Non-repudiation protocols

Outline and objective

- outline
 - introduction, definitions
 - classification of non-repudiation protocols
 - example protocols

- the objective is to understand
 - what does non-repudiation mean?
 - what type of non-repudiation protocols do exist?
 - what are the pros and cons of the various approaches?

- useful reading:
 - literature on “fair exchange”
Introduction

- in many applications, it is essential to ensure that participants of a transaction cannot deny having participated in the transaction

- the problem can be traced back to the problem of non-repudiation of message origin and message delivery
 - non-repudiation of message origin
 - sender of the message cannot deny that he sent the message
 - non-repudiation of message delivery (receipt)
 - receiver of a message cannot deny that he received the message

- ingredients of solutions
 - digital signatures, ...
 - protocols that ensure fairness
 - proof of message origin is provided to the receiver only if a proof of message delivery is available to the sender, and vice versa

Fairness

- assume that A wants to send a message m to B

- (strong) fairness:
 at the end of the protocol, either
 - B gets m and a non-repudiation of origin evidence for m, and
 - A gets a non-repudiation of delivery evidence for m
 or none of them get anything useful

- an alternative, more precise definition:
 if both parties are rational, then at the end of the protocol, the following conditions hold
 - if A is honest, then B does not receive anything useful, unless A receives a non-repudiation of delivery evidence for m
 - if B is honest, then A does not receive anything useful, unless B receives m and a non-repudiation of origin for m
More definitions

- **weak fairness:**
 if an honest party does not receive its evidence, while the other party does, then the first party receives a proof of this fact

- **probabilistic fairness:**
 a protocol provides \(\varepsilon\)-fairness, if it guarantees fairness with probability \(\varepsilon\)

- **timeliness:**
 - all honest parties can reach, in a finite amount of time, a point in the protocol where they can stop the protocol while preserving fairness

- **communication models:**
 - unreliable channel: messages can be lost
 - resilient channel: all messages are eventually delivered (after a finite, but unknown amount of time)
 - reliable (operational) channel: all messages are delivered within a known, constant amount of time (there’s an upper bound on the message delivery delay)

Types of non-repudiation protocols

- **no TTP (Trusted Third Party)**

- **with TTP**
 - on-line TTP
 - the TTP is involved in each run of the protocol
 - off-line TTP
 - the TTP is involved only if something goes wrong (a message is not received due to a communication error or some misbehavior)
 - we may assume that, most of the time, there won’t be any problems, so the protocol can be optimized (in terms of efficiency) for the faultless case (→ also called optimistic protocols)
A protocol with an on-line TTP

- **protocol:**
 1. $A \rightarrow \text{TTP} : E_{\text{TTP}}(A, B, m, \text{sig}_{A}(A, B, h(m)))$
 2. $\text{TTP} \rightarrow B : A, B, h(m), \text{sig}_{\text{TTP}}(A, B, h(m))$
 3. $B \rightarrow \text{TTP} : E_{\text{TTP}}(\text{sig}_{B}(A, B, h(m)))$
 4a. $\text{TTP} \rightarrow A : \text{sig}_{B}(A, B, h(m))$
 4b. $\text{TTP} \rightarrow B : m, \text{sig}_{A}(A, B, h(m))$

- **notes:**
 - NRO = $\text{sig}_{A}(A, B, h(m))$, NRR = $\text{sig}_{B}(A, B, h(m))$
 - $E_{\text{TTP}}(\)$ is used to prevent eavesdropping of m and the evidences
 - TTP is trusted for checking signatures and sending messages 4a and 4b simultaneously
 - fairness is based on this simultaneous transmission of 4a and 4b, but there are problems:
 - if channels are resilient, then it is unclear how long the TTP should wait for B’s response, and thus, how long A should wait for the TTP’s message (timeliness is not guaranteed)
 - the TTP may crash between sending 4a and sending 4b, and leave B in an unfair situation

Fixing the timeliness problem

- **protocol:**
 1. $A \rightarrow \text{TTP} : E_{\text{TTP}}(A, B, m, T, \text{NRO} = \text{sig}_{A}(A, B, h(m), T))$
 2. $\text{TTP} \rightarrow B : A, B, h(m), T, \text{sig}_{\text{TTP}}(A, B, h(m), T)$
 3. $B \rightarrow \text{TTP} : E_{\text{TTP}}(\text{NRR} = \text{sig}_{B}(A, B, h(m), T))$

 if TTP receives msg 3 before T:
 4. TTP publishes at T: A, B, h(m), T, m, NRO, NRR

 else:
 4’. TTP publishes at T: A, B, h(m), T, “ABORTED”

