+} / Pr{H1+} = Pr{ I } / Pr{ H1+ }

Pr{ Hk } = [pf (n-c)/n]k-1 (c/n)
Pr{ H1+ } = Σk=1

∞ Pr{ Hk } = (c/n)(1 – pf (n-c)/n)-1 = c / (n
– (n-c)pf)
Pr{ I } = Pr{ x C } + Pr{ x * x C } =

= (c/n) + [Σk=0
∞ (pf (n-c)/n)k] (1/n) pf (c/n) =

= (c/n) + (c/n) pf / (n – (n-c)pf)

Pr{ I | H1+ } = (n – pf(n-c-1))/n ≤ ½
n ≥ (c + 1)pf / (pf – 1/2)

17

33© Levente Buttyán

Overview of security offered by Crowds

N/Abeyond suspicionend server

Pr{ absolute privacy }
1

probable innocence
Pr{ absolute privacy }

1

c collaborating
crowd members

Pr{ beyond suspicion }
1

exposedlocal
eavesdropper

receiver
anonymity

sender anonymityattacker

34© Levente Buttyán

Timing attacks

HTML pages can include URLs that are automatically
fetched by the browser (e.g., images)
first collaborating jondo on the path can measure the
time between seeing a page and seeing a subsequent
automatic request
if the duration is short, then the predecessor on the
route is likely to be the initiator
solution:
– last jondo on the path parses HTML pages and requests the

URLs that the browser would request automatically
– user’s jondo on the path returns HTML page, doesn’t

forward automatic requests, rather waits for the last jondo
to supply the results

