
1

Cryptographic primitives

-- block ciphers
-- stream ciphers
-- public-key encryption schemes
-- hash functions
-- MAC functions
-- digital signature schemes

(c) Levente Buttyán (buttyan@crysys.hu)

Cryptographic primitives 2

Block ciphers

a block cipher is a function

E: {0, 1}n x {0, 1}k {0, 1}n,

such that for each K ∈ {0, 1}k, E(X, K) = EK(X)
– is an invertible mapping from {0, 1}n to {0, 1}n (EK

-1(Y) = DK(Y))
– cannot be efficiently distinguished from a random permutation

terminology
– X – plaintext block
– Y – ciphertext block
– E – encryption/coding alg.
– D – decryption/decoding alg.
– K – key
– K = {0, 1}k – key space

E

X

Y

K

2

Cryptographic primitives 3

Another view on block ciphers

a block cipher is a family of permutations (where each member is
defined by a key)

these permutations “look random”
– unpredictability of the output (even

parts of it, and even when some input-
output pairs are known)

– avalanche effect (when changing one
bit in the input, each output bit
changes with probability ~1/2)

permutation
defined by K1

po
ss

ib
le

 c
ip

he
rt

ex
ts

po
ss

ib
le

 p
la

in
te

xt
s

permutation
defined by K2

po
ss

ib
le

 c
ip

he
rt

ex
ts

po
ss

ib
le

 p
la

in
te

xt
s

…

EX ?

K

Cryptographic primitives 4

Applications of block ciphers

primarily:
– encryption of data (of any size) confidentiality services

can also be used as a building block for
– MAC functions integrity and message authentication services
– hash functions
– PRNGs (Pseudo-Random Number Generator)
– key-stream generators for stream ciphers

3

Cryptographic primitives 5

Some examples

many of them have been proposed and are in use
– AES (Rijndael), DES, RC5, Blowfish, Skipjack, IDEA, ...

how to choose?
– design assumptions vs. application requirements

• e.g.: is it optimized for hardware or software implementations, or can be used in
both

– efficiency
• speed
• memory size
• code size (or number of gates)

– security
• openness of specification (Kerckhoffs’ principle)
• key size
• algebraic properties
• complexity of best known attacks

– patent issues

Cryptographic primitives 6

Kerckhoffs’ principles

Auguste Kerckhoffs, La cryptographie militaire, Journal des
sciences militaires, Vol. IX, Janvier 1883.

see the principles on page 12 …

– Principle 2 says that it must be assumed that the encryption algorithm
is known to the “adversary”. In other words, the security of the system
cannot depend on the secrecy of the algorithm (security by obscurity).

– advantages of adherence to Kerckhoffs 2nd Principle:
• published designs undergo public scrutiny
• it is better if security flaws are revealed by “ethical hackers”
• secret algorithms are vulnerable to the reverse engineering of the code
• public designs allow for standards

– Principle 1 is also interesting: it says that a cipher must be practically,
if not mathematically, indecipherable.

4

Cryptographic primitives 7

Exhaustive key search attacks and the key size

given a small number of plaintext-ciphertext pairs encrypted under a key
K, K can be recovered by exhaustive key search with 2k-1 processing
complexity (expected number of operations)
– input: (X, Y), (X’, Y’), …
– progress through the entire key space

• for each trial key K’, decrypt Y
• if the result is not X, then throw away K’
• if the result is X, then check the other pairs (X’, Y’), …
• if K’ does not work for at least one pair, then throw away K’

– if K’ worked for all pairs (X, Y), (X’, Y’), …, then output K’ as the target key
– on average, the target key is found after searching half of the key space

if the plaintexts are known to contain redundancy, then even ciphertext-
only exhaustive key search is possible with a relatively small number of
ciphertexts

2k-1 must be sufficiently large

Cryptographic primitives 8

Large numbers

time until next ice age…………………………… 239 seconds
time until the sun goes nova…………………… 255 seconds
age of the planet………………………………… 255 seconds
age of the Universe……………………………… 259 seconds

number of atoms in the planet………………. 2170

number of atoms in the sun………………….. 2190

number of atoms in the galaxy………………. 2223

number of atoms in the Universe ……….….. 2265

(dark matter excluded)

volume of the universe………………………….. 2280 cm3

(source: Schneier, Applied Cryptography, 2nd ed., Wiley 1996)

5

Cryptographic primitives 9

Algebraic attacks

weaknesses in the algebraic structure of a block cipher may lead to
attacks that are substantially more efficient than the exhaustive key
search attack

attack models
– ciphertext-only attack
– known-plaintext attack
– (adaptive) chosen-plaintext attack

attack complexity measures
– data complexity

• expected number of input data units required for the attack
– storage complexity

• expected number of storage units required
– processing complexity

• expected number of “basic operations” required to process input data and/or fill
storage with data

• parallelization may reduce attack time but not processing complexity!