 5a. after T, A checks for the result of the protocol
 5b. after T, B checks for the result of the protocol

- **notes:**
 - the TTP can publish results by making them available through a server (e.g., through the web)
 - if TTP crashes before step 4, then no result will be available (for some time), but fairness is still preserved
 - in any case, A and B should continue polling the server until they receive some response (their evidences or the abort indication)
 - if channels are resilient, the protocol will end after a finite amount of time
Another variant (Zhou-Gollmann)

protocol:
 \[C = E_k(m) \text{ where } K \text{ is a random session key} \]
 1. \(A \to B \) : \(A, C, T, NRO_1 = \text{sig}_A(A, B, C, T) \)
 2. \(B \to A \) : \(B, NRR_1 = \text{sig}_B(A, B, C, T) \)
 3. \(A \to \text{TTP} \) : \(E_{\text{TTP}}(A, B, T, K, \text{sig}_A(A, B, T, K)) \)
 4. \(\text{TTP} \) publishes at \(T \) : \(A, B, T, K, NRO_2 = \text{sig}_{\text{TTP}}(A, B, T, K) \)
 5a. after \(T \), \(A \) tries to download \(NRO_2 \)
 5b. after \(T \), \(B \) tries to download \(NRO_2 \)

notes:
- \(NRO = NRO_1 + NRO_2 \)
- \(NRR = NRR_1 + NRO_2 \)
- \(\text{NROR}_2 \) means
 - as part of \(NRO \): \(K \) was sent by \(A \) before \(T \)
 - as part of \(NRR \): \(K \) was made available to \(B \) after \(T \)
- if, in step 5, \(NRO_2 \) is not on the server, then the downloading party can stop the protocol (in order to preserve fairness, the TTP should not ever publish \(NRO_2 \) after \(T \))

A protocol with an off-line TTP

main protocol:
 1. \(A \to B \) : \(A, B, \text{id}, E_k(m), E_{\text{TTP}}(K), NRO_1 = \text{sig}_A(\ldots) \)
 2. \(B \to A \) : \(A, B, \text{id}, NRR = \text{sig}_B(A, B, \text{id}, E_k(m), E_{\text{TTP}}(K)) \)
 3. \(A \to B \) : \(A, B, \text{id}, K, NRO_2 = \text{sig}_A(\ldots) \)
 - if \(B \) timeouts, then call the recovery protocol
 \(NRO = NRO_1 + NRO_2 \)

recovery protocol (only for \(B \)):
 1. \(B \to \text{TTP} \) : \(A, B, \text{id}, E_k(m), E_{\text{TTP}}(K), NRO_1, NRR \)
 2. \(\text{TTP} \to B \) : \(A, B, \text{id}, K, NRO_2' = \text{sig}_{\text{TTP}}(\ldots) \)
 3. \(\text{TTP} \to A \) : \(A, B, \text{id}, NRR \)
 \(NRO' = NRO_1 + NRO_2' \)

notes:
- if \(A \) does not send message 3, then \(B \) can invoke the recovery protocol to re-establish fairness
- \(B \) will then get \(NRO' = NRO \)
- \(B \) may start recovery without sending message 2 (and hence \(NRR \))
- that is why \(B \) must also provide \(NRR \) during recovery, which is then sent to \(A \)
- what if \(A \) sends \(E_{\text{TTP}}(K') \) in message 1?
A timeliness problem again

- A does not know when to stop if message 2 doesn’t arrive
 - if she stops, B may start the recovery protocol and obtain NRO’ (while A will no longer receive NRR)
 - so she should wait, but B may have indeed stopped the protocol, and A will wait forever

- a potential solution
 - an abort protocol that A can call any time to force termination

A protocol with an off-line TTP – revised

- main protocol:
 1. $A \rightarrow B : A, B, id, E_k(m), E_{TTP}(K), NRO1 = \text{sig}_A(A, B, id, E_k(m), E_{TTP}(K))$
 2. $B \rightarrow A : A, B, id, NRR1 = \text{sig}_B(A, B, id, E_k(m), E_{TTP}(K))$
 if A timeouts, then call the abort protocol
 3. $A \rightarrow B : A, B, id, K, NRO2 = \text{sig}_A(A, B, id, K)$
 if B timeouts, then call the recovery protocol
 4. $B \rightarrow A : A, B, id, NRR2 = \text{sig}_B(A, B, id, K)$
 if A timeouts, then call the recovery protocol

 $NRO = NRO1 + NRO2; \quad NRR = NRR1 + NRR2$

- abort protocol (only for A):
 1. $A \rightarrow TTP : A, B, id, \text{"PLEASE ABORT"}$
 if already aborted or recovered then stop, else aborted = TRUE and ...
 2. $TTP \rightarrow A : A, B, id, \text{"ABORTED"}, \text{sig}_{TTP}(...)$
 3. $TTP \rightarrow B : A, B, id, \text{"ABORTED"}, \text{sig}_{TTP}(...)$

- recovery protocol (for X in \{A, B\}):
 1. $X \rightarrow TTP : A, B, id, E_k(m), E_{TTP}(K), NRO1, NRR1$
 if already aborted or recovered then stop, else recovered = TRUE and ...
 2. $TTP \rightarrow A : A, B, id, NRR2' = \text{sig}_{TTP}(...); NRR1$
 3. $TTP \rightarrow B : A, B, id, K, NRO2' = \text{sig}_{TTP}(...)$
Properties

- **fairness:**
 - if B feels something is going wrong, then he can invoke the recovery protocol at any time after receiving message 1 (which is the starting point for B).
 - if A feels something is going wrong, then she can invoke the recovery protocol after receiving message 2.
 - before that, she can cancel the transaction by calling the abort protocol.
 - abort and recovery are mutually exclusive.
 - when A invoked the abort protocol, she shouldn’t continue the main protocol (even if B’s message arrives later).
 - B may misbehave (e.g., doesn’t send message 4), and A cannot call the recovery protocol anymore.
 - an abort evidence is not a proof that the transaction didn’t take place, because the abort protocol can be called after a successful run of the protocol.

- **timeliness**
 - at each point in the protocol both parties can force termination either by calling the recovery protocol or the abort protocol.

- **TTP is not transparent**
 - evidences produced in the protocol when TTP is used are different from those that are produced in the case when no TTP is used.

Protocols with no TTP

- **strong fairness cannot be achieved without a TTP**
 - assume that P is a protocol that
 - does not use a TTP
 - achieves strong fairness
 - and uses minimum number n of messages.
 - assume w.l.o.g. that the last message of P is sent by A to B.
 - before sending this last message A has its evidences, because she does not receive anything else in the protocol.
 - on the other hand, before receiving this last message, B still needs something, otherwise the last message would be useless, and we could have a fair non-repudiation protocol P’ with n-1 messages.
 - therefore, if A does not send the last message, then B will suffer a disadvantage, and hence, P cannot be fair.

- protocols with no TTP try to achieve weaker forms of fairness (e.g., probabilistic fairness).
A protocol with no TTP providing probabilistic fairness

- protocol:
 - $C = E_K(m)$ where K is a random key
 - $1. A \rightarrow B: A, B, id, C, \text{NRO}_0 = \text{sig}_A(A, B, id, C)$
 - $2. B \rightarrow A: A, B, id, \text{NRR}_0 = \text{sig}_B(A, B, id, C)$
 - with prob. ε, $r_1 = K$, and with prob. $1-\varepsilon$, r_1 is a random number
 - $3. A \rightarrow B: A, B, id, 1, r_1, \text{NRO}_1 = \text{sig}_A(A, B, id, 1, r_1)$
 - $4. B \rightarrow A: A, B, id, \text{NRR}_1 = \text{sig}_B(A, B, id, 1, r_1)$
 - ... with prob. ε, $r_n = K$, and with prob. $1-\varepsilon$, r_n is a random number
 - $2n+1. A \rightarrow B: A, B, id, n, r_n, \text{NRO}_n = \text{sig}_A(A, B, id, n, r_n)$
 - $2n+2. B \rightarrow A: A, B, id, \text{NRR}_n = \text{sig}_B(A, B, id, n, r_n)$

- $\text{NRO} = \text{NRO}_0 + \text{NRO}_n; \text{NRR} = \text{NRR}_0 + \text{NRR}_n$

- important assumption:
 - decryption of C takes longer time than the timeout set by A in each step \(\rightarrow \) if B tries to test r_i, then A timeouts and stops the protocol

Non-repudiation protocols

Brief analysis

- fairness for B:
 - if A has NRR_n, then B must have NRO_n (given that B is honest)

- fairness for A:
 - in each step of the protocol, B may decide to stop
 - he gets in advantageous situation (B has NRO_n, but A doesn’t have NRR_n) with prob. ε
 - B‘s decision is wrong with prob. $1-\varepsilon$, and in this case, fairness is preserved

- timeliness:
 - it is safe to stop for B at any time in the protocol
 - but how long should A wait for B’s last message?
 - if A stops prematurely, then she may end up in a disadvantageous state
 - A should wait for B’s response, but it may not have been sent by B