Cryptographic primitives 10

Examples for algebraic attacks

linear cryptanalysis (LC) against DES
– requires “only” ~243 known plaintext-ciphertext pairs
– could work in a ciphertext only model if plaintexts are redundant (e.g.,

contain parity bits)

differential cryptanalysis (DC) against DES
– requires “only” ~247 chosen plaintext-ciphertext pairs

anecdote:
– DC and LC was discovered in the early 90’s by academic researchers
– one of the designers of DES announced that they knew about DC

back in the 70’s and optimized the DES S-boxes against it
– it seems, however, that DES can be improved with respect to LC

(apparently the designers of DES were not aware of this attack at that
time)

6

Cryptographic primitives 11

Exercise

complementation property of DES:
Y = DESK(X) implies Y* = DESK*(X*)

where X* denotes the bitwise complement of X

How can this be used to reduce the complexity of exhaustive
key search from 255 to 254?

Cryptographic primitives 12

Solution

assume an attacker can mount a chosen-plaintext attack
the attacker chooses a plaintext X, and obtains Y1 = DESK(X)
and Y2 = DESK(X*)
by the complementation property, the attacker knows that
DESK*(X) = Y2*
the attacker then runs an exhaustive key search
– for each trial key K’, he computes Y’ = DESK’(X)

• if Y’ = Y1, then K’ is possibly the target key (should be further tested)
• if Y’ = Y2*, then K’* is possibly the target key (should be further tested)
• otherwise throw away both K’ and K’*

expected number of keys required before success is
reduced from 255 to 254

7

Cryptographic primitives 13

Stream ciphers

general model:

terminology:
– mi – plaintext character
– ci – ciphertext character
– zi – key-stream character
– K – key (seed)
– G – key-stream generator

application:
– encryption of data confidentiality services
– PRNGs (Pseudo-Random Number Generator)

examples:
– LFSR based (typically hardware), RC4 (software)

GK
zi

mi

ci

Cryptographic primitives 14

Synchronous stream ciphers

the key stream is generated independently of the plaintext and of the
ciphertext

needs synchronization between the sender and the receiver
– if a character is inserted into or deleted from the ciphertext stream then

synchronization is lost and the plaintext cannot be recovered
– additional techniques must be used to recover from loss of synch

no error propagation
– a ciphertext character that is modified during transmission affects only the

decryption of that character

K

zi

mi

ci

σ

f

g

G

8

Cryptographic primitives 15

Self-synchronizing stream ciphers

the key stream is generated as a function of a fixed number of previous
ciphertext characters

self-synchronizing
– since the size t of the shift register SR is fixed, a lost ciphertext character

affects only the decryption of the next t ciphertext characters

limited error propagation
– if a ciphertext character is modified, then decryption of the next t ciphertext

characters may be incorrect

ciphertext characters depend on all previous plaintext characters
– better diffusion of plaintext statistics

K

zi

mi

ci

SR g

G

Cryptographic primitives 16

More properties

stream ciphers are usually very efficient
– fast (especially in hardware)
– require small memory to store the internal state and the code of the

generation and update functions

the ciphertext always has the same length as the plaintext (in some block
encryption modes, the ciphertext is longer)

in case of synchronous stream ciphers, the large size of the effective
state space is important
– otherwise the key stream starts repeating
– ci..i+p + cj..j+p = (mi..i+p + z1..p) + (mj..j+p + z1..p) = mi..i+p + mj..j+p

synchronous stream ciphers do not provide any integrity protection !!!
– an attacker can make changes to selected ciphertext characters and know

exactly what effect these changes have on the plaintext
– the receiver may not notice these changes

9

Cryptographic primitives 17

The idea of public-key encryption

classical model of encryption

symmetric-key encryption: k = k’
– problem: how to setup the same key at the two ends?

asymmetric-key encryption: k != k’
– it is hard (computationally infeasible) to compute k’ from k
– k can be made public (public-key cryptography)
– anyone can send messages encrypted with k, only the intended receiver can

decrypt with k’
– instead of the secrecy of k, “only” its authenticity and integrity must be

ensured

E Dx
plaintext

k
encryption key

k’
decryption key

Ek(x)
ciphertext

Dk’ (Ek(x)) = x

attacker

Cryptographic primitives 18

Public-key encryption schemes

functions (algorithms) and terminology:
– key-pair generation function G() = (K+, K-)

K+ – public key
K- – private key

– encryption function E(K+, X) = Y
X – plaintext
Y – ciphertext

– decryption function D(K-, Y) = X

typically, the plaintext (and the ciphertext) consists of a few
hundred bits operation is similar to symmetric-key block
ciphers

examples: RSA, ElGamal

10

Cryptographic primitives 19

Security of public-key encryption schemes

security is usually related to the difficulty of some problems
that are widely believed to be hard to solve (i.e., for which no
polynomial time solution exists today), such as
– factoring:

given a positive integer N, find its prime factors
– computing discrete logarithm:

given a prime p, a generator g of Zp
*, and an element y in Zp

*, find the
integer x, 0 ≤ x ≤ p-2, such that gx mod p = y

sometimes it can even be rigorously proven that breaking
the encryption scheme would mean that there exist an
efficient solution to the related hard problem (reduction)
– although widely used practical schemes have no complete proofs

Cryptographic primitives 20

Efficiency considerations

hard problems are really hard only for large parameters
public-key encryption schemes use large number arithmetics, and hence,
they are several orders of magnitude slower than the best known
symmetric key ciphers (on the same platform)
to overcome this problem, the following hybrid approach is used in
practice:

public key
of the receiver

plaintext message

symmetric-key
cipher

(e.g., in CBC mode)

symmetric-key
cipher

(e.g., in CBC mode)

asymmetric-key
cipher

asymmetric-key
cipher

generate random
symmetric key

generate random
symmetric key

bulk encryption key

11

Cryptographic primitives 21

Semantic security

an adversary should not be able to choose two plaintexts x1
and x2 and later distinguish between the encryptions of
these messages
– note: symmetric-key block ciphers have this property
– the problem with public-key encryption is that the adversary can

compute the ciphertexts using the public key and trivially distinguish
between the encryptions of x1 and x2

the solution is probabilistic encryption
– computation of the ciphertext uses some random input even when

the same message is encrypted twice, the outputs will be different
– some public-key encryption schemes are probabilistic by design (e.g.,

ElGamal, Goldwasser-Micali)
– others need pre-formatting of messages which involves the addition

of some randomness (e.g., RSA uses PKCS #1 formatting)

Cryptographic primitives 22

Beyond semantic security

essentially, semantic security is only concerned with a passive attacker
– it ensures that observed ciphertexts leak no information about the

corresponding plaintexts

a strong active attack model is the chosen-ciphertext attack
– this means that the adversary has access to a decryption oracle, and he is

allowed to send to it any ciphertext except the target ciphertext (that the
adversary wants to decrypt)

– semantically secure schemes (e.g., ElGamal) may not be secure in this
model

the property that ensures resistance against chosen-ciphertext attacks is
non-malleability
– given a ciphertext, it is infeasible to generate another ciphertext such that the

corresponding plaintexts are related in a known manner

non-malleability can be achieved by plaintext-aware encryption
– e.g., RSA with version 2 of PKCS #1

12

Cryptographic primitives 23

Hash functions

a hash function is a function H: {0, 1}* {0, 1}n that maps arbitrary long
messages into a fixed length output

notation and terminology:
– x – (input) message
– y = H(x) – hash value, message digest, fingerprint

typical application:
– the hash value of a message can serve as a compact representative image

of the message (similar to fingerprints)
• H is a many-to-one mapping collisions are unavoidable
• however, finding collisions are very difficult (practically infeasable)

– increase the efficiency of digital signatures by signing the hash instead of the
message (expensive operation is performed on small data)

examples:
– MD5 and SHA-1

Cryptographic primitives 24

Desired properties of hash functions

ease of computation
– given an input x, the hash value H(x) of x is easy to compute

weak collision resistance (2nd preimage resistance)
– given an input x, it is computationally infeasible to find a second input x’ such

that H(x’) = H(x)

strong collision resistance (collision resistance)
– it is computationally infeasible to find any two distinct inputs x and x’ such

that H(x) = H(x’)

one-way hash function (preimage resistance)
– given a hash value y (for which no preimage is known), it is computationally

infeasible to find any input x such that H(x) = y

collision resistant hash functions are similar to block ciphers in the sense
that they can be modeled as a random function

13

Cryptographic primitives 25

The Birthday Paradox

fact: when drawing elements randomly (with replacement)
from a set of N elements, with high probability a repeated
element will be encountered after ~sqrt(N) selections

this fact has a profound impact on the design of hash
functions (and other cryptographic algorithms and protocols)!
– among ~sqrt(2n) = 2n/2 randomly chosen messages, with high

probability there will be a collision pair
in order to resist birthday attacks, n should be at least 128, but 160 is
even better

– the birthday attack against hash functions is the equivalent of the
exhaustive key search attack against block ciphers

– it is easier to find collisions than to find preimages or 2nd preimages
for a given hash value

Cryptographic primitives 26

Iterative hash functions

operation:
– input is divided into fixed length blocks
– last block is padded if necessary
– each input block is processed according to the following scheme

f

input block xi

CVi chaning variable

CVi-1CV0 = IV compression
function

H(x) = CVL

input x = x1 x2 x3 … xL,

(b)

(n)

(n)

x1

CV0

(b)

(n) (n)

CV1

f

x2

(b)

(n)

CV2

f

x3

(b)

(n)

CV3

f

xL

(b)

(n) H(x) = CVL
f

CVL-1

…

alternative illustration:

14

Cryptographic primitives 27

Exercise

Assume that an iterated hash function H has a small output
size such that h is not collision resistant (the birthday attack
works). One may try to increase the output size by using the
last two chaining variables as the output:

H’(x) = CVL-1|CVL

Prove that this is insecure by showing that H’ is still not
collision resistant.