- overhead problem
 - parameter ε should be small for better fairness
 - the smaller ε is, the larger n is \(\rightarrow \) good fairness results in high overhead
Another approach with no TTP – first attempt

- A wants to send message m to B
- \(\text{NRO} = \text{sig}_A(A, B, h(m)), \text{NRR} = \text{sig}_B(A, B, h(m)) \)

protocol:
- A generates a random key \(k_A \) and encrypts m and NRO \(\rightarrow \{m, \text{NRO}\}_{k_A} \)
- A sends \(h(m) \) and \(\{m, \text{NRO}\}_{k_A} \) to B
- B generates a random key \(k_B \) and encrypts NRR \(\rightarrow \{\text{NRR}\}_{k_B} \)
- B sends \(\{\text{NRR}\}_{k_B} \) to A
- A and B exchange \(k_A \) and \(k_B \) bit by bit:
 - in the i-th step A sends \(k_A[i] \) and B sends \(K_B[i] \)
 - at the end, both A and B decrypt the encrypted items and check them

- problem: what if a party sends random bits instead of the real key?
- each party must be able to verify that the other really sends the bits of his/her key!

A useful building block: bit commitment

- a bit commitment protocol ensures that A can commit to a binary value b in such a way that
 - B cannot learn the committed value until A opens the commitment
 - A cannot later change the committed value and claim that she has committed to \(b' \) (instead of b)

- an example based on a collision resistant, one-way hash function \(H \):
 - A wants to commit to a bit b
 - A generates a random number \(r \) (of sufficient length)
 - A computes \(c = H(r \mid b) \)
 - A sends c to B
 - B cannot compute b, because \(H \) is one-way
 - when A wants to open the commitment, she sends \((r, b) \) to B
 - B verifies that \(H(r \mid b) = c \)
 - in order to cheat, A should be able to find \(r' \) such that \(H(r' \mid b') = H(r \mid b) \)
 - this is not possible, because \(H \) is collision resistant
Second attempt

- A sends to B:

 \[[A, B, h(m), \{m, NRO\}_{k_A}, C_A, \text{Sig}_A(\ldots)] \]

 where \(C_A = (H(p_1 | k_A[1]), \ldots, H(p_L | k_A[L])) \), \(L \) is the bit length of \(k_A \)
 and \(p_i \) are random numbers

- B sends to A:

 \[[B, A, h(m), \{NRR\}_{k_B}, C_B, \text{Sig}_B(\ldots)] \]

 where \(C_B = (H(q_1 | k_B[1]), \ldots, H(q_L | k_B[L])) \), and \(q_i \) are random numbers

- A and B open their commitments one after the other:
 - A sends \((p_i, k_A[i]) \) and B sends \((q_i, k_B[i]) \)
 - A and B verify that they received the committed bits

- at the end, both A and B decrypt the encrypted items and check them

Brief analysis

- let us assume that A is honest and B stops after the \(t \)-th step

- A has

 \[[B, A, h(m), \text{enc}, C_B, \text{Sig}_B(\ldots)] \]

 \((q_1, k_B[1]), \ldots, (q_t, k_B[t]) \)

- if it is infeasible for A to determine the rest of \(k_B \) (\(t \) is too small), then it is
 infeasible for B as well to determine the rest of \(k_A \)

- assume that \(t \) is large enough, and A tries to determine the rest of \(k_B \)
 - she tries to decrypt \(\text{enc} \) with \(k[1..t] | k[t+1..L] \) for all possible values of
 \(k[t+1..L] \)
 - she may succeed
 - B needs almost the same amount of effort to succeed
 - if she doesn’t succeed then she has a proof that B has cheated
 - \(k[1..t] \) are the bits committed by B
 - there’s no \(k[t+1..L] \) such that decrypting \(\text{enc} \) with \(k[1..t] | k[t+1..L] \) results in \(\text{NRR} \)
 - B’s signature proves that B provided false information to A
Some conclusions

- two important requirements for non-repudiation protocols are fairness and timeliness
- there are many subtle details to consider during the design (formal methods?)

- types:
 - with on-line TTP
 - protocols of this kind are conceptually simple, but
 - TTP is a bottleneck and a single point of failure
 - with off-line TTP
 - (full) protocol is complex, but main protocol can be simple
 - less demand on the TTP, efficient in case of no faults
 - with no TTP
 - true fairness cannot be achieved
 - lot of overhead
 - strong assumptions (e.g., equal computing capacity of the parties)

- relation to fair exchange (of general items)
 - can be considered as subclass of fair exchange protocols