Cryptographic primitives 28

Solution

assume that (x, x’) is a collision pair for H
CVL(x) = H(x) = H(x’) = CVL(x’)

extend x and x’ with one block B and observe that
– CVL-1(x|B) = CVL(x)
– CVL-1(x’|B) = CVL(x’)

CVL-1(x|B) = CVL-1(x’|B)
CVL(x|B) = f(CVL-1(x|B), B) = f(CVL-1(x’|B), B) = CVL(x’|B)
H’(x|B) = CVL-1(x|B) | CVL(x|B) = CVL-1(x’|B) | CVL(x’|B) = H’(x’|B)

we found a collision against H’

15

Cryptographic primitives 29

ff

Compression functions based on block ciphers

EE

+

gCVi-1

CVi

xi

Miyaguchi-Preneel

EE

+

CVi-1

CVi

xi

Davies - Meyer

EE

+

gCVi-1

CVi

xi

Matyas - Meyer - Oseas

f

Cryptographic primitives 30

MAC functions

MAC = Message Authentication Code
a MAC function is a function MAC: {0, 1}* x {0, 1}k {0, 1}n that maps an
arbitrary long message and a key into a fixed length output
– can be viewed as a hash function with an additional input (the key)

terminology and usage:
– the sender computes the MAC value M = MAC(m, K), where m is the

message, and K is the MAC key
– the sender attaches M to m, and sends them to the receiver
– the receiver receives (m’, M’)
– the receiver computes M” = MAC(m’, K) and compares it to M’; if they are the

same, then the message is accepted, otherwise rejected

services:
– message authentication and integrity protection: after successful

verification of the MAC value, the receiver is assured that the message has
been generated by the sender and it has not been altered

examples:
– HMAC, CBC-MAC schemes

16

Cryptographic primitives 31

Desired properties of MAC functions

ease of computation

key non-recovery
– it is computationally infeasible to recover the secret key K, given one

or more message-MAC pairs (mi, Mi) for that K

computation resistance
– given zero or more message-MAC pairs (mi, Mi), it is computationally

infeasible to find a valid message-MAC pair (m, M) for any new
message m ≠ mi

– computation resistance implies key non-recovery but the reverse is
not true in general

Cryptographic primitives 32

A note on the key size and the MAC value size

guessing a correct MAC for a given message or a message
for a given MAC have probability 2-n

– an important difference between MACs and hash functions that
message-MAC guesses cannot be verified off-line, but need access
to the key or to an oracle

brute force attack on the key space has complexity 2k

thus, min(2k, 2n) should be sufficiently large

how the birthday attack would work here?

17

Cryptographic primitives 33

Digital signature schemes

functions (algorithms) and terminology:
– key-pair generation function G() = (K+, K-)

K+ -- public key
K- -- private key

– signature generation function S(K-, m) = s
m – message
s – signature

– signature verification function V: V(K+, m, s) = accept or reject

services:
– message authentication and integrity protection: after successful

verification of the signature, the receiver is assured that the message has
been generated by the sender and it has not been altered

– non-repudiation of origin: the receiver can prove this to a third party (hence
the sender cannot repudiate)

examples: RSA, DSA, ECDSA (shorter key and signature length!)

Cryptographic primitives 34

“Hash-and-sign” paradigm

public/private key operations are slow
increase efficiency by signing the hash of the message instead of the message
it is essential that the hash function is collision resistant (why?)

hh encenc

private key
of sender

message hash signature

hh
message hash

decdec

public key
of sender

signature

comparecompare

yes/no

ge
ne

ra
tio

n
ve

rif
ic

at
io

n

18

Cryptographic primitives 35

Security of digital signature schemes

as in the case of public-key encryption, security is usually related to the
difficulty of solving the underlying hard problems

attack objectives:
– existential forgery

• attacker is able to compute a valid signature for at least one message
– selective forgery

• attacker is able to compute valid signatures for a particular class of messages
– total break

• the attacker is able to forge signatures for all messages or he can deduce the
private key

attack models:
– key-only attack
– known-message attack
– (adaptive) chosen-message attack

